Properties

Label 540.2.n.d.359.13
Level $540$
Weight $2$
Character 540.359
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 359.13
Character \(\chi\) \(=\) 540.359
Dual form 540.2.n.d.179.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0443404 + 1.41352i) q^{2} +(-1.99607 + 0.125352i) q^{4} +(2.11186 - 0.734875i) q^{5} +(0.667441 - 1.15604i) q^{7} +(-0.265693 - 2.81592i) q^{8} +(1.13240 + 2.95257i) q^{10} +(2.18799 - 3.78971i) q^{11} +(-3.56180 + 2.05641i) q^{13} +(1.66368 + 0.892181i) q^{14} +(3.96857 - 0.500421i) q^{16} +6.45392 q^{17} -5.84202i q^{19} +(-4.12330 + 1.73159i) q^{20} +(5.45385 + 2.92473i) q^{22} +(-0.0875178 + 0.0505284i) q^{23} +(3.91992 - 3.10391i) q^{25} +(-3.06470 - 4.94349i) q^{26} +(-1.18735 + 2.39120i) q^{28} +(4.53226 + 2.61670i) q^{29} +(-4.18262 + 2.41484i) q^{31} +(0.883323 + 5.58746i) q^{32} +(0.286169 + 9.12274i) q^{34} +(0.559997 - 2.93189i) q^{35} +3.24337i q^{37} +(8.25780 - 0.259037i) q^{38} +(-2.63046 - 5.75158i) q^{40} +(-3.50518 + 2.02372i) q^{41} +(-1.92364 + 3.33185i) q^{43} +(-3.89233 + 7.83880i) q^{44} +(-0.0753035 - 0.121468i) q^{46} +(3.00768 + 1.73649i) q^{47} +(2.60904 + 4.51900i) q^{49} +(4.56124 + 5.40325i) q^{50} +(6.85183 - 4.55121i) q^{52} -2.77476 q^{53} +(1.83577 - 9.61125i) q^{55} +(-3.43266 - 1.57231i) q^{56} +(-3.49779 + 6.52246i) q^{58} +(-1.37318 - 2.37841i) q^{59} +(1.04419 - 1.80858i) q^{61} +(-3.59888 - 5.80514i) q^{62} +(-7.85881 + 1.49634i) q^{64} +(-6.01084 + 6.96033i) q^{65} +(-0.216298 - 0.374638i) q^{67} +(-12.8825 + 0.809011i) q^{68} +(4.16911 + 0.661566i) q^{70} +8.41810 q^{71} -7.28163i q^{73} +(-4.58456 + 0.143812i) q^{74} +(0.732307 + 11.6611i) q^{76} +(-2.92071 - 5.05882i) q^{77} +(-2.58753 - 1.49391i) q^{79} +(8.01333 - 3.97323i) q^{80} +(-3.01598 - 4.86490i) q^{82} +(-11.6096 - 6.70282i) q^{83} +(13.6298 - 4.74283i) q^{85} +(-4.79492 - 2.57137i) q^{86} +(-11.2529 - 5.15431i) q^{88} +6.97377i q^{89} +5.49013i q^{91} +(0.168358 - 0.111829i) q^{92} +(-2.32119 + 4.32841i) q^{94} +(-4.29315 - 12.3375i) q^{95} +(-2.08608 - 1.20440i) q^{97} +(-6.27200 + 3.88831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0443404 + 1.41352i 0.0313534 + 0.999508i
\(3\) 0 0
\(4\) −1.99607 + 0.125352i −0.998034 + 0.0626759i
\(5\) 2.11186 0.734875i 0.944453 0.328646i
\(6\) 0 0
\(7\) 0.667441 1.15604i 0.252269 0.436943i −0.711881 0.702300i \(-0.752157\pi\)
0.964150 + 0.265357i \(0.0854898\pi\)
\(8\) −0.265693 2.81592i −0.0939368 0.995578i
\(9\) 0 0
\(10\) 1.13240 + 2.95257i 0.358096 + 0.933685i
\(11\) 2.18799 3.78971i 0.659705 1.14264i −0.320987 0.947083i \(-0.604015\pi\)
0.980692 0.195558i \(-0.0626519\pi\)
\(12\) 0 0
\(13\) −3.56180 + 2.05641i −0.987867 + 0.570345i −0.904636 0.426185i \(-0.859857\pi\)
−0.0832309 + 0.996530i \(0.526524\pi\)
\(14\) 1.66368 + 0.892181i 0.444638 + 0.238445i
\(15\) 0 0
\(16\) 3.96857 0.500421i 0.992143 0.125105i
\(17\) 6.45392 1.56531 0.782653 0.622458i \(-0.213866\pi\)
0.782653 + 0.622458i \(0.213866\pi\)
\(18\) 0 0
\(19\) 5.84202i 1.34025i −0.742248 0.670125i \(-0.766240\pi\)
0.742248 0.670125i \(-0.233760\pi\)
\(20\) −4.12330 + 1.73159i −0.921998 + 0.387194i
\(21\) 0 0
\(22\) 5.45385 + 2.92473i 1.16276 + 0.623555i
\(23\) −0.0875178 + 0.0505284i −0.0182487 + 0.0105359i −0.509097 0.860709i \(-0.670020\pi\)
0.490848 + 0.871245i \(0.336687\pi\)
\(24\) 0 0
\(25\) 3.91992 3.10391i 0.783984 0.620782i
\(26\) −3.06470 4.94349i −0.601038 0.969499i
\(27\) 0 0
\(28\) −1.18735 + 2.39120i −0.224387 + 0.451895i
\(29\) 4.53226 + 2.61670i 0.841620 + 0.485909i 0.857814 0.513960i \(-0.171822\pi\)
−0.0161948 + 0.999869i \(0.505155\pi\)
\(30\) 0 0
\(31\) −4.18262 + 2.41484i −0.751222 + 0.433718i −0.826135 0.563472i \(-0.809465\pi\)
0.0749136 + 0.997190i \(0.476132\pi\)
\(32\) 0.883323 + 5.58746i 0.156151 + 0.987733i
\(33\) 0 0
\(34\) 0.286169 + 9.12274i 0.0490776 + 1.56454i
\(35\) 0.559997 2.93189i 0.0946568 0.495579i
\(36\) 0 0
\(37\) 3.24337i 0.533206i 0.963806 + 0.266603i \(0.0859013\pi\)
−0.963806 + 0.266603i \(0.914099\pi\)
\(38\) 8.25780 0.259037i 1.33959 0.0420214i
\(39\) 0 0
\(40\) −2.63046 5.75158i −0.415912 0.909405i
\(41\) −3.50518 + 2.02372i −0.547417 + 0.316051i −0.748079 0.663609i \(-0.769024\pi\)
0.200663 + 0.979660i \(0.435690\pi\)
\(42\) 0 0
\(43\) −1.92364 + 3.33185i −0.293353 + 0.508102i −0.974600 0.223951i \(-0.928104\pi\)
0.681248 + 0.732053i \(0.261438\pi\)
\(44\) −3.89233 + 7.83880i −0.586792 + 1.18174i
\(45\) 0 0
\(46\) −0.0753035 0.121468i −0.0111029 0.0179094i
\(47\) 3.00768 + 1.73649i 0.438715 + 0.253292i 0.703053 0.711138i \(-0.251820\pi\)
−0.264337 + 0.964430i \(0.585153\pi\)
\(48\) 0 0
\(49\) 2.60904 + 4.51900i 0.372721 + 0.645571i
\(50\) 4.56124 + 5.40325i 0.645057 + 0.764135i
\(51\) 0 0
\(52\) 6.85183 4.55121i 0.950178 0.631139i
\(53\) −2.77476 −0.381143 −0.190571 0.981673i \(-0.561034\pi\)
−0.190571 + 0.981673i \(0.561034\pi\)
\(54\) 0 0
\(55\) 1.83577 9.61125i 0.247535 1.29598i
\(56\) −3.43266 1.57231i −0.458708 0.210109i
\(57\) 0 0
\(58\) −3.49779 + 6.52246i −0.459283 + 0.856441i
\(59\) −1.37318 2.37841i −0.178772 0.309642i 0.762688 0.646766i \(-0.223879\pi\)
−0.941460 + 0.337124i \(0.890546\pi\)
\(60\) 0 0
\(61\) 1.04419 1.80858i 0.133694 0.231566i −0.791404 0.611294i \(-0.790649\pi\)
0.925098 + 0.379729i \(0.123983\pi\)
\(62\) −3.59888 5.80514i −0.457058 0.737254i
\(63\) 0 0
\(64\) −7.85881 + 1.49634i −0.982352 + 0.187043i
