Properties

Label 900.2.r.g.551.14
Level $900$
Weight $2$
Character 900.551
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.14
Character \(\chi\) \(=\) 900.551
Dual form 900.2.r.g.851.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.282343 - 1.38574i) q^{2} +(1.44177 + 0.959839i) q^{3} +(-1.84056 - 0.782509i) q^{4} +(1.73716 - 1.72692i) q^{6} +(0.953419 + 0.550457i) q^{7} +(-1.60403 + 2.32961i) q^{8} +(1.15742 + 2.76774i) q^{9} +(-2.84126 + 4.92120i) q^{11} +(-1.90259 - 2.89485i) q^{12} +(1.19828 + 2.07548i) q^{13} +(1.03198 - 1.16578i) q^{14} +(2.77536 + 2.88052i) q^{16} +1.29175i q^{17} +(4.16216 - 0.822430i) q^{18} -2.78362i q^{19} +(0.846263 + 1.70876i) q^{21} +(6.01731 + 5.32672i) q^{22} +(1.05393 + 1.82546i) q^{23} +(-4.54870 + 1.81916i) q^{24} +(3.21441 - 1.07451i) q^{26} +(-0.987853 + 5.10139i) q^{27} +(-1.32409 - 1.75921i) q^{28} +(5.51723 + 3.18537i) q^{29} +(2.78385 - 1.60725i) q^{31} +(4.77526 - 3.03264i) q^{32} +(-8.82001 + 4.36810i) q^{33} +(1.79003 + 0.364715i) q^{34} +(0.0354812 - 5.99990i) q^{36} -6.51687 q^{37} +(-3.85739 - 0.785937i) q^{38} +(-0.264482 + 4.14253i) q^{39} +(6.35642 - 3.66988i) q^{41} +(2.60684 - 0.690246i) q^{42} +(-3.90530 - 2.25473i) q^{43} +(9.08040 - 6.83448i) q^{44} +(2.82719 - 0.945071i) q^{46} +(-4.67439 + 8.09628i) q^{47} +(1.23660 + 6.81695i) q^{48} +(-2.89400 - 5.01255i) q^{49} +(-1.23987 + 1.86240i) q^{51} +(-0.581429 - 4.75773i) q^{52} -11.5954i q^{53} +(6.79030 + 2.80925i) q^{54} +(-2.81166 + 1.33815i) q^{56} +(2.67183 - 4.01335i) q^{57} +(5.97186 - 6.74609i) q^{58} +(3.66237 + 6.34341i) q^{59} +(2.48990 - 4.31263i) q^{61} +(-1.44124 - 4.31149i) q^{62} +(-0.420017 + 3.27592i) q^{63} +(-2.85419 - 7.47353i) q^{64} +(3.56280 + 13.4556i) q^{66} +(-3.20457 + 1.85016i) q^{67} +(1.01080 - 2.37754i) q^{68} +(-0.232621 + 3.64351i) q^{69} +12.6950 q^{71} +(-8.30429 - 1.74320i) q^{72} +9.86891 q^{73} +(-1.83999 + 9.03070i) q^{74} +(-2.17821 + 5.12344i) q^{76} +(-5.41781 + 3.12798i) q^{77} +(5.66581 + 1.53612i) q^{78} +(0.975531 + 0.563223i) q^{79} +(-6.32077 + 6.40686i) q^{81} +(-3.29082 - 9.84453i) q^{82} +(-5.76275 + 9.98138i) q^{83} +(-0.220480 - 3.80730i) q^{84} +(-4.22710 + 4.77514i) q^{86} +(4.89714 + 9.88823i) q^{87} +(-6.90704 - 14.5128i) q^{88} -9.16815i q^{89} +2.63841i q^{91} +(-0.511387 - 4.18460i) q^{92} +(5.55638 + 0.354749i) q^{93} +(9.89957 + 8.76343i) q^{94} +(9.79568 + 0.211108i) q^{96} +(6.42344 - 11.1257i) q^{97} +(-7.76320 + 2.59507i) q^{98} +(-16.9091 - 2.16798i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.282343 1.38574i 0.199647 0.979868i
\(3\) 1.44177 + 0.959839i 0.832408 + 0.554163i
\(4\) −1.84056 0.782509i −0.920282 0.391255i
\(5\) 0 0
\(6\) 1.73716 1.72692i 0.709194 0.705013i
\(7\) 0.953419 + 0.550457i 0.360358 + 0.208053i 0.669238 0.743048i \(-0.266621\pi\)
−0.308880 + 0.951101i \(0.599954\pi\)
\(8\) −1.60403 + 2.32961i −0.567109 + 0.823643i
\(9\) 1.15742 + 2.76774i 0.385806 + 0.922580i
\(10\) 0 0
\(11\) −2.84126 + 4.92120i −0.856671 + 1.48380i 0.0184153 + 0.999830i \(0.494138\pi\)
−0.875086 + 0.483967i \(0.839195\pi\)
\(12\) −1.90259 2.89485i −0.549231 0.835670i
\(13\) 1.19828 + 2.07548i 0.332343 + 0.575636i 0.982971 0.183761i \(-0.0588274\pi\)
−0.650627 + 0.759397i \(0.725494\pi\)
\(14\) 1.03198 1.16578i 0.275809 0.311567i
\(15\) 0 0
\(16\) 2.77536 + 2.88052i 0.693839 + 0.720130i
\(17\) 1.29175i 0.313294i 0.987655 + 0.156647i \(0.0500685\pi\)
−0.987655 + 0.156647i \(0.949931\pi\)
\(18\) 4.16216 0.822430i 0.981031 0.193849i
\(19\) 2.78362i 0.638607i −0.947652 0.319304i \(-0.896551\pi\)
0.947652 0.319304i \(-0.103449\pi\)
\(20\) 0 0
\(21\) 0.846263 + 1.70876i 0.184670 + 0.372882i
\(22\) 6.01731 + 5.32672i 1.28289 + 1.13566i
\(23\) 1.05393 + 1.82546i 0.219760 + 0.380635i 0.954735 0.297459i \(-0.0961392\pi\)
−0.734975 + 0.678095i \(0.762806\pi\)
\(24\) −4.54870 + 1.81916i −0.928499 + 0.371335i
\(25\) 0 0
\(26\) 3.21441 1.07451i 0.630398 0.210729i
\(27\) −0.987853 + 5.10139i −0.190112 + 0.981762i
\(28\) −1.32409 1.75921i −0.250230 0.332459i
\(29\) 5.51723 + 3.18537i 1.02452 + 0.591509i 0.915411 0.402521i \(-0.131866\pi\)
0.109112 + 0.994029i \(0.465199\pi\)
\(30\) 0 0
\(31\) 2.78385 1.60725i 0.499994 0.288671i −0.228717 0.973493i \(-0.573453\pi\)
0.728711 + 0.684821i \(0.240120\pi\)
\(32\) 4.77526 3.03264i 0.844155 0.536100i
\(33\) −8.82001 + 4.36810i −1.53537 + 0.760389i
\(34\) 1.79003 + 0.364715i 0.306987 + 0.0625481i
\(35\) 0 0
\(36\) 0.0354812 5.99990i 0.00591353 0.999983i
\(37\) −6.51687 −1.07137 −0.535683 0.844419i \(-0.679946\pi\)
−0.535683 + 0.844419i \(0.679946\pi\)
\(38\) −3.85739 0.785937i −0.625751 0.127496i
\(39\) −0.264482 + 4.14253i −0.0423510 + 0.663336i
\(40\) 0 0
\(41\) 6.35642 3.66988i 0.992706 0.573139i 0.0866240 0.996241i \(-0.472392\pi\)
0.906082 + 0.423102i \(0.139059\pi\)
\(42\) 2.60684 0.690246i 0.402244 0.106507i
\(43\) −3.90530 2.25473i −0.595553 0.343843i 0.171737 0.985143i \(-0.445062\pi\)
−0.767290 + 0.641300i \(0.778395\pi\)
\(44\) 9.08040 6.83448i 1.36892 1.03034i
\(45\) 0 0
\(46\) 2.82719 0.945071i 0.416847 0.139343i
\(47\) −4.67439 + 8.09628i −0.681830 + 1.18096i 0.292592 + 0.956237i \(0.405482\pi\)
−0.974422 + 0.224726i \(0.927851\pi\)
\(48\) 1.23660 + 6.81695i 0.178488 + 0.983942i
\(49\) −2.89400 5.01255i −0.413428 0.716078i
\(50\) 0 0
\(51\) −1.23987 + 1.86240i −0.173616 + 0.260789i
\(52\) −0.581429 4.75773i −0.0806296 0.659778i
\(53\) 11.5954i 1.59275i −0.604800 0.796377i \(-0.706747\pi\)
0.604800 0.796377i \(-0.293253\pi\)
\(54\) 6.79030 + 2.80925i 0.924042 + 0.382291i
\(55\) 0 0
\(56\) −2.81166 + 1.33815i −0.375724 + 0.178818i
\(57\) 2.67183 4.01335i 0.353893 0.531582i
\(58\) 5.97186 6.74609i 0.784143 0.885805i
\(59\) 3.66237 + 6.34341i 0.476800 + 0.825842i 0.999647 0.0265849i \(-0.00846323\pi\)
−0.522846 + 0.852427i \(0.675130\pi\)
\(60\) 0 0
\(61\) 2.48990 4.31263i 0.318799 0.552175i −0.661439 0.749999i \(-0.730054\pi\)
0.980238 + 0.197823i \(0.0633873\pi\)
\(62\) −1.44124 4.31149i −0.183038 0.547560i
\(63\) −0.420017 + 3.27592i −0.0529172 + 0.412728i
\(64\) −2.85419 7.47353i −0.356774 0.934191i
\(65\) 0 0
\(66\) 3.56280 + 13.4556i 0.438550 + 1.65627i
\(67\) −3.20457 + 1.85016i −0.391500 + 0.226033i −0.682810 0.730596i \(-0.739242\pi\)
0.291310 + 0.956629i \(0.405909\pi\)
\(68\) 1.01080 2.37754i 0.122578 0.288319i
\(69\) −0.232621 + 3.64351i −0.0280043 + 0.438627i
\(70\) 0 0
\(71\) 12.6950 1.50662 0.753311 0.657664i \(-0.228455\pi\)
0.753311 + 0.657664i \(0.228455\pi\)
\(72\) −8.30429 1.74320i −0.978670 0.205438i
\(73\) 9.86891 1.15507 0.577534 0.816366i \(-0.304015\pi\)
0.577534 + 0.816366i \(0.304015\pi\)
\(74\) −1.83999 + 9.03070i −0.213895 + 1.04980i
\(75\) 0 0
\(76\) −2.17821 + 5.12344i −0.249858 + 0.587699i
\(77\) −5.41781 + 3.12798i −0.617417 + 0.356466i
\(78\) 5.66581 + 1.53612i 0.641527 + 0.173931i
\(79\) 0.975531 + 0.563223i 0.109756 + 0.0633676i 0.553873 0.832601i \(-0.313149\pi\)