\(65\) −6.01084 + 6.96033i −0.745552 + 0.863323i
\(66\) 0 0
\(67\) −0.216298 0.374638i −0.0264250 0.0457694i 0.852511 0.522710i \(-0.175079\pi\)
−0.878935 + 0.476941i \(0.841746\pi\)
\(68\) −12.8825 + 0.809011i −1.56223 + 0.0981070i
\(69\) 0 0
\(70\) 4.16911 + 0.661566i 0.498304 + 0.0790722i
\(71\) 8.41810 0.999044 0.499522 0.866301i \(-0.333509\pi\)
0.499522 + 0.866301i \(0.333509\pi\)
\(72\) 0 0
\(73\) 7.28163i 0.852250i −0.904664 0.426125i \(-0.859878\pi\)
0.904664 0.426125i \(-0.140122\pi\)
\(74\) −4.58456 + 0.143812i −0.532944 + 0.0167178i
\(75\) 0 0
\(76\) 0.732307 + 11.6611i 0.0840014 + 1.33762i
\(77\) −2.92071 5.05882i −0.332846 0.576507i
\(78\) 0 0
\(79\) −2.58753 1.49391i −0.291120 0.168078i 0.347327 0.937744i \(-0.387089\pi\)
−0.638447 + 0.769666i \(0.720423\pi\)
\(80\) 8.01333 3.97323i 0.895918 0.444220i
\(81\) 0 0
\(82\) −3.01598 4.86490i −0.333059 0.537238i
\(83\) −11.6096 6.70282i −1.27432 0.735730i −0.298524 0.954402i \(-0.596494\pi\)
−0.975798 + 0.218672i \(0.929828\pi\)
\(84\) 0 0
\(85\) 13.6298 4.74283i 1.47836 0.514432i
\(86\) −4.79492 2.57137i −0.517049 0.277278i
\(87\) 0 0
\(88\) −11.2529 5.15431i −1.19956 0.549451i
\(89\) 6.97377i 0.739218i 0.929187 + 0.369609i \(0.120508\pi\)
−0.929187 + 0.369609i \(0.879492\pi\)
\(90\) 0 0
\(91\) 5.49013i 0.575522i
\(92\) 0.168358 0.111829i 0.0175525 0.0116590i
\(93\) 0 0
\(94\) −2.32119 + 4.32841i −0.239413 + 0.446441i
\(95\) −4.29315 12.3375i −0.440468 1.26580i
\(96\) 0 0
\(97\) −2.08608 1.20440i −0.211809 0.122288i 0.390343 0.920670i \(-0.372356\pi\)
−0.602152 + 0.798382i \(0.705690\pi\)
\(98\) −6.27200 + 3.88831i −0.633568 + 0.392778i
\(99\) 0 0
\(100\) −7.43534 + 6.68698i −0.743534 + 0.668698i
\(101\) 3.92717 + 2.26735i 0.390768 + 0.225610i 0.682493 0.730892i \(-0.260896\pi\)
−0.291725 + 0.956502i \(0.594229\pi\)
\(102\) 0 0
\(103\) 1.95140 + 3.37992i 0.192277 + 0.333034i 0.946005 0.324153i \(-0.105079\pi\)
−0.753727 + 0.657187i \(0.771746\pi\)
\(104\) 6.73703 + 9.48338i 0.660620 + 0.929922i
\(105\) 0 0
\(106\) −0.123034 3.92217i −0.0119501 0.380955i
\(107\) 4.98830i 0.482237i 0.970496 + 0.241118i \(0.0775142\pi\)
−0.970496 + 0.241118i \(0.922486\pi\)
\(108\) 0 0
\(109\) −4.98669 −0.477638 −0.238819 0.971064i \(-0.576760\pi\)
−0.238819 + 0.971064i \(0.576760\pi\)
\(110\) 13.6671 + 2.16873i 1.30311 + 0.206780i
\(111\) 0 0
\(112\) 2.07028 4.92184i 0.195623 0.465070i
\(113\) −10.2057 17.6768i −0.960073 1.66290i −0.722306 0.691574i \(-0.756918\pi\)
−0.237767 0.971322i \(-0.576416\pi\)
\(114\) 0 0
\(115\) −0.147693 + 0.171024i −0.0137725 + 0.0159480i
\(116\) −9.37471 4.65499i −0.870420 0.432205i
\(117\) 0 0
\(118\) 3.30104 2.04647i 0.303885 0.188393i
\(119\) 4.30762 7.46101i 0.394879 0.683950i
\(120\) 0 0
\(121\) −4.07462 7.05746i −0.370420 0.641587i
\(122\) 2.60277 + 1.39578i 0.235643 + 0.126368i
\(123\) 0 0
\(124\) 8.04610 5.34448i 0.722561 0.479949i
\(125\) 5.99734 9.43567i 0.536418 0.843952i
\(126\) 0 0
\(127\) −19.1833 −1.70224 −0.851122 0.524968i \(-0.824077\pi\)
−0.851122 + 0.524968i \(0.824077\pi\)
\(128\) −2.46357 11.0422i −0.217751 0.976004i
\(129\) 0 0
\(130\) −10.1051 8.18780i −0.886274 0.718118i
\(131\) 8.41433 + 14.5740i 0.735163 + 1.27334i 0.954652 + 0.297725i \(0.0962279\pi\)
−0.219488 + 0.975615i \(0.570439\pi\)
\(132\) 0 0
\(133\) −6.75362 3.89920i −0.585613 0.338104i
\(134\) 0.519967 0.322352i 0.0449183 0.0278470i
\(135\) 0 0
\(136\) −1.71477 18.1737i −0.147040 1.55839i
\(137\) −2.99744 + 5.19172i −0.256089 + 0.443559i −0.965191 0.261547i \(-0.915767\pi\)
0.709102 + 0.705106i \(0.249101\pi\)
\(138\) 0 0
\(139\) 0.206175 0.119035i 0.0174875 0.0100964i −0.491231 0.871029i \(-0.663453\pi\)
0.508718 + 0.860933i \(0.330119\pi\)
\(140\) −0.750275 + 5.92244i −0.0634098 + 0.500538i
\(141\) 0 0
\(142\) 0.373261 + 11.8991i 0.0313234 + 0.998553i
\(143\) 17.9976i 1.50504i
\(144\) 0 0
\(145\) 11.4945 + 2.19547i 0.954563 + 0.182324i
\(146\) 10.2927 0.322870i 0.851831 0.0267209i
\(147\) 0 0
\(148\) −0.406562 6.47398i −0.0334192 0.532158i
\(149\) 8.84885 5.10889i 0.724926 0.418536i −0.0916368 0.995792i \(-0.529210\pi\)
0.816563 + 0.577256i \(0.195877\pi\)
\(150\) 0 0
\(151\) 13.0489 + 7.53379i 1.06190 + 0.613091i 0.925958 0.377625i \(-0.123259\pi\)
0.135946 + 0.990716i \(0.456593\pi\)
\(152\) −16.4507 + 1.55219i −1.33432 + 0.125899i
\(153\) 0 0
\(154\) 7.02124 4.35279i 0.565787 0.350758i
\(155\) −7.05852 + 8.17351i −0.566954 + 0.656512i
\(156\) 0 0
\(157\) −2.77448 + 1.60184i −0.221427 + 0.127841i −0.606611 0.794999i \(-0.707471\pi\)
0.385184 + 0.922840i \(0.374138\pi\)
\(158\) 1.99694 3.72376i 0.158868 0.296246i
\(159\) 0 0
\(160\) 5.97154 + 11.1508i 0.472092 + 0.881549i
\(161\) 0.134899i 0.0106315i
\(162\) 0 0
\(163\) 10.6182 0.831684 0.415842 0.909437i \(-0.363487\pi\)
0.415842 + 0.909437i \(0.363487\pi\)
\(164\) 6.74290 4.47885i 0.526532 0.349740i
\(165\) 0 0
\(166\) 8.95979 16.7076i 0.695414 1.29676i
\(167\) 10.9127 6.30046i 0.844451 0.487544i −0.0143236 0.999897i \(-0.504560\pi\)
0.858775 + 0.512353i \(0.171226\pi\)
\(168\) 0 0
\(169\) 1.95764 3.39073i 0.150587 0.260825i
\(170\) 7.30842 + 19.0557i 0.560530 + 1.46150i
\(171\) 0 0
\(172\) 3.42207 6.89172i 0.260930 0.525489i
\(173\) −0.858165 + 1.48639i −0.0652451 + 0.113008i −0.896803 0.442431i \(-0.854116\pi\)
0.831558 + 0.555439i \(0.187450\pi\)
\(174\) 0 0
\(175\) −0.971933 6.60327i −0.0734712 0.499160i
\(176\) 6.78676 16.1347i 0.511571 1.21620i
\(177\) 0 0
\(178\) −9.85755 + 0.309220i −0.738855 + 0.0231770i
\(179\) −18.6630 −1.39494 −0.697468 0.716616i \(-0.745690\pi\)
−0.697468 + 0.716616i \(0.745690\pi\)
\(180\) 0 0
\(181\) −19.9281 −1.48125 −0.740623 0.671920i \(-0.765470\pi\)
−0.740623 + 0.671920i \(0.765470\pi\)
\(182\) −7.76040 + 0.243434i −0.575239 + 0.0180445i
\(183\) 0 0
\(184\) 0.165537 + 0.233018i 0.0122035 + 0.0171783i
\(185\) 2.38347 + 6.84954i 0.175236 + 0.503588i
\(186\) 0 0
\(187\) 14.1211 24.4585i 1.03264 1.78859i
\(188\) −6.22121 3.08912i −0.453728 0.225298i
\(189\) 0 0
\(190\) 17.2490 6.61550i 1.25137 0.479939i
\(191\) −10.8229 + 18.7459i −0.783121 + 1.35641i 0.146994 + 0.989137i \(0.453040\pi\)
−0.930115 + 0.367268i \(0.880293\pi\)
\(192\) 0 0
\(193\) −9.00614 + 5.19970i −0.648276 + 0.374282i −0.787795 0.615937i \(-0.788778\pi\)
0.139519 + 0.990219i \(0.455444\pi\)
\(194\) 1.60994 3.00211i 0.115587 0.215539i
\(195\) 0 0
\(196\) −5.77429 8.69318i −0.412450 0.620941i
\(197\) 8.15715 0.581173 0.290586 0.956849i \(-0.406150\pi\)
0.290586 + 0.956849i \(0.406150\pi\)
\(198\) 0 0
\(199\) 9.18172i 0.650875i 0.945564 + 0.325438i \(0.105512\pi\)
−0.945564 + 0.325438i \(0.894488\pi\)
\(200\) −9.78185 10.2135i −0.691681 0.722203i
\(201\) 0 0
\(202\) −3.03081 + 5.65166i −0.213247 + 0.397649i
\(203\) 6.05004 3.49299i 0.424629 0.245160i
\(204\) 0 0
\(205\) −5.91527 + 6.84967i −0.413141 + 0.478402i
\(206\) −4.69106 + 2.90821i −0.326842 + 0.202624i
\(207\) 0 0
\(208\) −13.1062 + 9.94341i −0.908752 + 0.689452i
\(209\) −22.1396 12.7823i −1.53143 0.884170i
\(210\) 0 0
\(211\) −8.87092 + 5.12163i −0.610699 + 0.352587i −0.773239 0.634115i \(-0.781365\pi\)
0.162540 + 0.986702i \(0.448031\pi\)
\(212\) 5.53861 0.347821i 0.380393 0.0238885i
\(213\) 0 0
\(214\) −7.05105 + 0.221183i −0.482000 + 0.0151197i
\(215\) −1.61398 + 8.45003i −0.110072 + 0.576287i
\(216\) 0 0
\(217\) 6.44705i 0.437655i
\(218\) −0.221111 7.04877i −0.0149756 0.477403i
\(219\) 0 0
\(220\) −2.45954 + 19.4148i −0.165822 + 1.30895i
\(221\) −22.9876 + 13.2719i −1.54631 + 0.892765i
\(222\) 0 0
\(223\) −11.6245 + 20.1343i −0.778436 + 1.34829i 0.154407 + 0.988007i \(0.450653\pi\)
−0.932843 + 0.360283i \(0.882680\pi\)
\(224\) 7.04891 + 2.70815i 0.470975 + 0.180946i
\(225\) 0 0
\(226\) 24.5340 15.2098i 1.63198 1.01174i
\(227\) −14.7354 8.50750i −0.978024 0.564663i −0.0763513 0.997081i \(-0.524327\pi\)
−0.901673 + 0.432418i \(0.857660\pi\)
\(228\) 0 0
\(229\) −0.750685 1.30022i −0.0496066 0.0859212i 0.840156 0.542345i \(-0.182463\pi\)
−0.889762 + 0.456424i \(0.849130\pi\)
\(230\) −0.248294 0.201184i −0.0163720 0.0132657i
\(231\) 0 0
\(232\) 6.16423 13.4577i 0.404702 0.883543i
\(233\) 13.5483 0.887579 0.443789 0.896131i \(-0.353634\pi\)
0.443789 + 0.896131i \(0.353634\pi\)
\(234\) 0 0
\(235\) 7.62791 + 1.45695i 0.497590 + 0.0950408i
\(236\) 3.03909 + 4.57534i 0.197828 + 0.297829i
\(237\) 0 0
\(238\) 10.7373 + 5.75807i 0.695994 + 0.373240i
\(239\) 7.32324 + 12.6842i 0.473701 + 0.820474i 0.999547 0.0301057i \(-0.00958440\pi\)
−0.525846 + 0.850580i \(0.676251\pi\)
\(240\) 0 0
\(241\) −12.2259 + 21.1758i −0.787537 + 1.36405i 0.139934 + 0.990161i \(0.455311\pi\)
−0.927472 + 0.373894i \(0.878022\pi\)
\(242\) 9.79517 6.07249i 0.629658 0.390354i
\(243\) 0 0
\(244\) −1.85756 + 3.74095i −0.118918 + 0.239490i
\(245\) 8.83084 + 7.62617i 0.564181 + 0.487218i
\(246\) 0 0
\(247\) 12.0136 + 20.8081i 0.764406 + 1.32399i
\(248\) 7.91129 + 11.1363i 0.502367 + 0.707158i
\(249\) 0 0
\(250\) 13.6034 + 8.05897i 0.860356 + 0.509694i
\(251\) 13.1808 0.831965 0.415982 0.909373i \(-0.363438\pi\)
0.415982 + 0.909373i \(0.363438\pi\)
\(252\) 0 0
\(253\) 0.442223i 0.0278024i
\(254\) −0.850595 27.1160i −0.0533711 1.70141i
\(255\) 0 0
\(256\) 15.4992 3.97192i 0.968697 0.248245i
\(257\) 3.48508 + 6.03633i 0.217393 + 0.376536i 0.954010 0.299774i \(-0.0969113\pi\)
−0.736617 + 0.676310i \(0.763578\pi\)
\(258\) 0 0
\(259\) 3.74947 + 2.16476i 0.232981 + 0.134511i
\(260\) 11.1255 14.6468i 0.689977 0.908354i
\(261\) 0 0
\(262\) −20.2276 + 12.5400i −1.24966 + 0.774725i
\(263\) 13.9809 + 8.07190i 0.862102 + 0.497735i 0.864716 0.502262i \(-0.167499\pi\)
−0.00261352 + 0.999997i \(0.500832\pi\)
\(264\) 0 0
\(265\) −5.85991 + 2.03910i −0.359971 + 0.125261i
\(266\) 5.21214 9.71926i 0.319577 0.595926i
\(267\) 0 0
\(268\) 0.478706 + 0.720690i 0.0292416 + 0.0440232i
\(269\) 21.7634i 1.32694i −0.748204 0.663468i \(-0.769084\pi\)
0.748204 0.663468i \(-0.230916\pi\)
\(270\) 0 0
\(271\) 30.1548i 1.83177i 0.401436 + 0.915887i \(0.368511\pi\)
−0.401436 + 0.915887i \(0.631489\pi\)
\(272\) 25.6129 3.22968i 1.55301 0.195828i
\(273\) 0 0
\(274\) −7.47150 4.00674i −0.451370 0.242056i
\(275\) −3.18617 21.6467i −0.192133 1.30535i
\(276\) 0 0
\(277\) 11.2614 + 6.50177i 0.676632 + 0.390654i 0.798585 0.601882i \(-0.205582\pi\)
−0.121953 + 0.992536i \(0.538916\pi\)
\(278\) 0.177400 + 0.286153i 0.0106397 + 0.0171623i
\(279\) 0 0
\(280\) −8.40475 0.797925i −0.502280 0.0476851i
\(281\) 0.936692 + 0.540799i 0.0558784 + 0.0322614i 0.527679 0.849444i \(-0.323062\pi\)
−0.471801 + 0.881705i \(0.656396\pi\)
\(282\) 0 0
\(283\) −14.6158 25.3154i −0.868821 1.50484i −0.863202 0.504858i \(-0.831545\pi\)
−0.00561859 0.999984i \(-0.501788\pi\)
\(284\) −16.8031 + 1.05522i −0.997080 + 0.0626160i
\(285\) 0 0
\(286\) −25.4400 + 0.798021i −1.50430 + 0.0471880i
\(287\) 5.40284i 0.318920i
\(288\) 0 0