−0.444117 + 0.895969i \(0.646483\pi\)
\(80\) 0 0
\(81\) −6.32077 + 6.40686i −0.702308 + 0.711873i
\(82\) −3.29082 9.84453i −0.363410 1.08715i
\(83\) −5.76275 + 9.98138i −0.632544 + 1.09560i 0.354485 + 0.935062i \(0.384656\pi\)
−0.987030 + 0.160537i \(0.948677\pi\)
\(84\) −0.220480 3.80730i −0.0240564 0.415410i
\(85\) 0 0
\(86\) −4.22710 + 4.77514i −0.455820 + 0.514916i
\(87\) 4.89714 + 9.88823i 0.525029 + 1.06013i
\(88\) −6.90704 14.5128i −0.736293 1.54707i
\(89\) 9.16815i 0.971822i −0.874008 0.485911i \(-0.838488\pi\)
0.874008 0.485911i \(-0.161512\pi\)
\(90\) 0 0
\(91\) 2.63841i 0.276580i
\(92\) −0.511387 4.18460i −0.0533158 0.436274i
\(93\) 5.55638 + 0.354749i 0.576170 + 0.0367858i
\(94\) 9.89957 + 8.76343i 1.02106 + 0.903878i
\(95\) 0 0
\(96\) 9.79568 + 0.211108i 0.999768 + 0.0215462i
\(97\) 6.42344 11.1257i 0.652202 1.12965i −0.330386 0.943846i \(-0.607179\pi\)
0.982587 0.185801i \(-0.0594879\pi\)
\(98\) −7.76320 + 2.59507i −0.784201 + 0.262142i
\(99\) −16.9091 2.16798i −1.69943 0.217890i
\(100\) 0 0
\(101\) 14.4999 + 8.37150i 1.44279 + 0.832995i 0.998035 0.0626572i \(-0.0199575\pi\)
0.444755 + 0.895652i \(0.353291\pi\)
\(102\) 2.23074 + 2.24397i 0.220876 + 0.222187i
\(103\) −1.17657 + 0.679292i −0.115931 + 0.0669327i −0.556844 0.830617i \(-0.687988\pi\)
0.440913 + 0.897550i \(0.354655\pi\)
\(104\) −6.75715 0.537601i −0.662593 0.0527162i
\(105\) 0 0
\(106\) −16.0683 3.27389i −1.56069 0.317988i
\(107\) −2.97211 −0.287324 −0.143662 0.989627i \(-0.545888\pi\)
−0.143662 + 0.989627i \(0.545888\pi\)
\(108\) 5.81009 8.61643i 0.559076 0.829116i
\(109\) −5.12076 −0.490480 −0.245240 0.969462i \(-0.578867\pi\)
−0.245240 + 0.969462i \(0.578867\pi\)
\(110\) 0 0
\(111\) −9.39584 6.25515i −0.891814 0.593712i
\(112\) 1.06048 + 4.27405i 0.100206 + 0.403860i
\(113\) −7.24900 + 4.18521i −0.681928 + 0.393711i −0.800581 0.599224i \(-0.795476\pi\)
0.118653 + 0.992936i \(0.462142\pi\)
\(114\) −4.80710 4.83561i −0.450226 0.452897i
\(115\) 0 0
\(116\) −7.66223 10.1802i −0.711420 0.945205i
\(117\) −4.35749 + 5.71873i −0.402850 + 0.528697i
\(118\) 9.82438 3.28409i 0.904408 0.302325i
\(119\) −0.711050 + 1.23157i −0.0651818 + 0.112898i
\(120\) 0 0
\(121\) −10.6455 18.4385i −0.967770 1.67623i
\(122\) −5.27319 4.66800i −0.477412 0.422621i
\(123\) 12.6870 + 0.810007i 1.14395 + 0.0730359i
\(124\) −6.38154 + 0.779870i −0.573079 + 0.0700344i
\(125\) 0 0
\(126\) 4.42100 + 1.50697i 0.393854 + 0.134252i
\(127\) 5.14729i 0.456748i 0.973573 + 0.228374i \(0.0733410\pi\)
−0.973573 + 0.228374i \(0.926659\pi\)
\(128\) −11.1622 + 1.84508i −0.986612 + 0.163084i
\(129\) −3.46638 6.99926i −0.305198 0.616251i
\(130\) 0 0
\(131\) −7.10028 12.2980i −0.620354 1.07449i −0.989420 0.145082i \(-0.953656\pi\)
0.369065 0.929403i \(-0.379678\pi\)
\(132\) 19.6519 1.13804i 1.71048 0.0990535i
\(133\) 1.53226 2.65396i 0.132864 0.230127i
\(134\) 1.65906 + 4.96309i 0.143321 + 0.428746i
\(135\) 0 0
\(136\) −3.00927 2.07199i −0.258042 0.177672i
\(137\) −6.01263 3.47139i −0.513693 0.296581i 0.220657 0.975351i \(-0.429180\pi\)
−0.734351 + 0.678770i \(0.762513\pi\)
\(138\) 4.98329 + 1.35107i 0.424205 + 0.115011i
\(139\) 10.3321 5.96523i 0.876356 0.505964i 0.00690070 0.999976i \(-0.497803\pi\)
0.869455 + 0.494012i \(0.164470\pi\)
\(140\) 0 0
\(141\) −14.5105 + 7.18633i −1.22201 + 0.605198i
\(142\) 3.58435 17.5920i 0.300792 1.47629i
\(143\) −13.6185 −1.13884
\(144\) −4.76028 + 11.0154i −0.396690 + 0.917953i
\(145\) 0 0
\(146\) 2.78642 13.6758i 0.230606 1.13182i
\(147\) 0.638756 10.0047i 0.0526837 0.825176i
\(148\) 11.9947 + 5.09951i 0.985960 + 0.419177i
\(149\) −4.98019 + 2.87531i −0.407993 + 0.235555i −0.689927 0.723879i \(-0.742357\pi\)
0.281934 + 0.959434i \(0.409024\pi\)
\(150\) 0 0
\(151\) 1.85084 + 1.06858i 0.150619 + 0.0869599i 0.573415 0.819265i \(-0.305618\pi\)
−0.422796 + 0.906225i \(0.638951\pi\)
\(152\) 6.48477 + 4.46501i 0.525984 + 0.362160i
\(153\) −3.57521 + 1.49509i −0.289039 + 0.120871i
\(154\) 2.80489 + 8.39086i 0.226024 + 0.676155i
\(155\) 0 0
\(156\) 3.72837 7.41764i 0.298508 0.593887i
\(157\) 5.02788 + 8.70855i 0.401269 + 0.695018i 0.993879 0.110471i \(-0.0352360\pi\)
−0.592611 + 0.805489i \(0.701903\pi\)
\(158\) 1.05592 1.19281i 0.0840042 0.0948951i
\(159\) 11.1297 16.7180i 0.882646 1.32582i
\(160\) 0 0
\(161\) 2.32057i 0.182887i
\(162\) 7.09363 + 10.5679i 0.557329 + 0.830292i
\(163\) 18.2146i 1.42668i −0.700819 0.713339i \(-0.747182\pi\)
0.700819 0.713339i \(-0.252818\pi\)
\(164\) −14.5711 + 1.78069i −1.13781 + 0.139049i
\(165\) 0 0
\(166\) 12.2046 + 10.8039i 0.947257 + 0.838543i
\(167\) 3.72227 + 6.44716i 0.288038 + 0.498896i 0.973341 0.229362i \(-0.0736638\pi\)
−0.685304 + 0.728258i \(0.740330\pi\)
\(168\) −5.33818 0.769435i −0.411850 0.0593632i
\(169\) 3.62824 6.28430i 0.279096 0.483408i
\(170\) 0 0
\(171\) 7.70435 3.22181i 0.589166 0.246378i
\(172\) 5.42361 + 7.20591i 0.413547 + 0.549445i
\(173\) −7.50742 4.33441i −0.570778 0.329539i 0.186682 0.982420i \(-0.440227\pi\)
−0.757460 + 0.652881i \(0.773560\pi\)
\(174\) 15.0852 3.99430i 1.14361 0.302807i
\(175\) 0 0
\(176\) −22.0611 + 5.47380i −1.66292 + 0.412603i
\(177\) −0.808350 + 12.6610i −0.0607593 + 0.951663i
\(178\) −12.7047 2.58856i −0.952257 0.194021i
\(179\) 1.10988 0.0829560 0.0414780 0.999139i \(-0.486793\pi\)
0.0414780 + 0.999139i \(0.486793\pi\)
\(180\) 0 0
\(181\) −12.6629 −0.941229 −0.470615 0.882339i \(-0.655968\pi\)
−0.470615 + 0.882339i \(0.655968\pi\)
\(182\) 3.65615 + 0.744936i 0.271012 + 0.0552183i
\(183\) 7.72930 3.82793i 0.571366 0.282969i
\(184\) −5.94316 0.472840i −0.438135 0.0348582i
\(185\) 0 0
\(186\) 2.06040 7.59955i 0.151076 0.557226i
\(187\) −6.35694 3.67018i −0.464865 0.268390i
\(188\) 14.9389 11.2440i 1.08953 0.820051i
\(189\) −3.74993 + 4.31999i −0.272767 + 0.314233i
\(190\) 0 0
\(191\) −11.3827 + 19.7154i −0.823625 + 1.42656i 0.0793411 + 0.996848i \(0.474718\pi\)
−0.902966 + 0.429712i \(0.858615\pi\)
\(192\) 3.05829 13.5147i 0.220713 0.975339i
\(193\) −5.81319 10.0687i −0.418443 0.724764i 0.577340 0.816504i \(-0.304091\pi\)
−0.995783 + 0.0917396i \(0.970757\pi\)
\(194\) −13.6038 12.0425i −0.976695 0.864602i
\(195\) 0 0
\(196\) 1.40422 + 11.4905i 0.100301 + 0.820750i
\(197\) 12.2003i 0.869238i −0.900614 0.434619i \(-0.856883\pi\)
0.900614 0.434619i \(-0.143117\pi\)
\(198\) −7.77843 + 22.8196i −0.552789 + 1.62172i
\(199\) 7.07921i 0.501832i 0.968009 + 0.250916i \(0.0807318\pi\)
−0.968009 + 0.250916i \(0.919268\pi\)
\(200\) 0 0
\(201\) −6.39612 0.408363i −0.451147 0.0288037i
\(202\) 15.6947 17.7294i 1.10427 1.24744i
\(203\) 3.50682 + 6.07399i 0.246130 + 0.426310i
\(204\) 3.73940 2.45767i 0.261811 0.172071i
\(205\) 0 0
\(206\) 0.609128 + 1.82222i 0.0424400 + 0.126960i
\(207\) −3.83257 + 5.02983i −0.266382 + 0.349597i
\(208\) −2.65281 + 9.21188i −0.183939 + 0.638729i
\(209\) 13.6988 + 7.90899i 0.947564 + 0.547076i
\(210\) 0 0