\(289\) 24.6531 1.45019
\(290\) −2.59367 + 16.3450i −0.152305 + 0.959810i
\(291\) 0 0
\(292\) 0.912765 + 14.5346i 0.0534155 + 0.850575i
\(293\) 2.81552 + 4.87662i 0.164484 + 0.284895i 0.936472 0.350742i \(-0.114071\pi\)
−0.771988 + 0.635637i \(0.780737\pi\)
\(294\) 0 0
\(295\) −4.64779 4.01376i −0.270605 0.233690i
\(296\) 9.13306 0.861741i 0.530848 0.0500877i
\(297\) 0 0
\(298\) 7.61387 + 12.2815i 0.441060 + 0.711447i
\(299\) 0.207814 0.359945i 0.0120182 0.0208162i
\(300\) 0 0
\(301\) 2.56784 + 4.44762i 0.148008 + 0.256357i
\(302\) −10.0706 + 18.7789i −0.579495 + 1.08060i
\(303\) 0 0
\(304\) −2.92347 23.1845i −0.167673 1.32972i
\(305\) 0.876095 4.58683i 0.0501650 0.262641i
\(306\) 0 0
\(307\) 15.2931 0.872826 0.436413 0.899747i \(-0.356249\pi\)
0.436413 + 0.899747i \(0.356249\pi\)
\(308\) 6.46408 + 9.73164i 0.368325 + 0.554512i
\(309\) 0 0
\(310\) −11.8664 9.61493i −0.673965 0.546091i
\(311\) 1.83417 + 3.17688i 0.104006 + 0.180144i 0.913332 0.407216i \(-0.133500\pi\)
−0.809326 + 0.587360i \(0.800167\pi\)
\(312\) 0 0
\(313\) 21.3301 + 12.3149i 1.20565 + 0.696081i 0.961805 0.273734i \(-0.0882588\pi\)
0.243842 + 0.969815i \(0.421592\pi\)
\(314\) −2.38726 3.85075i −0.134721 0.217310i
\(315\) 0 0
\(316\) 5.35215 + 2.65759i 0.301082 + 0.149501i
\(317\) −5.32466 + 9.22258i −0.299063 + 0.517992i −0.975922 0.218121i \(-0.930007\pi\)
0.676859 + 0.736113i \(0.263341\pi\)
\(318\) 0 0
\(319\) 19.8331 11.4506i 1.11044 0.641113i
\(320\) −15.4971 + 8.93531i −0.866314 + 0.499499i
\(321\) 0 0
\(322\) −0.190682 + 0.00598147i −0.0106263 + 0.000333334i
\(323\) 37.7039i 2.09790i
\(324\) 0 0
\(325\) −7.57908 + 19.1165i −0.420412 + 1.06039i
\(326\) 0.470816 + 15.0091i 0.0260761 + 0.831275i
\(327\) 0 0
\(328\) 6.62992 + 9.33261i 0.366076 + 0.515307i
\(329\) 4.01490 2.31800i 0.221349 0.127796i
\(330\) 0 0
\(331\) −3.04582 1.75851i −0.167414 0.0966563i 0.413952 0.910299i \(-0.364148\pi\)
−0.581366 + 0.813642i \(0.697481\pi\)
\(332\) 24.0138 + 11.9240i 1.31793 + 0.654415i
\(333\) 0 0
\(334\) 9.38969 + 15.1460i 0.513781 + 0.828750i
\(335\) −0.732103 0.632233i −0.0399990 0.0345426i
\(336\) 0 0
\(337\) 20.3763 11.7643i 1.10997 0.640841i 0.171147 0.985245i \(-0.445253\pi\)
0.938821 + 0.344405i \(0.111919\pi\)
\(338\) 4.87965 + 2.61681i 0.265418 + 0.142336i
\(339\) 0 0
\(340\) −26.6115 + 11.1755i −1.44321 + 0.606078i
\(341\) 21.1346i 1.14450i
\(342\) 0 0
\(343\) 16.3097 0.880642
\(344\) 9.89331 + 4.53157i 0.533412 + 0.244326i
\(345\) 0 0
\(346\) −2.13909 1.14713i −0.114998 0.0616699i
\(347\) −3.63147 + 2.09663i −0.194947 + 0.112553i −0.594297 0.804246i \(-0.702569\pi\)
0.399349 + 0.916799i \(0.369236\pi\)
\(348\) 0 0
\(349\) 2.78198 4.81854i 0.148916 0.257930i −0.781911 0.623390i \(-0.785755\pi\)
0.930827 + 0.365460i \(0.119088\pi\)
\(350\) 9.29074 1.66664i 0.496611 0.0890855i
\(351\) 0 0
\(352\) 23.1076 + 8.87779i 1.23164 + 0.473188i
\(353\) −5.51109 + 9.54549i −0.293326 + 0.508055i −0.974594 0.223979i \(-0.928095\pi\)
0.681268 + 0.732034i \(0.261429\pi\)
\(354\) 0 0
\(355\) 17.7779 6.18625i 0.943550 0.328332i
\(356\) −0.874175 13.9201i −0.0463312 0.737765i
\(357\) 0 0
\(358\) −0.827522 26.3804i −0.0437359 1.39425i
\(359\) −27.2920 −1.44042 −0.720209 0.693757i \(-0.755954\pi\)
−0.720209 + 0.693757i \(0.755954\pi\)
\(360\) 0 0
\(361\) −15.1292 −0.796272
\(362\) −0.883621 28.1688i −0.0464421 1.48052i
\(363\) 0 0
\(364\) −0.688198 10.9587i −0.0360714 0.574390i
\(365\) −5.35109 15.3778i −0.280089 0.804910i
\(366\) 0 0
\(367\) −15.7443 + 27.2699i −0.821846 + 1.42348i 0.0824597 + 0.996594i \(0.473722\pi\)
−0.904306 + 0.426885i \(0.859611\pi\)
\(368\) −0.322035 + 0.244322i −0.0167873 + 0.0127361i
\(369\) 0 0
\(370\) −9.57627 + 3.67279i −0.497846 + 0.190939i
\(371\) −1.85199 + 3.20774i −0.0961505 + 0.166538i
\(372\) 0 0
\(373\) −20.2988 + 11.7195i −1.05103 + 0.606812i −0.922937 0.384950i \(-0.874219\pi\)
−0.128092 + 0.991762i \(0.540885\pi\)
\(374\) 35.1987 + 18.8760i 1.82008 + 0.976054i
\(375\) 0 0
\(376\) 4.09068 8.93076i 0.210961 0.460569i
\(377\) −21.5240 −1.10854
\(378\) 0 0
\(379\) 11.5529i 0.593434i −0.954965 0.296717i \(-0.904108\pi\)
0.954965 0.296717i \(-0.0958918\pi\)
\(380\) 10.1160 + 24.0884i 0.518937 + 1.23571i
\(381\) 0 0
\(382\) −26.9776 14.4672i −1.38029 0.740208i
\(383\) −22.7016 + 13.1068i −1.16000 + 0.669725i −0.951304 0.308256i \(-0.900255\pi\)
−0.208695 + 0.977981i \(0.566921\pi\)
\(384\) 0 0
\(385\) −9.88575 8.53718i −0.503824 0.435095i
\(386\) −7.74920 12.4998i −0.394424 0.636222i
\(387\) 0 0
\(388\) 4.31492 + 2.14256i 0.219057 + 0.108772i
\(389\) 1.38545 + 0.799888i 0.0702449 + 0.0405559i 0.534711 0.845035i \(-0.320420\pi\)
−0.464466 + 0.885591i \(0.653754\pi\)
\(390\) 0 0
\(391\) −0.564834 + 0.326107i −0.0285649 + 0.0164919i
\(392\) 12.0319 8.54753i 0.607704 0.431715i
\(393\) 0 0
\(394\) 0.361691 + 11.5303i 0.0182217 + 0.580887i
\(395\) −6.56234 1.25342i −0.330187 0.0630665i
\(396\) 0 0
\(397\) 25.9373i 1.30176i −0.759182 0.650879i \(-0.774401\pi\)
0.759182 0.650879i \(-0.225599\pi\)
\(398\) −12.9785 + 0.407121i −0.650555 + 0.0204071i
\(399\) 0 0
\(400\) 14.0032 14.2797i 0.700161 0.713985i
\(401\) 21.5383 12.4351i 1.07557 0.620980i 0.145872 0.989304i \(-0.453401\pi\)
0.929698 + 0.368323i \(0.120068\pi\)
\(402\) 0 0
\(403\) 9.93179 17.2024i 0.494738 0.856911i
\(404\) −8.12311 4.03351i −0.404140 0.200675i
\(405\) 0 0
\(406\) 5.20567 + 8.39696i 0.258353 + 0.416734i