\(211\) 5.61368 3.24106i 0.386462 0.223124i −0.294164 0.955755i \(-0.595041\pi\)
0.680626 + 0.732631i \(0.261708\pi\)
\(212\) −9.07353 + 21.3421i −0.623173 + 1.46578i
\(213\) 18.3033 + 12.1852i 1.25412 + 0.834915i
\(214\) −0.839153 + 4.11857i −0.0573633 + 0.281540i
\(215\) 0 0
\(216\) −10.2997 10.4841i −0.700807 0.713351i
\(217\) 3.53890 0.240236
\(218\) −1.44581 + 7.09606i −0.0979227 + 0.480606i
\(219\) 14.2287 + 9.47257i 0.961488 + 0.640097i
\(220\) 0 0
\(221\) −2.68100 + 1.54787i −0.180343 + 0.104121i
\(222\) −11.3209 + 11.2541i −0.759807 + 0.755327i
\(223\) 13.5931 + 7.84799i 0.910263 + 0.525540i 0.880516 0.474017i \(-0.157197\pi\)
0.0297470 + 0.999557i \(0.490530\pi\)
\(224\) 6.22216 0.262800i 0.415735 0.0175590i
\(225\) 0 0
\(226\) 3.75292 + 11.2269i 0.249640 + 0.746803i
\(227\) −0.0980022 + 0.169745i −0.00650463 + 0.0112664i −0.869259 0.494356i \(-0.835404\pi\)
0.862755 + 0.505623i \(0.168737\pi\)
\(228\) −8.05817 + 5.29610i −0.533665 + 0.350743i
\(229\) −0.825139 1.42918i −0.0545267 0.0944431i 0.837474 0.546478i \(-0.184032\pi\)
−0.892000 + 0.452035i \(0.850698\pi\)
\(230\) 0 0
\(231\) −10.8136 0.690399i −0.711483 0.0454249i
\(232\) −16.2705 + 7.74358i −1.06821 + 0.508391i
\(233\) 20.2270i 1.32512i 0.749010 + 0.662559i \(0.230530\pi\)
−0.749010 + 0.662559i \(0.769470\pi\)
\(234\) 6.69438 + 7.65300i 0.437626 + 0.500292i
\(235\) 0 0
\(236\) −1.77705 14.5413i −0.115676 0.946558i
\(237\) 0.865891 + 1.74839i 0.0562456 + 0.113570i
\(238\) 1.50588 + 1.33306i 0.0976120 + 0.0864093i
\(239\) −10.1646 17.6056i −0.657494 1.13881i −0.981262 0.192676i \(-0.938283\pi\)
0.323769 0.946136i \(-0.395050\pi\)
\(240\) 0 0
\(241\) 8.62268 14.9349i 0.555436 0.962043i −0.442434 0.896801i \(-0.645885\pi\)
0.997869 0.0652417i \(-0.0207818\pi\)
\(242\) −28.5567 + 9.54590i −1.83569 + 0.613634i
\(243\) −15.2627 + 3.17031i −0.979101 + 0.203376i
\(244\) −7.95749 + 5.98930i −0.509426 + 0.383426i
\(245\) 0 0
\(246\) 4.70455 17.3522i 0.299951 1.10634i
\(247\) 5.77737 3.33556i 0.367605 0.212237i
\(248\) −0.721085 + 9.06336i −0.0457889 + 0.575524i
\(249\) −17.8891 + 8.85957i −1.13368 + 0.561452i
\(250\) 0 0
\(251\) −9.92020 −0.626157 −0.313079 0.949727i \(-0.601360\pi\)
−0.313079 + 0.949727i \(0.601360\pi\)
\(252\) 3.33651 5.70088i 0.210180 0.359122i
\(253\) −11.9780 −0.753048
\(254\) 7.13282 + 1.45330i 0.447553 + 0.0911883i
\(255\) 0 0
\(256\) −0.594777 + 15.9889i −0.0371735 + 0.999309i
\(257\) 15.0253 8.67485i 0.937252 0.541122i 0.0481539 0.998840i \(-0.484666\pi\)
0.889098 + 0.457717i \(0.151333\pi\)
\(258\) −10.6779 + 2.82732i −0.664776 + 0.176021i
\(259\) −6.21330 3.58725i −0.386076 0.222901i
\(260\) 0 0
\(261\) −2.43055 + 18.9571i −0.150447 + 1.17341i
\(262\) −19.0466 + 6.36689i −1.17671 + 0.393348i
\(263\) 4.80637 8.32487i 0.296373 0.513334i −0.678930 0.734203i \(-0.737556\pi\)
0.975303 + 0.220869i \(0.0708894\pi\)
\(264\) 3.97154 27.5538i 0.244431 1.69582i
\(265\) 0 0
\(266\) −3.24508 2.87265i −0.198969 0.176134i
\(267\) 8.79995 13.2184i 0.538548 0.808952i
\(268\) 7.34599 0.897732i 0.448727 0.0548377i
\(269\) 1.34482i 0.0819953i 0.999159 + 0.0409977i \(0.0130536\pi\)
−0.999159 + 0.0409977i \(0.986946\pi\)
\(270\) 0 0
\(271\) 21.7288i 1.31993i −0.751297 0.659964i \(-0.770571\pi\)
0.751297 0.659964i \(-0.229429\pi\)
\(272\) −3.72090 + 3.58506i −0.225612 + 0.217376i
\(273\) −2.53245 + 3.80398i −0.153271 + 0.230228i
\(274\) −6.50808 + 7.35183i −0.393167 + 0.444140i
\(275\) 0 0
\(276\) 3.27923 6.52409i 0.197387 0.392704i
\(277\) −6.95713 + 12.0501i −0.418014 + 0.724021i −0.995740 0.0922100i \(-0.970607\pi\)
0.577726 + 0.816231i \(0.303940\pi\)
\(278\) −5.34908 16.0018i −0.320817 0.959727i
\(279\) 7.67053 + 5.84470i 0.459223 + 0.349913i
\(280\) 0 0
\(281\) 10.0948 + 5.82824i 0.602206 + 0.347684i 0.769909 0.638154i \(-0.220302\pi\)
−0.167703 + 0.985838i \(0.553635\pi\)
\(282\) 5.86146 + 22.1369i 0.349045 + 1.31823i
\(283\) −10.7624 + 6.21367i −0.639758 + 0.369365i −0.784521 0.620102i \(-0.787091\pi\)
0.144763 + 0.989466i \(0.453758\pi\)
\(284\) −23.3660 9.93398i −1.38652 0.589473i
\(285\) 0 0
\(286\) −3.84509 + 18.8717i −0.227365 + 1.11591i
\(287\) 8.08044 0.476973
\(288\) 13.9205 + 9.70665i 0.820275 + 0.571970i
\(289\) 15.3314 0.901847
\(290\) 0 0
\(291\) 19.9401 9.87530i 1.16891 0.578900i
\(292\) −18.1644 7.72252i −1.06299 0.451926i
\(293\) 8.27006 4.77472i 0.483142 0.278942i −0.238583 0.971122i \(-0.576683\pi\)
0.721725 + 0.692180i \(0.243350\pi\)
\(294\) −13.6836 3.70991i −0.798045 0.216367i
\(295\) 0 0
\(296\) 10.4532 15.1818i 0.607582 0.882423i
\(297\) −22.2982 19.3558i −1.29387 1.12314i
\(298\) 2.57832 + 7.71308i 0.149358 + 0.446807i
\(299\) −2.52581 + 4.37484i −0.146072 + 0.253003i
\(300\) 0 0
\(301\) −2.48226 4.29940i −0.143075 0.247813i
\(302\) 2.00335 2.26308i 0.115280 0.130225i
\(303\) 12.8702 + 25.9873i 0.739374 + 1.49293i
\(304\) 8.01828 7.72555i 0.459880 0.443091i
\(305\) 0 0
\(306\) 1.06237 + 5.37646i 0.0607317 + 0.307351i
\(307\) 13.4685i 0.768689i −0.923190 0.384345i \(-0.874427\pi\)
0.923190 0.384345i \(-0.125573\pi\)
\(308\) 12.4195 1.51775i 0.707667 0.0864820i
\(309\) −2.34836 0.149932i −0.133593 0.00852932i
\(310\) 0 0
\(311\) 5.13110 + 8.88732i 0.290958 + 0.503954i 0.974037 0.226391i \(-0.0726927\pi\)
−0.683079 + 0.730345i \(0.739359\pi\)
\(312\) −9.22626 7.26088i −0.522334 0.411066i
\(313\) 0.802903 1.39067i 0.0453827 0.0786052i −0.842442 0.538787i \(-0.818883\pi\)
0.887824 + 0.460182i \(0.152216\pi\)
\(314\) 13.4874 4.50855i 0.761138 0.254432i
\(315\) 0 0
\(316\) −1.35480 1.80001i −0.0762135 0.101259i
\(317\) 3.86467 + 2.23127i 0.217061 + 0.125320i 0.604589 0.796538i \(-0.293337\pi\)
−0.387528 + 0.921858i \(0.626671\pi\)
\(318\) −20.0244 20.1432i −1.12291 1.12957i
\(319\) −31.3517 + 18.1009i −1.75536 + 1.01346i
\(320\) 0 0
\(321\) −4.28510 2.85274i −0.239171 0.159225i
\(322\) 3.21572 + 0.655198i 0.179205 + 0.0365128i
\(323\) 3.59573 0.200072
\(324\) 16.6472 6.84618i 0.924845 0.380343i
\(325\) 0 0
\(326\) −25.2408 5.14277i −1.39796 0.284832i
\(327\) −7.38297 4.91511i −0.408279 0.271806i
\(328\) −1.64647 + 20.6946i −0.0909110 + 1.14267i
\(329\) −8.91330 + 5.14610i −0.491406 + 0.283713i
\(330\) 0 0
\(331\) 10.2107 + 5.89512i 0.561228 + 0.324025i 0.753638 0.657289i \(-0.228297\pi\)
−0.192410 + 0.981315i \(0.561630\pi\)
\(332\) 18.4172 13.8620i 1.01078 0.760775i
\(333\) −7.54274 18.0370i −0.413339 0.988421i
\(334\) 9.98506 3.33780i 0.546358 0.182636i
\(335\) 0 0
\(336\) −2.57344 + 7.18010i −0.140393 + 0.391707i
\(337\) 5.28111 + 9.14715i 0.287680 + 0.498277i 0.973256 0.229725i \(-0.0737826\pi\)
−0.685575 + 0.728002i \(0.740449\pi\)
\(338\) −7.68402 6.80214i −0.417955 0.369988i
\(339\) −14.4685 0.923749i −0.785823 0.0501712i
\(340\) 0 0
\(341\) 18.2665i 0.989186i
\(342\) −2.28934 11.5859i −0.123793 0.626494i
\(343\) 14.0785i 0.760166i
\(344\) 11.5168 5.48120i 0.620947 0.295526i
\(345\) 0 0
\(346\) −8.12604 + 9.17956i −0.436859 + 0.493496i
\(347\) −11.6546 20.1864i −0.625652 1.08366i −0.988414 0.151779i \(-0.951500\pi\)
0.362763 0.931882i \(-0.381834\pi\)
\(348\) −1.27587 22.0320i −0.0683939 1.18104i
\(349\) −2.84689 + 4.93095i −0.152390 + 0.263948i −0.932106 0.362186i \(-0.882030\pi\)
0.779715 + 0.626134i \(0.215364\pi\)
\(350\) 0 0
\(351\) −11.7716 + 4.06262i −0.628320 + 0.216847i
\(352\) 1.35648 + 32.1165i 0.0723004 + 1.71182i
\(353\) 1.31873 + 0.761369i 0.0701889 + 0.0405236i 0.534684 0.845052i \(-0.320431\pi\)
−0.464495 + 0.885576i \(0.653764\pi\)
\(354\) 17.3167 + 4.69492i 0.920373 + 0.249532i
\(355\) 0 0
\(356\) −7.17416 + 16.8746i −0.380230 + 0.894351i
\(357\) −2.20729 + 1.09316i −0.116822 + 0.0578560i
\(358\) 0.313366 1.53800i 0.0165619 0.0812860i
\(359\) −9.46115 −0.499341 −0.249670 0.968331i \(-0.580322\pi\)
−0.249670 + 0.968331i \(0.580322\pi\)
\(360\) 0 0
\(361\) 11.2514 0.592181
\(362\) −3.57529 + 17.5476i −0.187913 + 0.922280i
\(363\) 2.34964 36.8021i 0.123324 1.93161i
\(364\) 2.06458 4.85616i 0.108213 0.254532i
\(365\) 0 0
\(366\) −3.12221 11.7916i −0.163201 0.616357i
\(367\) 7.04288 + 4.06621i 0.367635 + 0.212254i 0.672425 0.740165i \(-0.265253\pi\)
−0.304790 + 0.952420i \(0.598586\pi\)
\(368\) −2.33324 + 8.10218i −0.121629 + 0.422356i
\(369\) 17.5143 + 13.3453i 0.911758 + 0.694730i
\(370\) 0 0
\(371\) 6.38278 11.0553i 0.331377 0.573963i
\(372\) −9.94928 5.00086i −0.515846 0.259282i
\(373\) 5.80775 + 10.0593i 0.300714 + 0.520851i 0.976298 0.216432i \(-0.0694418\pi\)
−0.675584 + 0.737283i \(0.736108\pi\)
\(374\) −6.88076 + 7.77283i −0.355796 + 0.401923i
\(375\) 0 0
\(376\) −11.3633 23.8762i −0.586020 1.23132i
\(377\) 15.2679i 0.786336i
\(378\) 4.92762 + 6.41616i 0.253450 + 0.330011i
\(379\) 0.194316i 0.00998136i 0.999988 + 0.00499068i \(0.00158859\pi\)
−0.999988 + 0.00499068i \(0.998411\pi\)
\(380\) 0 0
\(381\) −4.94057 + 7.42123i −0.253113 + 0.380201i
\(382\) 24.1067 + 21.3400i 1.23341 + 1.09185i
\(383\) −9.25031 16.0220i −0.472669 0.818686i 0.526842 0.849963i \(-0.323376\pi\)
−0.999511 + 0.0312769i \(0.990043\pi\)
\(384\) −17.8644 8.05377i −0.911639 0.410992i
\(385\) 0 0
\(386\) −15.5940 + 5.21275i −0.793714 + 0.265322i
\(387\) 1.72043 13.4185i 0.0874546 0.682102i
\(388\) −20.5288 + 15.4512i −1.04219 + 0.784417i
\(389\) 20.3869 + 11.7704i 1.03366 + 0.596783i 0.918031 0.396509i \(-0.129779\pi\)
0.115628 + 0.993293i \(0.463112\pi\)
\(390\) 0 0
\(391\) −2.35803 + 1.36141i −0.119251 + 0.0688495i
\(392\) 16.3193 + 1.29837i 0.824251 + 0.0655777i
\(393\) 1.56716 24.5461i 0.0790526 1.23819i
\(394\) −16.9065 3.44468i −0.851739 0.173541i
\(395\) 0 0
\(396\) 29.4259 + 17.2218i 1.47871 + 0.865430i
\(397\) 23.4091 1.17487 0.587435 0.809272i \(-0.300138\pi\)
0.587435 + 0.809272i \(0.300138\pi\)
\(398\) 9.80996 + 1.99877i 0.491729 + 0.100189i
\(399\) 4.75655 2.35568i 0.238125 0.117931i
\(400\) 0 0
\(401\) 25.9256 14.9681i 1.29466 0.747474i 0.315185 0.949030i \(-0.397933\pi\)
0.979477 + 0.201557i \(0.0646000\pi\)
\(402\) −2.37178 + 8.74807i −0.118294 + 0.436314i
\(403\) 6.67166 + 3.85189i 0.332339 + 0.191876i
\(404\) −20.1372 26.7546i −1.00186 1.33109i
\(405\) 0 0
\(406\) 9.40711 3.14460i 0.466867 0.156064i
\(407\) 18.5161 32.0708i 0.917809 1.58969i
\(408\) −2.34990 5.87576i −0.116337 0.290893i
\(409\) −1.04012 1.80153i −0.0514304 0.0890800i 0.839164 0.543878i \(-0.183045\pi\)
−0.890594 + 0.454798i \(0.849711\pi\)
\(410\) 0 0
\(411\) −5.33686 10.7761i −0.263248 0.531547i
\(412\) 2.69710 0.329605i 0.132877 0.0162385i
\(413\) 8.06390i 0.396799i
\(414\) 5.88795 + 6.73109i 0.289377 + 0.330815i
\(415\) 0 0
\(416\) 12.0163 + 6.27702i 0.589147 + 0.307756i
\(417\) 20.6222 + 1.31663i 1.00987 + 0.0644757i
\(418\) 14.8276 16.7499i 0.725240 0.819265i
\(419\) 4.89021 + 8.47010i 0.238903 + 0.413791i 0.960400 0.278626i \(-0.0898790\pi\)
−0.721497 + 0.692417i \(0.756546\pi\)
\(420\) 0 0
\(421\) 1.05097 1.82034i 0.0512212 0.0887177i −0.839278 0.543703i \(-0.817022\pi\)
0.890499 + 0.454985i \(0.150355\pi\)
\(422\) −2.90629 8.69420i −0.141476 0.423227i
\(423\) −27.8186 3.56672i −1.35259 0.173420i
\(424\) 27.0129 + 18.5994i 1.31186 + 0.903266i
\(425\) 0 0
\(426\) 22.0534 21.9233i 1.06849 1.06219i
\(427\) 4.74783 2.74116i 0.229764 0.132654i
\(428\) 5.47035 + 2.32570i 0.264419 + 0.112417i
\(429\) −19.6348 13.0716i −0.947976 0.631101i
\(430\) 0 0
\(431\) 3.84204 0.185064 0.0925322 0.995710i \(-0.470504\pi\)
0.0925322 + 0.995710i \(0.470504\pi\)
\(432\) −17.4363 + 11.3126i −0.838904 + 0.544280i
\(433\) 6.66853 0.320469 0.160235 0.987079i \(-0.448775\pi\)
0.160235 + 0.987079i \(0.448775\pi\)
\(434\) 0.999182 4.90400i 0.0479623 0.235399i
\(435\) 0 0
\(436\) 9.42509 + 4.00704i 0.451380 + 0.191903i
\(437\) 5.08140 2.93375i 0.243077 0.140340i
\(438\) 17.1439 17.0428i 0.819168 0.814339i
\(439\) 33.5536 + 19.3722i 1.60143 + 0.924585i 0.991202 + 0.132357i \(0.0422544\pi\)
0.610225 + 0.792228i \(0.291079\pi\)
\(440\) 0 0
\(441\) 10.5239 13.8114i 0.501136 0.657687i
\(442\) 1.38799 + 4.15220i 0.0660202 + 0.197500i
\(443\) 11.7099 20.2821i 0.556354 0.963633i −0.441443 0.897289i \(-0.645533\pi\)
0.997797 0.0663436i \(-0.0211333\pi\)
\(444\) 12.3989 + 18.8653i 0.588428 + 0.895309i
\(445\) 0 0
\(446\) 14.7132 16.6207i 0.696691 0.787015i
\(447\) −9.94014 0.634632i −0.470152 0.0300171i
\(448\) 1.39261 8.69651i 0.0657946 0.410871i
\(449\) 15.7865i 0.745011i −0.928030 0.372506i \(-0.878499\pi\)
0.928030 0.372506i \(-0.121501\pi\)
\(450\) 0 0
\(451\) 41.7083i 1.96397i
\(452\) 16.6172 2.03074i 0.781608 0.0955181i
\(453\) 1.64282 + 3.31716i 0.0771864 + 0.155854i
\(454\) 0.207552 + 0.183732i 0.00974091 + 0.00862297i
\(455\) 0 0
\(456\) 5.06387 + 12.6619i 0.237137 + 0.592946i
\(457\) −4.20812 + 7.28867i −0.196847 + 0.340950i −0.947505 0.319742i \(-0.896404\pi\)
0.750657 + 0.660692i \(0.229737\pi\)
\(458\) −2.21345 + 0.739911i −0.103428 + 0.0345738i
\(459\) −6.58969 1.27605i −0.307580 0.0595611i
\(460\) 0 0
\(461\) 21.4798 + 12.4014i 1.00042 + 0.577590i 0.908371 0.418165i \(-0.137326\pi\)
0.0920445 + 0.995755i \(0.470660\pi\)
\(462\) −4.00986 + 14.7900i −0.186556 + 0.688091i
\(463\) −17.9437 + 10.3598i −0.833913 + 0.481460i −0.855191 0.518314i \(-0.826560\pi\)
0.0212774 + 0.999774i \(0.493227\pi\)
\(464\) 6.13675 + 24.7330i 0.284892 + 1.14820i
\(465\) 0 0
\(466\) 28.0295 + 5.71097i 1.29844 + 0.264555i
\(467\) 1.59588 0.0738487 0.0369243 0.999318i \(-0.488244\pi\)
0.0369243 + 0.999318i \(0.488244\pi\)
\(468\) 12.4952 7.11592i 0.577591 0.328934i
\(469\) −4.07373 −0.188107
\(470\) 0 0
\(471\) −1.10974 + 17.3817i −0.0511342 + 0.800907i
\(472\) −20.6522 1.64310i −0.950596 0.0756298i
\(473\) 22.1919 12.8125i 1.02039 0.589120i
\(474\) 2.66730 0.706255i 0.122513 0.0324394i
\(475\) 0 0
\(476\) 2.27245 1.71039i 0.104158 0.0783955i
\(477\) 32.0931 13.4207i 1.46944 0.614494i
\(478\) −27.2668 + 9.11471i −1.24715 + 0.416897i
\(479\) −2.98947 + 5.17791i −0.136592 + 0.236585i −0.926205 0.377021i \(-0.876948\pi\)