\(407\) 12.2914 + 7.09646i 0.609264 + 0.351759i
\(408\) 0 0
\(409\) −10.6869 18.5102i −0.528433 0.915272i −0.999450 0.0331484i \(-0.989447\pi\)
0.471018 0.882124i \(-0.343887\pi\)
\(410\) −9.94442 8.05763i −0.491120 0.397938i
\(411\) 0 0
\(412\) −4.31881 6.50195i −0.212772 0.320328i
\(413\) −3.66606 −0.180395
\(414\) 0 0
\(415\) −29.4437 5.62381i −1.44533 0.276062i
\(416\) −14.6363 18.0850i −0.717605 0.886689i
\(417\) 0 0
\(418\) 17.0863 31.8615i 0.835719 1.55840i
\(419\) 3.12824 + 5.41826i 0.152824 + 0.264700i 0.932265 0.361777i \(-0.117830\pi\)
−0.779440 + 0.626476i \(0.784496\pi\)
\(420\) 0 0
\(421\) 15.3599 26.6041i 0.748596 1.29661i −0.199900 0.979816i \(-0.564062\pi\)
0.948496 0.316790i \(-0.102605\pi\)
\(422\) −7.63286 12.3121i −0.371562 0.599344i
\(423\) 0 0
\(424\) 0.737236 + 7.81350i 0.0358033 + 0.379457i
\(425\) 25.2989 20.0324i 1.22717 0.971713i
\(426\) 0 0
\(427\) −1.39387 2.41425i −0.0674540 0.116834i
\(428\) −0.625292 9.95698i −0.0302246 0.481289i
\(429\) 0 0
\(430\) −12.0158 1.90671i −0.579455 0.0919496i
\(431\) 35.1049 1.69094 0.845472 0.534020i \(-0.179319\pi\)
0.845472 + 0.534020i \(0.179319\pi\)
\(432\) 0 0
\(433\) 24.5043i 1.17760i −0.808279 0.588800i \(-0.799601\pi\)
0.808279 0.588800i \(-0.200399\pi\)
\(434\) −9.11303 + 0.285865i −0.437439 + 0.0137219i
\(435\) 0 0
\(436\) 9.95376 0.625090i 0.476699 0.0299364i
\(437\) 0.295188 + 0.511281i 0.0141208 + 0.0244579i
\(438\) 0 0
\(439\) −15.3741 8.87623i −0.733765 0.423639i 0.0860332 0.996292i \(-0.472581\pi\)
−0.819798 + 0.572653i \(0.805914\pi\)
\(440\) −27.5523 2.61574i −1.31350 0.124701i
\(441\) 0 0
\(442\) −19.7794 31.9049i −0.940808 1.51756i
\(443\) 6.08715 + 3.51442i 0.289209 + 0.166975i 0.637585 0.770380i \(-0.279933\pi\)
−0.348376 + 0.937355i \(0.613267\pi\)
\(444\) 0 0
\(445\) 5.12485 + 14.7276i 0.242941 + 0.698157i
\(446\) −28.9756 15.5387i −1.37203 0.735780i
\(447\) 0 0
\(448\) −3.51546 + 10.0838i −0.166090 + 0.476417i
\(449\) 16.6756i 0.786971i 0.919331 + 0.393485i \(0.128731\pi\)
−0.919331 + 0.393485i \(0.871269\pi\)
\(450\) 0 0
\(451\) 17.7115i 0.834002i
\(452\) 22.5871 + 34.0048i 1.06241 + 1.59945i
\(453\) 0 0
\(454\) 11.3721 21.2060i 0.533721 0.995248i
\(455\) 4.03456 + 11.5944i 0.189143 + 0.543554i
\(456\) 0 0
\(457\) −25.7193 14.8490i −1.20310 0.694608i −0.241854 0.970313i \(-0.577756\pi\)
−0.961242 + 0.275704i \(0.911089\pi\)
\(458\) 1.80460 1.11876i 0.0843236 0.0522762i
\(459\) 0 0
\(460\) 0.273368 0.359889i 0.0127459 0.0167799i
\(461\) −12.2647 7.08100i −0.571222 0.329795i 0.186415 0.982471i \(-0.440313\pi\)
−0.757637 + 0.652676i \(0.773646\pi\)
\(462\) 0 0
\(463\) 2.85520 + 4.94535i 0.132692 + 0.229830i 0.924714 0.380664i \(-0.124304\pi\)
−0.792021 + 0.610494i \(0.790971\pi\)
\(464\) 19.2961 + 8.11653i 0.895797 + 0.376801i
\(465\) 0 0
\(466\) 0.600736 + 19.1508i 0.0278286 + 0.887142i
\(467\) 18.7968i 0.869813i −0.900476 0.434907i \(-0.856781\pi\)
0.900476 0.434907i \(-0.143219\pi\)
\(468\) 0 0
\(469\) −0.577464 −0.0266648
\(470\) −1.72120 + 10.8468i −0.0793930 + 0.500325i
\(471\) 0 0
\(472\) −6.33257 + 4.49868i −0.291480 + 0.207069i
\(473\) 8.41783 + 14.5801i 0.387052 + 0.670394i
\(474\) 0 0
\(475\) −18.1331 22.9002i −0.832003 1.05073i
\(476\) −7.66304 + 15.4327i −0.351235 + 0.707354i
\(477\) 0 0
\(478\) −17.6047 + 10.9140i −0.805219 + 0.499193i
\(479\) 15.2061 26.3377i 0.694783 1.20340i −0.275471 0.961309i \(-0.588834\pi\)
0.970254 0.242090i \(-0.0778329\pi\)
\(480\) 0 0
\(481\) −6.66969 11.5522i −0.304112 0.526737i
\(482\) −30.4745 16.3425i −1.38808 0.744382i
\(483\) 0 0
\(484\) 9.01789 + 13.5764i 0.409904 + 0.617109i
\(485\) −5.29058 1.01051i −0.240233 0.0458851i
\(486\) 0 0
\(487\) −3.67889 −0.166706 −0.0833532 0.996520i \(-0.526563\pi\)
−0.0833532 + 0.996520i \(0.526563\pi\)
\(488\) −5.37026 2.45982i −0.243100 0.111351i
\(489\) 0 0
\(490\) −10.3882 + 12.8207i −0.469290 + 0.579180i
\(491\) −9.05671 15.6867i −0.408724 0.707930i 0.586023 0.810294i \(-0.300693\pi\)
−0.994747 + 0.102364i \(0.967359\pi\)
\(492\) 0 0
\(493\) 29.2509 + 16.8880i 1.31739 + 0.760597i
\(494\) −28.8800 + 17.9040i −1.29937 + 0.805541i
\(495\) 0 0
\(496\) −15.3906 + 11.6765i −0.691059 + 0.524292i
\(497\) 5.61859 9.73168i 0.252028 0.436525i
\(498\) 0 0
\(499\) −19.9488 + 11.5175i −0.893032 + 0.515592i −0.874933 0.484244i \(-0.839095\pi\)
−0.0180991 + 0.999836i \(0.505761\pi\)
\(500\) −10.7883 + 19.5860i −0.482468 + 0.875913i
\(501\) 0 0
\(502\) 0.584441 + 18.6313i 0.0260849 + 0.831556i
\(503\) 31.1266i 1.38787i 0.720039 + 0.693934i \(0.244124\pi\)
−0.720039 + 0.693934i \(0.755876\pi\)
\(504\) 0 0
\(505\) 9.95985 + 1.90235i 0.443208 + 0.0846537i
\(506\) −0.625091 + 0.0196083i −0.0277887 + 0.000871697i
\(507\) 0 0
\(508\) 38.2912 2.40466i 1.69890 0.106690i
\(509\) 0.489681 0.282717i 0.0217047 0.0125312i −0.489108 0.872223i \(-0.662678\pi\)
0.510813 + 0.859692i \(0.329344\pi\)
\(510\) 0 0
\(511\) −8.41787 4.86006i −0.372385 0.214996i
\(512\) 6.30162 + 21.7322i 0.278495 + 0.960438i
\(513\) 0 0
\(514\) −8.37793 + 5.19387i −0.369535 + 0.229092i
\(515\) 6.60491 + 5.70390i 0.291047 + 0.251344i
\(516\) 0 0
\(517\) 13.1616 7.59884i 0.578845 0.334196i
\(518\) −2.89367 + 5.39593i −0.127141 + 0.237083i
\(519\) 0 0
\(520\) 21.1968 + 15.0767i 0.929540 + 0.661158i
\(521\) 4.80678i 0.210589i −0.994441 0.105294i \(-0.966422\pi\)
0.994441 0.105294i \(-0.0335785\pi\)
\(522\) 0 0
\(523\) −19.6207 −0.857954 −0.428977 0.903315i \(-0.641126\pi\)
−0.428977 + 0.903315i \(0.641126\pi\)
\(524\) −18.6225 28.0360i −0.813526 1.22476i
\(525\) 0 0
\(526\) −10.7899 + 20.1202i −0.470460 + 0.877284i
\(527\) −26.9943 + 15.5852i −1.17589 + 0.678902i
\(528\) 0 0
\(529\) −11.4949 + 19.9097i −0.499778 + 0.865641i
\(530\) −3.14214 8.19268i −0.136486 0.355867i
\(531\) 0 0
\(532\) 13.9695 + 6.93650i 0.605653 + 0.300735i
\(533\) 8.32317 14.4162i 0.360517 0.624433i
\(534\) 0 0
\(535\) 3.66577 + 10.5346i 0.158485 + 0.455450i
\(536\) −0.997483 + 0.708616i −0.0430847 + 0.0306075i
\(537\) 0 0
\(538\) 30.7629 0.964996i 1.32628 0.0416039i
\(539\) 22.8343 0.983542
\(540\) 0 0
\(541\) 40.3065 1.73291 0.866457 0.499252i \(-0.166392\pi\)
0.866457 + 0.499252i \(0.166392\pi\)
\(542\) −42.6244 + 1.33707i −1.83087 + 0.0574323i
\(543\) 0 0
\(544\) 5.70090 + 36.0611i 0.244424 + 1.54611i
\(545\) −10.5312 + 3.66459i −0.451107 + 0.156974i
\(546\) 0 0
\(547\) 1.44201 2.49763i 0.0616557 0.106791i −0.833550 0.552444i \(-0.813695\pi\)
0.895206 + 0.445653i \(0.147029\pi\)
\(548\) 5.33231 10.7388i 0.227785 0.458737i
\(549\) 0 0
\(550\) 30.4567 5.46353i 1.29868 0.232966i
\(551\) 15.2868 26.4775i 0.651240 1.12798i
\(552\) 0 0
\(553\) −3.45405 + 1.99419i −0.146881 + 0.0848018i
\(554\) −8.69104 + 16.2065i −0.369247 + 0.688547i
\(555\) 0 0
\(556\) −0.396617 + 0.263446i −0.0168203 + 0.0111726i
\(557\) −17.0510 −0.722475 −0.361237 0.932474i \(-0.617646\pi\)
−0.361237 + 0.932474i \(0.617646\pi\)
\(558\) 0 0
\(559\) 15.8232i 0.669249i
\(560\) 0.755212 11.9156i 0.0319135 0.503528i
\(561\) 0 0
\(562\) −0.722897 + 1.34801i −0.0304935 + 0.0568624i
\(563\) 19.0842 11.0182i 0.804302 0.464364i −0.0406715 0.999173i \(-0.512950\pi\)
0.844973 + 0.534809i \(0.179616\pi\)
\(564\) 0 0
\(565\) −34.5433 29.8311i −1.45325 1.25500i
\(566\) 35.1357 21.7822i 1.47686 0.915576i
\(567\) 0 0
\(568\) −2.23663 23.7047i −0.0938470 0.994627i
\(569\) 24.1641 + 13.9512i 1.01301 + 0.584864i 0.912073 0.410029i \(-0.134481\pi\)
0.100941 + 0.994892i \(0.467815\pi\)
\(570\) 0 0
\(571\) 11.2510 6.49576i 0.470839 0.271839i −0.245752 0.969333i \(-0.579035\pi\)
0.716591 + 0.697494i \(0.245702\pi\)
\(572\) −2.25604 35.9245i −0.0943296 1.50208i
\(573\) 0 0
\(574\) −7.63702 + 0.239564i −0.318763 + 0.00999921i
\(575\) −0.186227 + 0.469715i −0.00776621 + 0.0195885i
\(576\) 0 0
\(577\) 34.6251i 1.44146i 0.693216 + 0.720730i \(0.256193\pi\)
−0.693216 + 0.720730i \(0.743807\pi\)
\(578\) 1.09313 + 34.8477i 0.0454682 + 1.44947i
\(579\) 0 0
\(580\) −23.2189 2.94145i −0.964113 0.122137i
\(581\) −15.4975 + 8.94748i −0.642944 + 0.371204i
\(582\) 0 0
\(583\) −6.07116 + 10.5156i −0.251442 + 0.435510i
\(584\) −20.5045 + 1.93468i −0.848482 + 0.0800577i
\(585\) 0 0
\(586\) −6.76835 + 4.19601i −0.279598 + 0.173336i
\(587\) −9.41209 5.43407i −0.388479 0.224288i 0.293022 0.956106i \(-0.405339\pi\)
−0.681501 + 0.731817i \(0.738672\pi\)
\(588\) 0 0
\(589\) 14.1075 + 24.4350i 0.581291 + 1.00683i
\(590\) 5.46744 6.74771i 0.225091 0.277799i
\(591\) 0 0
\(592\) 1.62305 + 12.8715i 0.0667069 + 0.529017i
\(593\) 4.49540 0.184604 0.0923019 0.995731i \(-0.470578\pi\)
0.0923019 + 0.995731i \(0.470578\pi\)
\(594\) 0 0
\(595\) 3.61418 18.9222i 0.148167 0.775734i
\(596\) −17.0225 + 11.3069i −0.697269 + 0.463149i
\(597\) 0 0
\(598\) 0.518003 + 0.277789i 0.0211827 + 0.0113596i
\(599\) −3.45192 5.97890i −0.141042 0.244291i 0.786847 0.617148i \(-0.211712\pi\)
−0.927889 + 0.372856i \(0.878379\pi\)
\(600\) 0 0
\(601\) −15.7058 + 27.2032i −0.640653 + 1.10964i 0.344635 + 0.938737i \(0.388003\pi\)
−0.985287 + 0.170906i \(0.945331\pi\)
\(602\) −6.17294 + 3.82689i −0.251590 + 0.155973i
\(603\) 0 0
\(604\) −26.9909 13.4022i −1.09824 0.545330i
\(605\) −13.7914 11.9100i −0.560700 0.484212i
\(606\) 0 0
\(607\) −9.81362 16.9977i −0.398322 0.689915i 0.595197 0.803580i \(-0.297074\pi\)
−0.993519 + 0.113665i \(0.963741\pi\)
\(608\) 32.6421 5.16039i 1.32381 0.209281i
\(609\) 0 0
\(610\) 6.52241 + 1.03499i 0.264085 + 0.0419057i
\(611\) −14.2837 −0.577857
\(612\) 0 0
\(613\) 28.8088i 1.16358i −0.813340 0.581788i \(-0.802353\pi\)
0.813340 0.581788i \(-0.197647\pi\)
\(614\) 0.678103 + 21.6171i 0.0273660 + 0.872396i
\(615\) 0 0
\(616\) −13.4692 + 9.56859i −0.542691 + 0.385530i
\(617\) −8.02269 13.8957i −0.322981 0.559420i 0.658120 0.752913i \(-0.271352\pi\)
−0.981102 + 0.193493i \(0.938018\pi\)
\(618\) 0 0
\(619\) 2.13387 + 1.23199i 0.0857674 + 0.0495178i 0.542270 0.840204i \(-0.317565\pi\)
−0.456503 + 0.889722i \(0.650898\pi\)
\(620\) 13.0647 17.1997i 0.524692 0.690756i
\(621\) 0 0
\(622\) −4.40924 + 2.73350i −0.176795 + 0.109603i
\(623\) 8.06198 + 4.65458i 0.322996 + 0.186482i
\(624\) 0 0
\(625\) 5.73152 24.3341i 0.229261 0.973365i
\(626\) −16.4616 + 30.6965i −0.657938 + 1.22688i
\(627\) 0 0
\(628\) 5.33725 3.54518i 0.212979 0.141468i
\(629\) 20.9324i 0.834631i
\(630\) 0 0
\(631\) 44.4737i 1.77047i −0.465144 0.885235i \(-0.653997\pi\)
0.465144 0.885235i \(-0.346003\pi\)
\(632\) −3.51924 + 7.68320i −0.139988 + 0.305621i
\(633\) 0 0
\(634\) −13.2724 7.11757i −0.527114 0.282675i
\(635\) −40.5125 + 14.0973i −1.60769 + 0.559436i
\(636\) 0 0
\(637\) −18.5858 10.7305i −0.736397 0.425159i
\(638\) 17.0651 + 27.5267i 0.675614 + 1.08979i
\(639\) 0 0
\(640\) −13.3174 21.5092i −0.526415 0.850227i
\(641\) 14.1935 + 8.19465i 0.560611 + 0.323669i 0.753391 0.657573i \(-0.228417\pi\)
−0.192779 + 0.981242i \(0.561750\pi\)