0.789612 + 0.613606i \(0.210282\pi\)
\(480\) 0 0
\(481\) −7.80904 13.5257i −0.356062 0.616717i
\(482\) −18.2614 16.1656i −0.831784 0.736322i
\(483\) −2.22738 + 3.34574i −0.101349 + 0.152237i
\(484\) 5.16538 + 42.2674i 0.234790 + 1.92125i
\(485\) 0 0
\(486\) 0.0839300 + 22.0452i 0.00380714 + 0.999993i
\(487\) 16.5971i 0.752086i −0.926602 0.376043i \(-0.877284\pi\)
0.926602 0.376043i \(-0.122716\pi\)
\(488\) 6.05289 + 12.7181i 0.274002 + 0.575720i
\(489\) 17.4831 26.2613i 0.790613 1.18758i
\(490\) 0 0
\(491\) 6.66941 + 11.5518i 0.300986 + 0.521323i 0.976360 0.216153i \(-0.0693509\pi\)
−0.675373 + 0.737476i \(0.736018\pi\)
\(492\) −22.7174 11.4186i −1.02418 0.514789i
\(493\) −4.11469 + 7.12685i −0.185316 + 0.320977i
\(494\) −2.99103 8.94772i −0.134573 0.402577i
\(495\) 0 0
\(496\) 12.3559 + 3.55822i 0.554796 + 0.159769i
\(497\) 12.1037 + 6.98806i 0.542924 + 0.313457i
\(498\) 7.22622 + 27.2911i 0.323815 + 1.22294i
\(499\) 35.7135 20.6192i 1.59875 0.923041i 0.607026 0.794682i \(-0.292362\pi\)
0.991728 0.128359i \(-0.0409711\pi\)
\(500\) 0 0
\(501\) −0.821570 + 12.8681i −0.0367050 + 0.574905i
\(502\) −2.80090 + 13.7468i −0.125010 + 0.613551i
\(503\) 24.1634 1.07739 0.538696 0.842500i \(-0.318917\pi\)
0.538696 + 0.842500i \(0.318917\pi\)
\(504\) −6.95791 6.23315i −0.309930 0.277646i
\(505\) 0 0
\(506\) −3.38189 + 16.5984i −0.150343 + 0.737887i
\(507\) 11.2630 5.57801i 0.500208 0.247728i
\(508\) 4.02781 9.47393i 0.178705 0.420338i
\(509\) −10.2084 + 5.89380i −0.452478 + 0.261238i −0.708876 0.705333i \(-0.750797\pi\)
0.256398 + 0.966571i \(0.417464\pi\)
\(510\) 0 0
\(511\) 9.40921 + 5.43241i 0.416239 + 0.240316i
\(512\) 21.9886 + 5.33857i 0.971769 + 0.235934i
\(513\) 14.2003 + 2.74981i 0.626960 + 0.121407i
\(514\) −7.77883 23.2705i −0.343109 1.02642i
\(515\) 0 0
\(516\) 0.903109 + 15.5951i 0.0397572 + 0.686535i
\(517\) −26.5623 46.0072i −1.16821 2.02339i
\(518\) −6.72529 + 7.59721i −0.295492 + 0.333802i
\(519\) −6.66365 13.4551i −0.292502 0.590615i
\(520\) 0 0
\(521\) 32.5010i 1.42389i −0.702234 0.711947i \(-0.747814\pi\)
0.702234 0.711947i \(-0.252186\pi\)
\(522\) 25.5834 + 8.72051i 1.11975 + 0.381686i
\(523\) 11.2435i 0.491645i −0.969315 0.245822i \(-0.920942\pi\)
0.969315 0.245822i \(-0.0790580\pi\)
\(524\) 3.44519 + 28.1914i 0.150504 + 1.23155i
\(525\) 0 0
\(526\) −10.1791 9.01086i −0.443829 0.392892i
\(527\) 2.07616 + 3.59602i 0.0904391 + 0.156645i
\(528\) −37.0611 13.2831i −1.61288 0.578075i
\(529\) 9.27846 16.0708i 0.403411 0.698729i
\(530\) 0 0
\(531\) −13.3180 + 17.4785i −0.577953 + 0.758501i
\(532\) −4.89698 + 3.68577i −0.212311 + 0.159799i
\(533\) 15.2336 + 8.79510i 0.659839 + 0.380958i
\(534\) −15.8327 15.9266i −0.685147 0.689211i
\(535\) 0 0
\(536\) 0.830062 10.4331i 0.0358532 0.450642i
\(537\) 1.60019 + 1.06530i 0.0690533 + 0.0459712i
\(538\) 1.86358 + 0.379701i 0.0803446 + 0.0163701i
\(539\) 32.8903 1.41669
\(540\) 0 0
\(541\) −8.40855 −0.361512 −0.180756 0.983528i \(-0.557854\pi\)
−0.180756 + 0.983528i \(0.557854\pi\)
\(542\) −30.1105 6.13496i −1.29336 0.263519i
\(543\) −18.2571 12.1544i −0.783487 0.521595i
\(544\) 3.91739 + 6.16842i 0.167957 + 0.264469i
\(545\) 0 0
\(546\) 4.55632 + 4.58335i 0.194993 + 0.196149i
\(547\) −3.67716 2.12301i −0.157224 0.0907734i 0.419324 0.907837i \(-0.362267\pi\)
−0.576548 + 0.817063i \(0.695601\pi\)
\(548\) 8.35023 + 11.0943i 0.356704 + 0.473923i
\(549\) 14.8181 + 1.89988i 0.632420 + 0.0810848i
\(550\) 0 0
\(551\) 8.86688 15.3579i 0.377742 0.654268i
\(552\) −8.11483 6.38620i −0.345390 0.271815i
\(553\) 0.620060 + 1.07398i 0.0263676 + 0.0456701i
\(554\) 14.7340 + 13.0431i 0.625990 + 0.554146i
\(555\) 0 0
\(556\) −23.6847 + 2.89444i −1.00446 + 0.122752i
\(557\) 21.0221i 0.890734i 0.895348 + 0.445367i \(0.146927\pi\)
−0.895348 + 0.445367i \(0.853073\pi\)
\(558\) 10.2650 8.97918i 0.434551 0.380119i
\(559\) 10.8072i 0.457095i
\(560\) 0 0
\(561\) −5.64248 11.3932i −0.238225 0.481021i
\(562\) 10.9266 12.3433i 0.460913 0.520669i
\(563\) 10.9277 + 18.9272i 0.460546 + 0.797688i 0.998988 0.0449739i \(-0.0143205\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(564\) 32.3309 1.87228i 1.36138 0.0788373i
\(565\) 0 0
\(566\) 5.57187 + 16.6683i 0.234203 + 0.700621i
\(567\) −9.55304 + 2.62911i −0.401190 + 0.110412i
\(568\) −20.3632 + 29.5745i −0.854420 + 1.24092i
\(569\) −12.7253 7.34697i −0.533473 0.308001i 0.208956 0.977925i \(-0.432993\pi\)
−0.742430 + 0.669924i \(0.766327\pi\)
\(570\) 0 0
\(571\) −15.5333 + 8.96816i −0.650049 + 0.375306i −0.788475 0.615067i \(-0.789129\pi\)
0.138426 + 0.990373i \(0.455796\pi\)
\(572\) 25.0657 + 10.6566i 1.04805 + 0.445575i
\(573\) −35.3350 + 17.4996i −1.47614 + 0.731057i
\(574\) 2.28146 11.1974i 0.0952261 0.467371i
\(575\) 0 0
\(576\) 17.3813 16.5497i 0.724220 0.689569i
\(577\) −38.2696 −1.59318 −0.796592 0.604517i \(-0.793366\pi\)
−0.796592 + 0.604517i \(0.793366\pi\)
\(578\) 4.32871 21.2454i 0.180051 0.883691i
\(579\) 1.28307 20.0966i 0.0533227 0.835185i
\(580\) 0 0
\(581\) −10.9886 + 6.34429i −0.455885 + 0.263206i
\(582\) −8.05469 30.4200i −0.333878 1.26095i
\(583\) 57.0634 + 32.9456i 2.36333 + 1.36447i
\(584\) −15.8300 + 22.9907i −0.655050 + 0.951364i
\(585\) 0 0
\(586\) −4.28154 12.8083i −0.176869 0.529105i
\(587\) −4.20276 + 7.27939i −0.173466 + 0.300453i −0.939629 0.342194i \(-0.888830\pi\)
0.766163 + 0.642646i \(0.222163\pi\)
\(588\) −9.00446 + 17.9145i −0.371338 + 0.738782i
\(589\) −4.47399 7.74918i −0.184348 0.319299i
\(590\) 0 0
\(591\) 11.7104 17.5901i 0.481700 0.723561i
\(592\) −18.0866 18.7720i −0.743356 0.771523i
\(593\) 35.1831i 1.44480i −0.691477 0.722398i \(-0.743040\pi\)
0.691477 0.722398i \(-0.256960\pi\)
\(594\) −33.1179 + 25.4346i −1.35884 + 1.04359i
\(595\) 0 0
\(596\) 11.4163 1.39516i 0.467631 0.0571478i
\(597\) −6.79490 + 10.2066i −0.278097 + 0.417729i
\(598\) 5.34925 + 4.73533i 0.218747 + 0.193642i
\(599\) −7.34116 12.7153i −0.299952 0.519532i 0.676173 0.736743i \(-0.263637\pi\)
−0.976125 + 0.217211i \(0.930304\pi\)
\(600\) 0 0
\(601\) 13.6252 23.5995i 0.555783 0.962644i −0.442059 0.896986i \(-0.645752\pi\)
0.997842 0.0656584i \(-0.0209148\pi\)
\(602\) −6.65871 + 2.22587i −0.271389 + 0.0907195i
\(603\) −8.82978 6.72801i −0.359577 0.273986i
\(604\) −2.57041 3.41509i −0.104589 0.138958i
\(605\) 0 0
\(606\) 39.6456 10.4975i 1.61049 0.426430i
\(607\) −6.78317 + 3.91627i −0.275320 + 0.158956i −0.631303 0.775536i \(-0.717480\pi\)
0.355983 + 0.934493i \(0.384146\pi\)
\(608\) −8.44172 13.2925i −0.342357 0.539083i
\(609\) −0.774017 + 12.1233i −0.0313647 + 0.491261i
\(610\) 0 0
\(611\) −22.4049 −0.906406
\(612\) 7.75034 + 0.0458326i 0.313289 + 0.00185267i
\(613\) −1.17677 −0.0475293 −0.0237646 0.999718i \(-0.507565\pi\)
−0.0237646 + 0.999718i \(0.507565\pi\)
\(614\) −18.6639 3.80274i −0.753214 0.153466i
\(615\) 0 0
\(616\) 1.40335 17.6388i 0.0565425 0.710686i
\(617\) −35.3790 + 20.4261i −1.42430 + 0.822322i −0.996663 0.0816263i \(-0.973989\pi\)