\(642\) 0 0
\(643\) −17.5507 30.3987i −0.692133 1.19881i −0.971138 0.238520i \(-0.923338\pi\)
0.279005 0.960290i \(-0.409995\pi\)
\(644\) −0.0169098 0.269268i −0.000666341 0.0106106i
\(645\) 0 0
\(646\) 53.2952 1.67181i 2.09687 0.0657763i
\(647\) 19.0579i 0.749243i −0.927178 0.374621i \(-0.877773\pi\)
0.927178 0.374621i \(-0.122227\pi\)
\(648\) 0 0
\(649\) −12.0180 −0.471747
\(650\) −27.3575 9.86554i −1.07305 0.386958i
\(651\) 0 0
\(652\) −21.1947 + 1.33101i −0.830049 + 0.0521265i
\(653\) 21.0708 + 36.4956i 0.824563 + 1.42818i 0.902253 + 0.431207i \(0.141912\pi\)
−0.0776903 + 0.996978i \(0.524755\pi\)
\(654\) 0 0
\(655\) 28.4800 + 24.5949i 1.11281 + 0.961002i
\(656\) −12.8978 + 9.78533i −0.503576 + 0.382053i
\(657\) 0 0
\(658\) 3.45456 + 5.57236i 0.134673 + 0.217233i
\(659\) 10.0696 17.4410i 0.392256 0.679407i −0.600491 0.799631i \(-0.705028\pi\)
0.992747 + 0.120225i \(0.0383616\pi\)
\(660\) 0 0
\(661\) 3.54725 + 6.14402i 0.137972 + 0.238975i 0.926729 0.375731i \(-0.122608\pi\)
−0.788757 + 0.614705i \(0.789275\pi\)
\(662\) 2.35063 4.38330i 0.0913598 0.170362i
\(663\) 0 0
\(664\) −15.7900 + 34.4727i −0.612771 + 1.33780i
\(665\) −17.1281 3.27151i −0.664201 0.126864i
\(666\) 0 0
\(667\) −0.528872 −0.0204780
\(668\) −20.9927 + 13.9441i −0.812234 + 0.539512i
\(669\) 0 0
\(670\) 0.861211 1.06287i 0.0332715 0.0410624i
\(671\) −4.56935 7.91434i −0.176398 0.305530i
\(672\) 0 0
\(673\) 19.8408 + 11.4551i 0.764806 + 0.441561i 0.831018 0.556245i \(-0.187758\pi\)
−0.0662129 + 0.997806i \(0.521092\pi\)
\(674\) 17.5325 + 28.2807i 0.675327 + 1.08933i
\(675\) 0 0
\(676\) −3.48254 + 7.01351i −0.133944 + 0.269750i
\(677\) 11.6227 20.1311i 0.446696 0.773699i −0.551473 0.834193i \(-0.685934\pi\)
0.998169 + 0.0604934i \(0.0192674\pi\)
\(678\) 0 0
\(679\) −2.78467 + 1.60773i −0.106866 + 0.0616989i
\(680\) −16.9768 37.1203i −0.651029 1.42350i
\(681\) 0 0
\(682\) −29.8741 + 0.937116i −1.14394 + 0.0358840i
\(683\) 30.3578i 1.16161i −0.814043 0.580804i \(-0.802738\pi\)
0.814043 0.580804i \(-0.197262\pi\)
\(684\) 0 0
\(685\) −2.51492 + 13.1669i −0.0960900 + 0.503083i
\(686\) 0.723178 + 23.0541i 0.0276111 + 0.880209i
\(687\) 0 0
\(688\) −5.96679 + 14.1853i −0.227482 + 0.540810i
\(689\) 9.88316 5.70604i 0.376518 0.217383i
\(690\) 0 0
\(691\) −10.6015 6.12077i −0.403299 0.232845i 0.284607 0.958644i \(-0.408137\pi\)
−0.687907 + 0.725799i \(0.741470\pi\)
\(692\) 1.52664 3.07450i 0.0580340 0.116875i
\(693\) 0 0
\(694\) −3.12464 5.04018i −0.118610 0.191323i
\(695\) 0.347936 0.402898i 0.0131980 0.0152828i
\(696\) 0 0
\(697\) −22.6222 + 13.0609i −0.856875 + 0.494717i
\(698\) 6.93444 + 3.71873i 0.262473 + 0.140756i
\(699\) 0 0
\(700\) 2.76778 + 13.0587i 0.104612 + 0.493574i
\(701\) 0.0365464i 0.00138034i 1.00000 0.000690169i \(0.000219688\pi\)
−1.00000 0.000690169i \(0.999780\pi\)
\(702\) 0 0
\(703\) 18.9478 0.714630
\(704\) −11.5243 + 33.0566i −0.434339 + 1.24587i
\(705\) 0 0
\(706\) −13.7371 7.36678i −0.517002 0.277252i
\(707\) 5.24231 3.02665i 0.197157 0.113829i
\(708\) 0 0
\(709\) 13.6359 23.6181i 0.512109 0.886998i −0.487793 0.872959i \(-0.662198\pi\)
0.999901 0.0140387i \(-0.00446880\pi\)
\(710\) 9.53265 + 24.8550i 0.357754 + 0.932792i
\(711\) 0 0
\(712\) 19.6376 1.85289i 0.735950 0.0694398i
\(713\) 0.244036 0.422683i 0.00913923 0.0158296i
\(714\) 0 0
\(715\) 13.2260 + 38.0085i 0.494625 + 1.42144i
\(716\) 37.2525 2.33944i 1.39219 0.0874288i
\(717\) 0 0
\(718\) −1.21014 38.5778i −0.0451619 1.43971i
\(719\) −7.73269 −0.288381 −0.144190 0.989550i \(-0.546058\pi\)
−0.144190 + 0.989550i \(0.546058\pi\)
\(720\) 0 0
\(721\) 5.20978 0.194022
\(722\) −0.670832 21.3853i −0.0249658 0.795880i
\(723\) 0 0
\(724\) 39.7779 2.49803i 1.47833 0.0928385i
\(725\) 25.8881 3.81046i 0.961460 0.141517i
\(726\) 0 0
\(727\) 8.24957 14.2887i 0.305960 0.529938i −0.671515 0.740991i \(-0.734356\pi\)
0.977475 + 0.211053i \(0.0676894\pi\)
\(728\) 15.4598 1.45869i 0.572977 0.0540627i
\(729\) 0 0
\(730\) 21.4995 8.24571i 0.795733 0.305188i
\(731\) −12.4150 + 21.5035i −0.459187 + 0.795335i
\(732\) 0 0
\(733\) 37.1399 21.4427i 1.37179 0.792006i 0.380641 0.924723i \(-0.375703\pi\)
0.991154 + 0.132717i \(0.0423702\pi\)
\(734\) −39.2447 21.0457i −1.44855 0.776811i
\(735\) 0 0
\(736\) −0.359632 0.444370i −0.0132562 0.0163797i
\(737\) −1.89303 −0.0697307
\(738\) 0 0
\(739\) 3.04457i 0.111996i −0.998431 0.0559981i \(-0.982166\pi\)
0.998431 0.0559981i \(-0.0178341\pi\)
\(740\) −5.61617 13.3734i −0.206454 0.491615i
\(741\) 0 0
\(742\) −4.61632 2.47559i −0.169470 0.0908817i
\(743\) 35.0211 20.2194i 1.28480 0.741779i 0.307078 0.951684i \(-0.400649\pi\)
0.977722 + 0.209905i \(0.0673155\pi\)
\(744\) 0 0
\(745\) 14.9332 17.2921i 0.547109 0.633532i
\(746\) −17.4658 28.1730i −0.639467 1.03149i
\(747\) 0 0
\(748\) −25.1208 + 50.5910i −0.918509 + 1.84979i
\(749\) 5.76668 + 3.32940i 0.210710 + 0.121653i
\(750\) 0 0
\(751\) −12.0862 + 6.97795i −0.441030 + 0.254629i −0.704034 0.710166i \(-0.748620\pi\)
0.263004 + 0.964795i \(0.415287\pi\)
\(752\) 12.8052 + 5.38626i 0.466957 + 0.196417i
\(753\) 0 0
\(754\) −0.954383 30.4246i −0.0347566 1.10800i
\(755\) 33.0939 + 6.32101i 1.20441 + 0.230045i
\(756\) 0 0
\(757\) 31.7859i 1.15528i 0.816293 + 0.577639i \(0.196026\pi\)
−0.816293 + 0.577639i \(0.803974\pi\)
\(758\) 16.3303 0.512261i 0.593142 0.0186061i
\(759\) 0 0
\(760\) −33.6008 + 15.3672i −1.21883 + 0.557426i