−0.427641 + 0.903949i \(0.640655\pi\)
\(618\) −0.870809 + 3.21189i −0.0350291 + 0.129201i
\(619\) −42.7230 24.6661i −1.71718 0.991416i −0.923965 0.382478i \(-0.875071\pi\)
−0.793218 0.608938i \(-0.791596\pi\)
\(620\) 0 0
\(621\) −10.3535 + 3.57322i −0.415473 + 0.143389i
\(622\) 13.7643 4.60111i 0.551897 0.184488i
\(623\) 5.04667 8.74109i 0.202190 0.350204i
\(624\) −12.6667 + 10.7352i −0.507073 + 0.429751i
\(625\) 0 0
\(626\) −1.70041 1.50526i −0.0679622 0.0601624i
\(627\) 12.1592 + 24.5516i 0.485590 + 0.980496i
\(628\) −2.43962 19.9630i −0.0973515 0.796611i
\(629\) 8.41813i 0.335653i
\(630\) 0 0
\(631\) 27.6752i 1.10173i −0.834594 0.550866i \(-0.814297\pi\)
0.834594 0.550866i \(-0.185703\pi\)
\(632\) −2.87687 + 1.36919i −0.114436 + 0.0544633i
\(633\) 11.2045 + 0.715359i 0.445341 + 0.0284329i
\(634\) 4.18312 4.72545i 0.166133 0.187672i
\(635\) 0 0
\(636\) −33.5670 + 22.0614i −1.33102 + 0.874791i
\(637\) 6.93564 12.0129i 0.274800 0.475968i
\(638\) 16.2313 + 48.5561i 0.642602 + 1.92235i
\(639\) 14.6934 + 35.1365i 0.581264 + 1.38998i
\(640\) 0 0
\(641\) −13.0424 7.53005i −0.515145 0.297419i 0.219801 0.975545i \(-0.429459\pi\)
−0.734946 + 0.678126i \(0.762793\pi\)
\(642\) −5.16304 + 5.13259i −0.203769 + 0.202567i
\(643\) −41.0665 + 23.7098i −1.61951 + 0.935022i −0.632458 + 0.774595i \(0.717954\pi\)
−0.987048 + 0.160427i \(0.948713\pi\)
\(644\) 1.81587 4.27117i 0.0715554 0.168308i
\(645\) 0 0
\(646\) 1.01523 4.98276i 0.0399437 0.196044i
\(647\) −19.7634 −0.776977 −0.388489 0.921453i \(-0.627003\pi\)
−0.388489 + 0.921453i \(0.627003\pi\)
\(648\) −4.78682 25.0017i −0.188044 0.982161i
\(649\) −41.6229 −1.63384
\(650\) 0 0
\(651\) 5.10228 + 3.39677i 0.199974 + 0.133130i
\(652\) −14.2531 + 33.5252i −0.558195 + 1.31295i
\(653\) −30.2658 + 17.4740i −1.18439 + 0.683809i −0.957027 0.290000i \(-0.906345\pi\)
−0.227366 + 0.973809i \(0.573011\pi\)
\(654\) −8.89560 + 8.84315i −0.347846 + 0.345795i
\(655\) 0 0
\(656\) 28.2125 + 8.12455i 1.10151 + 0.317211i
\(657\) 11.4225 + 27.3146i 0.445632 + 1.06564i
\(658\) 4.61456 + 13.8045i 0.179894 + 0.538155i
\(659\) −17.4893 + 30.2924i −0.681288 + 1.18003i 0.293300 + 0.956021i \(0.405247\pi\)
−0.974588 + 0.224005i \(0.928087\pi\)
\(660\) 0 0
\(661\) 17.7487 + 30.7417i 0.690346 + 1.19571i 0.971725 + 0.236117i \(0.0758749\pi\)
−0.281379 + 0.959597i \(0.590792\pi\)
\(662\) 11.0520 12.4849i 0.429549 0.485239i
\(663\) −5.35110 0.341643i −0.207819 0.0132683i
\(664\) −14.0091 29.4354i −0.543660 1.14231i
\(665\) 0 0
\(666\) −27.1243 + 5.35967i −1.05104 + 0.207683i
\(667\) 13.4287i 0.519960i
\(668\) −1.80611 14.7791i −0.0698807 0.571821i
\(669\) 12.0654 + 24.3622i 0.466475 + 0.941898i
\(670\) 0 0
\(671\) 14.1489 + 24.5066i 0.546211 + 0.946065i
\(672\) 9.22318 + 5.59337i 0.355792 + 0.215769i
\(673\) −23.9454 + 41.4746i −0.923027 + 1.59873i −0.128322 + 0.991733i \(0.540959\pi\)
−0.794704 + 0.606997i \(0.792374\pi\)
\(674\) 14.1667 4.73563i 0.545680 0.182409i
\(675\) 0 0
\(676\) −11.5955 + 8.72753i −0.445982 + 0.335674i
\(677\) 0.0747996 + 0.0431856i 0.00287478 + 0.00165976i 0.501437 0.865194i \(-0.332805\pi\)
−0.498562 + 0.866854i \(0.666138\pi\)
\(678\) −5.36517 + 19.7888i −0.206048 + 0.759986i
\(679\) 12.2485 7.07165i 0.470053 0.271385i
\(680\) 0 0
\(681\) −0.304224 + 0.150667i −0.0116579 + 0.00577357i
\(682\) 25.3126 + 5.15741i 0.969271 + 0.197488i
\(683\) 24.0380 0.919788 0.459894 0.887974i \(-0.347887\pi\)
0.459894 + 0.887974i \(0.347887\pi\)
\(684\) −16.7015 0.0987662i −0.638596 0.00377642i
\(685\) 0 0
\(686\) −19.5091 3.97496i −0.744862 0.151765i
\(687\) 0.182123 2.85256i 0.00694841 0.108832i
\(688\) −4.34383 17.5070i −0.165607 0.667447i
\(689\) 24.0661 13.8946i 0.916846 0.529342i
\(690\) 0 0
\(691\) −36.1685 20.8819i −1.37591 0.794384i −0.384249 0.923229i \(-0.625540\pi\)
−0.991665 + 0.128845i \(0.958873\pi\)
\(692\) 10.4262 + 13.8524i 0.396344 + 0.526589i
\(693\) −14.9281 11.3747i −0.567071 0.432090i
\(694\) −31.2637 + 10.4508i −1.18675 + 0.396707i
\(695\) 0 0
\(696\) −30.8909 4.45255i −1.17092 0.168774i
\(697\) 4.74055 + 8.21087i 0.179561 + 0.311009i
\(698\) 6.02923 + 5.33727i 0.228210 + 0.202019i
\(699\) −19.4147 + 29.1628i −0.734332 + 1.10304i
\(700\) 0 0
\(701\) 2.12514i 0.0802654i −0.999194 0.0401327i \(-0.987222\pi\)
0.999194 0.0401327i \(-0.0127781\pi\)
\(702\) 2.30613 + 17.4594i 0.0870392 + 0.658963i
\(703\) 18.1405i 0.684182i
\(704\) 44.8882 + 7.18814i 1.69179 + 0.270913i
\(705\) 0 0
\(706\) 1.42739 1.61245i 0.0537207 0.0606854i
\(707\) 9.21629 + 15.9631i 0.346614 + 0.600354i
\(708\) 11.3952 22.6709i 0.428258 0.852026i
\(709\) −2.08824 + 3.61694i −0.0784256 + 0.135837i −0.902571 0.430541i \(-0.858323\pi\)
0.824145 + 0.566379i \(0.191656\pi\)
\(710\) 0 0
\(711\) −0.429759 + 3.35190i −0.0161172 + 0.125706i
\(712\) 21.3582 + 14.7060i 0.800434 + 0.551129i
\(713\) 5.86797 + 3.38787i 0.219757 + 0.126877i
\(714\) 0.891622 + 3.36737i 0.0333681 + 0.126021i
\(715\) 0 0
\(716\) −2.04280 0.868489i −0.0763430 0.0324569i
\(717\) 2.24351 35.1397i 0.0837853 1.31232i
\(718\) −2.67129 + 13.1107i −0.0996917 + 0.489288i
\(719\) 24.0884 0.898346 0.449173 0.893445i \(-0.351719\pi\)
0.449173 + 0.893445i \(0.351719\pi\)
\(720\) 0 0
\(721\) −1.49568 −0.0557022
\(722\) 3.17676 15.5916i 0.118227 0.580259i
\(723\) 26.7671 13.2564i 0.995478 0.493010i
\(724\) 23.3070 + 9.90887i 0.866197 + 0.368260i
\(725\) 0 0
\(726\) −50.3348 13.6468i −1.86810 0.506480i
\(727\) 40.6108 + 23.4466i 1.50617 + 0.869587i 0.999974 + 0.00716831i \(0.00228176\pi\)
0.506195 + 0.862419i \(0.331052\pi\)
\(728\) −6.14647 4.23208i −0.227803 0.156851i
\(729\) −25.0483 10.0788i −0.927715 0.373290i
\(730\) 0 0
\(731\) 2.91253 5.04465i 0.107724 0.186583i
\(732\) −17.2217 + 0.997305i −0.636531 + 0.0368614i
\(733\) −8.87721 15.3758i −0.327887 0.567917i 0.654205 0.756317i \(-0.273003\pi\)
−0.982092 + 0.188400i \(0.939670\pi\)
\(734\) 7.62322 8.61155i 0.281378 0.317858i
\(735\) 0 0
\(736\) 10.5688 + 5.52087i 0.389570 + 0.203502i
\(737\) 21.0271i 0.774543i
\(738\) 23.4382 20.5024i 0.862774 0.754702i
\(739\) 8.50437i 0.312838i 0.987691 + 0.156419i \(0.0499951\pi\)
−0.987691 + 0.156419i \(0.950005\pi\)
\(740\) 0 0
\(741\) 11.5313 + 0.736218i 0.423611 + 0.0270456i
\(742\) −13.5177 11.9663i −0.496249 0.439296i
\(743\) −25.1755 43.6052i −0.923598 1.59972i −0.793800 0.608179i \(-0.791900\pi\)
−0.129798 0.991540i \(-0.541433\pi\)
\(744\) −9.73901 + 12.3752i −0.357050 + 0.453696i
\(745\) 0 0
\(746\) 15.5794 5.20786i 0.570402 0.190673i
\(747\) −34.2958 4.39718i −1.25482 0.160884i
\(748\) 8.82840 + 11.7296i 0.322798 + 0.428875i
\(749\) −2.83366 1.63601i −0.103540 0.0597787i
\(750\) 0 0
\(751\) 44.8169 25.8750i 1.63539 0.944193i 0.652999 0.757359i \(-0.273511\pi\)
0.982391 0.186834i \(-0.0598228\pi\)
\(752\) −36.2946 + 9.00541i −1.32353 + 0.328393i
\(753\) −14.3027 9.52179i −0.521218 0.346993i
\(754\) 21.1574 + 4.31078i 0.770506 + 0.156989i
\(755\) 0 0
\(756\) 10.2824 5.01686i 0.373968 0.182462i
\(757\) 16.5374 0.601064 0.300532 0.953772i \(-0.402836\pi\)
0.300532 + 0.953772i \(0.402836\pi\)
\(758\) 0.269272 + 0.0548639i 0.00978042 + 0.00199275i
\(759\) −17.2695 11.4969i −0.626843 0.417312i
\(760\) 0 0
\(761\) −30.1188 + 17.3891i −1.09180 + 0.630354i −0.934056 0.357126i \(-0.883757\pi\)
−0.157748 + 0.987479i \(0.550423\pi\)
\(762\) 8.88897 + 8.94169i 0.322014 + 0.323923i
\(763\) −4.88223 2.81876i −0.176749 0.102046i
\(764\) 36.3782 27.3805i 1.31612 0.990591i
\(765\) 0 0
\(766\) −24.8141 + 8.29485i −0.896571 + 0.299705i
\(767\) −8.77710 + 15.2024i −0.316923 + 0.548926i
\(768\) −16.2043 + 22.4815i −0.584724 + 0.811232i
\(769\) 7.71708 + 13.3664i 0.278285 + 0.482003i 0.970959 0.239248i \(-0.0769007\pi\)
−0.692674 + 0.721251i \(0.743567\pi\)
\(770\) 0 0
\(771\) 29.9895 + 1.91469i 1.08005 + 0.0689560i
\(772\) 2.82067 + 23.0811i 0.101518 + 0.830705i
\(773\) 29.3290i 1.05489i 0.849589 + 0.527446i \(0.176850\pi\)
−0.849589 + 0.527446i \(0.823150\pi\)
\(774\) −18.1089 6.17270i −0.650909 0.221873i
\(775\) 0 0
\(776\) 15.6153 + 32.8101i 0.560555 + 1.17781i
\(777\) −5.51499 11.1358i −0.197849 0.399494i
\(778\) 22.0669 24.9278i 0.791135 0.893703i
\(779\) −10.2156 17.6939i −0.366011 0.633949i
\(780\) 0 0
\(781\) −36.0698 + 62.4748i −1.29068 + 2.23552i
\(782\) 1.22079 + 3.65201i 0.0436554 + 0.130596i
\(783\) −21.7000 + 24.9988i −0.775496 + 0.893385i
\(784\) 6.40686 22.2478i 0.228817 0.794565i
\(785\) 0 0
\(786\) −33.5721 9.10210i −1.19748 0.324661i
\(787\) −45.5713 + 26.3106i −1.62444 + 0.937872i −0.638730 + 0.769431i \(0.720540\pi\)
−0.985712 + 0.168442i \(0.946127\pi\)
\(788\) −9.54688 + 22.4555i −0.340094 + 0.799945i
\(789\) 14.9202 7.38923i 0.531174 0.263064i
\(790\) 0 0
\(791\) −9.21510 −0.327651
\(792\) 32.1732 35.9142i 1.14323 1.27616i
\(793\) 11.9344 0.423803
\(794\) 6.60940 32.4390i 0.234559 1.15122i
\(795\) 0 0
\(796\) 5.53955 13.0297i 0.196344 0.461827i
\(797\) 2.15117 1.24198i 0.0761983 0.0439931i −0.461417 0.887183i \(-0.652659\pi\)
0.537615 + 0.843190i \(0.319325\pi\)
\(798\) −1.92139 7.25647i −0.0680163 0.256876i
\(799\) −10.4583 6.03812i −0.369989 0.213613i
\(800\) 0 0
\(801\) 25.3751 10.6114i 0.896583 0.374934i
\(802\) −13.4221 40.1523i −0.473950 1.41783i
\(803\) −28.0401 + 48.5669i −0.989514 + 1.71389i
\(804\) 11.4529 + 5.75664i 0.403913 + 0.203021i
\(805\) 0 0
\(806\) 7.22142 8.15765i 0.254364 0.287341i
\(807\) −1.29081 + 1.93893i −0.0454388 + 0.0682535i
\(808\) −42.7605 + 20.3510i −1.50431 + 0.715944i
\(809\) 25.6629i 0.902261i 0.892458 + 0.451131i \(0.148979\pi\)
−0.892458 + 0.451131i \(0.851021\pi\)
\(810\) 0 0
\(811\) 26.5970i 0.933948i −0.884271 0.466974i \(-0.845344\pi\)
0.884271 0.466974i \(-0.154656\pi\)
\(812\) −1.70157 13.9237i −0.0597135 0.488626i
\(813\) 20.8561 31.3279i 0.731456 1.09872i
\(814\) −39.2140 34.7135i −1.37445 1.21671i
\(815\) 0 0
\(816\) −8.80576 + 1.59737i −0.308263 + 0.0559192i
\(817\) −6.27631 + 10.8709i −0.219580 + 0.380324i
\(818\) −2.79013 + 0.932682i −0.0975546 + 0.0326105i
\(819\) −7.30243 + 3.05374i −0.255167 + 0.106706i
\(820\) 0 0
\(821\) −26.3429 15.2091i −0.919373 0.530800i −0.0359383 0.999354i \(-0.511442\pi\)
−0.883435 + 0.468554i \(0.844775\pi\)
\(822\) −16.4397 + 4.35296i −0.573402 + 0.151827i
\(823\) 7.33737 4.23623i 0.255764 0.147666i −0.366636 0.930364i \(-0.619491\pi\)
0.622401 + 0.782699i \(0.286157\pi\)
\(824\) 0.304760 3.83055i 0.0106168 0.133444i
\(825\) 0 0
\(826\) 11.1745 + 2.27679i 0.388810 + 0.0792196i
\(827\) 37.2624 1.29574 0.647871 0.761750i \(-0.275660\pi\)
0.647871 + 0.761750i \(0.275660\pi\)
\(828\) 10.9900 6.25871i 0.381928 0.217505i
\(829\) 18.4167 0.639639 0.319820 0.947478i \(-0.396378\pi\)
0.319820 + 0.947478i \(0.396378\pi\)
\(830\) 0 0
\(831\) −21.5968 + 10.6958i −0.749184 + 0.371033i
\(832\) 12.0911 14.8792i 0.419182 0.515844i
\(833\) 6.47493 3.73830i 0.224343 0.129525i
\(834\) 7.64704 28.2053i 0.264795 0.976669i
\(835\) 0 0
\(836\) −19.0246 25.2764i −0.657980 0.874203i
\(837\) 5.44920 + 15.7892i 0.188352 + 0.545755i
\(838\) 13.1181 4.38510i 0.453157 0.151481i
\(839\) −7.35228 + 12.7345i −0.253829 + 0.439645i −0.964577 0.263802i \(-0.915023\pi\)
0.710748 + 0.703447i \(0.248357\pi\)
\(840\) 0 0
\(841\) 5.79320 + 10.0341i 0.199765 + 0.346004i
\(842\) −2.22578 1.97033i −0.0767055 0.0679022i
\(843\) 8.96025 + 18.0924i 0.308607 + 0.623135i
\(844\) −12.8685 + 1.57262i −0.442952 + 0.0541319i
\(845\) 0 0
\(846\) −12.7969 + 37.5424i −0.439968 + 1.29073i
\(847\) 23.4395i 0.805390i
\(848\) 33.4008 32.1815i 1.14699 1.10512i
\(849\) −21.4811 1.37147i −0.737228 0.0470686i
\(850\) 0 0
\(851\) −6.86833 11.8963i −0.235443 0.407800i
\(852\) −24.1535 36.7502i −0.827484 1.25904i
\(853\) 6.48519 11.2327i 0.222049 0.384600i −0.733381 0.679818i \(-0.762059\pi\)
0.955430 + 0.295218i \(0.0953922\pi\)
\(854\) −2.45803 7.35322i −0.0841119 0.251622i
\(855\) 0 0
\(856\) 4.76734 6.92385i 0.162944 0.236652i
\(857\) −5.82871 3.36521i −0.199105 0.114953i 0.397133 0.917761i \(-0.370005\pi\)
−0.596238 + 0.802808i \(0.703339\pi\)
\(858\) −23.6576 + 23.5181i −0.807656 + 0.802894i
\(859\) −33.3860 + 19.2754i −1.13912 + 0.657669i −0.946212 0.323549i \(-0.895124\pi\)
−0.192904 + 0.981218i \(0.561791\pi\)
\(860\) 0 0
\(861\) 11.6502 + 7.75592i 0.397036 + 0.264321i
\(862\) 1.08477 5.32407i 0.0369475 0.181339i
\(863\) −13.4795 −0.458847 −0.229424 0.973327i \(-0.573684\pi\)
−0.229424 + 0.973327i \(0.573684\pi\)
\(864\) 10.7534 + 27.3562i 0.365838 + 0.930678i
\(865\) 0 0
\(866\) 1.88281 9.24087i 0.0639806 0.314018i
\(867\) 22.1044 + 14.7157i 0.750704 + 0.499770i
\(868\) −6.51357 2.76922i −0.221085 0.0939934i
\(869\) −5.54347 + 3.20052i −0.188049 + 0.108570i
\(870\) 0 0
\(871\) −7.67995 4.43402i −0.260225 0.150241i
\(872\) 8.21384 11.9294i 0.278156 0.403980i
\(873\) 38.2277 + 4.90131i 1.29381 + 0.165884i
\(874\) −2.63072 7.86984i −0.0889855 0.266201i
\(875\) 0 0
\(876\) −18.7765 28.5690i −0.634400 0.965257i
\(877\) 7.80171 + 13.5129i 0.263445 + 0.456300i 0.967155 0.254187i \(-0.0818080\pi\)
−0.703710 + 0.710487i \(0.748475\pi\)
\(878\) 36.3185 41.0271i 1.22569 1.38460i
\(879\) 16.5065 + 1.05387i 0.556751 + 0.0355460i
\(880\) 0 0
\(881\) 25.0226i 0.843032i −0.906821 0.421516i \(-0.861498\pi\)
0.906821 0.421516i \(-0.138502\pi\)
\(882\) −16.1678 18.4829i −0.544397 0.622353i
\(883\) 13.8202i 0.465085i −0.972586 0.232543i \(-0.925295\pi\)
0.972586 0.232543i \(-0.0747046\pi\)
\(884\) 6.14577 0.751058i 0.206705 0.0252608i
\(885\) 0 0
\(886\) −24.7996 21.9534i −0.833159 0.737539i
\(887\) −9.33323 16.1656i −0.313379 0.542789i 0.665712 0.746208i \(-0.268128\pi\)
−0.979092 + 0.203420i \(0.934794\pi\)
\(888\) 29.6433 11.8553i 0.994763 0.397836i
\(889\) −2.83336 + 4.90753i −0.0950279 + 0.164593i
\(890\) 0 0
\(891\) −13.5705 49.3093i −0.454629 1.65192i
\(892\) −18.8779 25.0815i −0.632079 0.839790i
\(893\) 22.5370 + 13.0117i 0.754172 + 0.435421i
\(894\) −3.68596 + 13.5953i −0.123277 + 0.454694i
\(895\) 0 0
\(896\) −11.6579 4.38520i −0.389464 0.146499i
\(897\) −7.84079 + 3.88315i −0.261796 + 0.129654i
\(898\) −21.8760 4.45721i −0.730013 0.148739i
\(899\) 20.4788 0.683007
\(900\) 0 0
\(901\) 14.9783 0.499001
\(902\) 57.7969 + 11.7760i 1.92443 + 0.392099i
\(903\) 0.547878 8.58132i 0.0182322 0.285569i
\(904\) 1.87767 23.6005i 0.0624503 0.784942i
\(905\) 0 0
\(906\) 5.06056 1.33995i 0.168126 0.0445168i
\(907\) 35.9025 + 20.7283i 1.19212 + 0.688273i 0.958788 0.284123i \(-0.0917025\pi\)
0.233336 + 0.972396i \(0.425036\pi\)
\(908\) 0.313206 0.235739i 0.0103941 0.00782326i
\(909\) −6.38774 + 49.8212i −0.211868 + 1.65246i
\(910\) 0 0
\(911\) 2.80277 4.85454i 0.0928600 0.160838i −0.815853 0.578259i \(-0.803732\pi\)
0.908713 + 0.417420i \(0.137066\pi\)
\(912\) 18.9758 3.44223i 0.628352 0.113984i
\(913\) −32.7469 56.7193i −1.08376 1.87714i
\(914\) 8.91209 + 7.88927i 0.294786 + 0.260954i
\(915\) 0 0
\(916\) 0.400373 + 3.27618i 0.0132287 + 0.108248i
\(917\) 15.6336i 0.516266i
\(918\) −3.62884 + 8.77133i −0.119769 + 0.289497i
\(919\) 30.8044i 1.01614i −0.861315 0.508072i \(-0.830358\pi\)
0.861315 0.508072i \(-0.169642\pi\)
\(920\) 0 0
\(921\) 12.9276 19.4186i 0.425980 0.639863i
\(922\) 23.2498 26.2641i 0.765692 0.864961i
\(923\) 15.2122 + 26.3483i 0.500716 + 0.867266i
\(924\) 19.3629 + 9.73248i 0.636993 + 0.320175i
\(925\) 0 0
\(926\) 9.28972 + 27.7903i 0.305279 + 0.913247i
\(927\) −3.24189 2.47021i −0.106478 0.0811324i
\(928\) 36.0063 1.52077i 1.18196 0.0499216i
\(929\) −23.8104 13.7469i −0.781194 0.451023i 0.0556590 0.998450i \(-0.482274\pi\)
−0.836853 + 0.547427i \(0.815607\pi\)
\(930\) 0 0
\(931\) −13.9530 + 8.05579i −0.457293 + 0.264018i
\(932\) 15.8279 37.2292i 0.518459 1.21948i
\(933\) −1.13252 + 17.7385i −0.0370772 + 0.580733i
\(934\) 0.450587 2.21148i 0.0147436 0.0723620i
\(935\) 0 0
\(936\) −6.33290 19.3243i −0.206997 0.631633i
\(937\) 13.6341 0.445407 0.222704 0.974886i \(-0.428512\pi\)
0.222704 + 0.974886i \(0.428512\pi\)
\(938\) −1.15019 + 5.64514i −0.0375550 + 0.184320i
\(939\) 2.49242 1.23437i 0.0813371 0.0402822i
\(940\) 0 0
\(941\) −49.7730 + 28.7364i −1.62255 + 0.936781i −0.636319 + 0.771426i \(0.719544\pi\)
−0.986234 + 0.165355i \(0.947123\pi\)
\(942\) 23.7732 + 6.44542i 0.774574 + 0.210003i
\(943\) 13.3985 + 7.73561i 0.436314 + 0.251906i
\(944\) −8.10793 + 28.1548i −0.263891 + 0.916360i
\(945\) 0 0
\(946\) −11.4891 34.3698i −0.373543 1.11746i
\(947\) −9.68402 + 16.7732i −0.314688 + 0.545056i −0.979371 0.202069i \(-0.935233\pi\)
0.664683 + 0.747126i \(0.268567\pi\)
\(948\) −0.225594 3.89560i −0.00732695 0.126523i
\(949\) 11.8257 + 20.4828i 0.383880 + 0.664899i
\(950\) 0 0
\(951\) 3.43031 + 6.92644i 0.111236 + 0.224605i
\(952\) −1.72855 3.63195i −0.0560226 0.117712i
\(953\) 4.34158i 0.140638i −0.997525 0.0703188i \(-0.977598\pi\)
0.997525 0.0703188i \(-0.0224017\pi\)
\(954\) −9.53643 48.2621i −0.308753 1.56254i
\(955\) 0 0
\(956\) 4.93206 + 40.3582i 0.159514 + 1.30528i
\(957\) −62.5760 3.99519i −2.02280 0.129146i
\(958\) 6.33119 + 5.60458i 0.204552 + 0.181076i
\(959\) −3.82170 6.61938i −0.123409 0.213751i
\(960\) 0 0
\(961\) −10.3335 + 17.8981i −0.333338 + 0.577358i
\(962\) −20.9479 + 7.00245i −0.675388 + 0.225768i
\(963\) −3.43997 8.22601i −0.110851 0.265080i
\(964\) −27.5573 + 20.7414i −0.887561 + 0.668034i
\(965\) 0 0
\(966\) 4.00745 + 4.03122i 0.128938 + 0.129702i
\(967\) −28.6939 + 16.5665i −0.922735 + 0.532741i −0.884507 0.466528i \(-0.845505\pi\)
−0.0382285 + 0.999269i \(0.512171\pi\)
\(968\) 60.0302 + 4.77602i 1.92944 + 0.153507i
\(969\) 5.18423 + 3.45133i 0.166541 + 0.110873i
\(970\) 0 0
\(971\) 22.0082 0.706277 0.353138 0.935571i \(-0.385114\pi\)
0.353138 + 0.935571i \(0.385114\pi\)
\(972\) 30.5727 + 6.10802i 0.980621 + 0.195915i
\(973\) 13.1344 0.421070
\(974\) −22.9993 4.68607i −0.736945 0.150151i
\(975\) 0 0
\(976\) 19.3330 4.79689i 0.618833 0.153545i
\(977\) 25.5578 14.7558i 0.817667 0.472080i −0.0319442 0.999490i \(-0.510170\pi\)
0.849611 + 0.527409i \(0.176837\pi\)
\(978\) −31.4552 31.6418i −1.00583 1.01179i
\(979\) 45.1183 + 26.0491i 1.44199 + 0.832532i
\(980\) 0 0
\(981\) −5.92686 14.1729i −0.189230 0.452507i
\(982\) 17.8908 5.98052i 0.570919 0.190846i
\(983\) 22.9895 39.8190i 0.733251 1.27003i −0.222235 0.974993i \(-0.571335\pi\)
0.955486 0.295035i \(-0.0953313\pi\)
\(984\) −22.2373 + 28.2565i −0.708900 + 0.900786i
\(985\) 0 0
\(986\) 8.71423 + 7.71412i 0.277518 + 0.245668i
\(987\) −17.7904 1.13583i −0.566274 0.0361540i
\(988\) −13.2437 + 1.61848i −0.421339 + 0.0514907i
\(989\) 9.50531i 0.302251i
\(990\) 0 0
\(991\) 52.8232i 1.67798i 0.544144 + 0.838992i \(0.316854\pi\)
−0.544144 + 0.838992i \(0.683146\pi\)
\(992\) 8.41937 16.1175i 0.267315 0.511730i
\(993\) 9.06307 + 18.3000i 0.287608 + 0.580733i
\(994\) 13.1010 14.7996i 0.415540 0.469413i
\(995\) 0 0
\(996\) 39.8587 2.30822i 1.26297 0.0731386i
\(997\) −25.0831 + 43.4452i −0.794389 + 1.37592i 0.128837 + 0.991666i \(0.458876\pi\)
−0.923226 + 0.384257i \(0.874458\pi\)
\(998\) −18.4894 55.3113i −0.585272 1.75085i
\(999\) 6.43771 33.2451i 0.203680 1.05183i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.551.14 48
4.3 odd 2 inner 900.2.r.g.551.6 48
5.2 odd 4 180.2.n.d.119.23 yes 48
5.3 odd 4 180.2.n.d.119.2 yes 48
5.4 even 2 inner 900.2.r.g.551.11 48
9.5 odd 6 inner 900.2.r.g.851.6 48
15.2 even 4 540.2.n.d.359.2 48
15.8 even 4 540.2.n.d.359.23 48
20.3 even 4 180.2.n.d.119.18 yes 48
20.7 even 4 180.2.n.d.119.7 yes 48
20.19 odd 2 inner 900.2.r.g.551.19 48
36.23 even 6 inner 900.2.r.g.851.14 48
45.13 odd 12 540.2.n.d.179.18 48
45.14 odd 6 inner 900.2.r.g.851.19 48
45.22 odd 12 540.2.n.d.179.7 48
45.23 even 12 180.2.n.d.59.7 yes 48
45.32 even 12 180.2.n.d.59.18 yes 48
60.23 odd 4 540.2.n.d.359.7 48
60.47 odd 4 540.2.n.d.359.18 48
180.23 odd 12 180.2.n.d.59.23 yes 48
180.59 even 6 inner 900.2.r.g.851.11 48
180.67 even 12 540.2.n.d.179.23 48
180.103 even 12 540.2.n.d.179.2 48
180.167 odd 12 180.2.n.d.59.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.2 48 180.167 odd 12
180.2.n.d.59.7 yes 48 45.23 even 12
180.2.n.d.59.18 yes 48 45.32 even 12
180.2.n.d.59.23 yes 48 180.23 odd 12
180.2.n.d.119.2 yes 48 5.3 odd 4
180.2.n.d.119.7 yes 48 20.7 even 4
180.2.n.d.119.18 yes 48 20.3 even 4
180.2.n.d.119.23 yes 48 5.2 odd 4
540.2.n.d.179.2 48 180.103 even 12
540.2.n.d.179.7 48 45.22 odd 12
540.2.n.d.179.18 48 45.13 odd 12
540.2.n.d.179.23 48 180.67 even 12
540.2.n.d.359.2 48 15.2 even 4
540.2.n.d.359.7 48 60.23 odd 4
540.2.n.d.359.18 48 60.47 odd 4
540.2.n.d.359.23 48 15.8 even 4
900.2.r.g.551.6 48 4.3 odd 2 inner
900.2.r.g.551.11 48 5.4 even 2 inner
900.2.r.g.551.14 48 1.1 even 1 trivial
900.2.r.g.551.19 48 20.19 odd 2 inner
900.2.r.g.851.6 48 9.5 odd 6 inner
900.2.r.g.851.11 48 180.59 even 6 inner
900.2.r.g.851.14 48 36.23 even 6 inner
900.2.r.g.851.19 48 45.14 odd 6 inner