\(761\) 21.6921 12.5240i 0.786339 0.453993i −0.0523332 0.998630i \(-0.516666\pi\)
0.838672 + 0.544637i \(0.183332\pi\)
\(762\) 0 0
\(763\) −3.32832 + 5.76482i −0.120493 + 0.208700i
\(764\) 19.2535 38.7748i 0.696568 1.40282i
\(765\) 0 0
\(766\) −19.5333 31.5080i −0.705766 1.13843i
\(767\) 9.78196 + 5.64762i 0.353206 + 0.203924i
\(768\) 0 0
\(769\) −1.59810 2.76799i −0.0576290 0.0998164i 0.835772 0.549077i \(-0.185021\pi\)
−0.893401 + 0.449261i \(0.851687\pi\)
\(770\) 11.6291 14.3522i 0.419084 0.517218i
\(771\) 0 0
\(772\) 17.3251 11.5079i 0.623543 0.414178i
\(773\) −26.8609 −0.966121 −0.483060 0.875587i \(-0.660475\pi\)
−0.483060 + 0.875587i \(0.660475\pi\)
\(774\) 0 0
\(775\) −8.90011 + 22.4485i −0.319701 + 0.806372i
\(776\) −2.83723 + 6.19422i −0.101851 + 0.222360i
\(777\) 0 0
\(778\) −1.06923 + 1.99382i −0.0383336 + 0.0714820i
\(779\) 11.8226 + 20.4773i 0.423588 + 0.733676i
\(780\) 0 0
\(781\) 18.4187 31.9022i 0.659074 1.14155i
\(782\) −0.486003 0.783943i −0.0173794 0.0280337i
\(783\) 0 0
\(784\) 12.6156 + 16.6284i 0.450557 + 0.593870i
\(785\) −4.68215 + 5.42177i −0.167113 + 0.193511i
\(786\) 0 0
\(787\) 16.8518 + 29.1883i 0.600703 + 1.04045i 0.992715 + 0.120488i \(0.0384461\pi\)
−0.392011 + 0.919960i \(0.628221\pi\)
\(788\) −16.2822 + 1.02251i −0.580030 + 0.0364255i
\(789\) 0 0
\(790\) 1.48076 9.33156i 0.0526830 0.332002i
\(791\) −27.2469 −0.968787
\(792\) 0 0
\(793\) 8.58910i 0.305008i
\(794\) 36.6629 1.15007i 1.30112 0.0408145i
\(795\) 0 0
\(796\) −1.15095 18.3273i −0.0407942 0.649596i
\(797\) 14.4698 + 25.0624i 0.512546 + 0.887755i 0.999894 + 0.0145477i \(0.00463085\pi\)
−0.487348 + 0.873208i \(0.662036\pi\)
\(798\) 0 0
\(799\) 19.4113 + 11.2071i 0.686724 + 0.396480i
\(800\) 20.8055 + 19.1606i 0.735586 + 0.677431i
\(801\) 0 0
\(802\) 18.5323 + 29.8934i 0.654398 + 1.05557i
\(803\) −27.5953 15.9322i −0.973817 0.562233i
\(804\) 0 0
\(805\) 0.0991340 + 0.284888i 0.00349401 + 0.0100410i
\(806\) 24.7562 + 13.2760i 0.872002 + 0.467628i
\(807\) 0 0
\(808\) 5.34126 11.6610i 0.187905 0.410233i
\(809\) 14.9996i 0.527358i 0.964610 + 0.263679i \(0.0849360\pi\)
−0.964610 + 0.263679i \(0.915064\pi\)
\(810\) 0 0
\(811\) 17.4677i 0.613376i −0.951810 0.306688i \(-0.900779\pi\)
0.951810 0.306688i \(-0.0992207\pi\)
\(812\) −11.6384 + 7.73063i −0.408429 + 0.271292i
\(813\) 0 0
\(814\) −9.48597 + 17.6888i −0.332483 + 0.619993i
\(815\) 22.4242 7.80307i 0.785487 0.273330i
\(816\) 0 0
\(817\) 19.4647 + 11.2379i 0.680984 + 0.393166i
\(818\) 25.6907 15.9269i 0.898254 0.556870i
\(819\) 0 0
\(820\) 10.9487 14.4139i 0.382344 0.503355i
\(821\) −15.8290 9.13886i −0.552435 0.318948i 0.197669 0.980269i \(-0.436663\pi\)
−0.750103 + 0.661320i \(0.769996\pi\)
\(822\) 0 0
\(823\) 14.6369 + 25.3518i 0.510210 + 0.883710i 0.999930 + 0.0118300i \(0.00376570\pi\)
−0.489720 + 0.871880i \(0.662901\pi\)
\(824\) 8.99912 6.39301i 0.313499 0.222711i
\(825\) 0 0
\(826\) −0.162554 5.18204i −0.00565598 0.180306i
\(827\) 24.5270i 0.852886i 0.904514 + 0.426443i \(0.140233\pi\)
−0.904514 + 0.426443i \(0.859767\pi\)
\(828\) 0 0
\(829\) −42.2094 −1.46599 −0.732996 0.680233i \(-0.761879\pi\)
−0.732996 + 0.680233i \(0.761879\pi\)
\(830\) 6.64381 41.8685i 0.230610 1.45328i
\(831\) 0 0
\(832\) 24.9145 21.4906i 0.863754 0.745053i
\(833\) 16.8386 + 29.1653i 0.583422 + 1.01052i
\(834\) 0 0
\(835\) 18.4161 21.3252i 0.637315 0.737988i
\(836\) 45.7944 + 22.7391i 1.58383 + 0.786448i
\(837\) 0 0
\(838\) −7.52011 + 4.66207i −0.259778 + 0.161048i
\(839\) −18.2179 + 31.5544i −0.628953 + 1.08938i 0.358810 + 0.933411i \(0.383183\pi\)
−0.987762 + 0.155967i \(0.950151\pi\)
\(840\) 0 0
\(841\) −0.805742 1.39559i −0.0277842 0.0481237i
\(842\) 38.2865 + 20.5319i 1.31944 + 0.707575i
\(843\) 0 0
\(844\) 17.0650 11.3351i 0.587400 0.390170i
\(845\) 1.64250 8.59936i 0.0565036 0.295827i
\(846\) 0 0
\(847\) −10.8783 −0.373783
\(848\) −11.0118 + 1.38855i −0.378148 + 0.0476830i
\(849\) 0 0
\(850\) 29.4379 + 34.8722i 1.00971 + 1.19610i
\(851\) −0.163882 0.283852i −0.00561781 0.00973033i
\(852\) 0 0
\(853\) 27.1128 + 15.6536i 0.928324 + 0.535968i 0.886281 0.463148i \(-0.153280\pi\)
0.0420430 + 0.999116i \(0.486613\pi\)
\(854\) 3.35078 2.07731i 0.114661 0.0710839i
\(855\) 0 0
\(856\) 14.0466 1.32536i 0.480104 0.0452998i
\(857\) 4.60165 7.97029i 0.157189 0.272260i −0.776665 0.629914i \(-0.783090\pi\)
0.933854 + 0.357654i \(0.116423\pi\)
\(858\) 0 0
\(859\) −4.62482 + 2.67014i −0.157797 + 0.0911040i −0.576819 0.816872i \(-0.695706\pi\)
0.419022 + 0.907976i \(0.362373\pi\)
\(860\) 2.16238 17.0692i 0.0737365 0.582053i
\(861\) 0 0
\(862\) 1.55656 + 49.6214i 0.0530168 + 1.69011i
\(863\) 19.0360i 0.647992i 0.946058 + 0.323996i \(0.105026\pi\)
−0.946058 + 0.323996i \(0.894974\pi\)
\(864\) 0 0
\(865\) −0.720019 + 3.76969i −0.0244814 + 0.128173i
\(866\) 34.6372 1.08653i 1.17702 0.0369217i
\(867\) 0 0
\(868\) −0.808150 12.8688i −0.0274304 0.436794i
\(869\) −11.3230 + 6.53733i −0.384106 + 0.221764i
\(870\) 0 0
\(871\) 1.54082 + 0.889593i 0.0522087 + 0.0301427i
\(872\) 1.32493 + 14.0421i 0.0448678 + 0.475526i
\(873\) 0 0
\(874\) −0.709616 + 0.439924i −0.0240031 + 0.0148807i
\(875\) −6.90516 13.2309i −0.233437 0.447287i
\(876\) 0 0
\(877\) −21.1121 + 12.1891i −0.712904 + 0.411595i −0.812135 0.583469i \(-0.801695\pi\)
0.0992316 + 0.995064i \(0.468362\pi\)
\(878\) 11.8650 22.1251i 0.400425 0.746686i
\(879\) 0 0
\(880\) 2.47572 39.0616i 0.0834565 1.31677i
\(881\) 42.8577i 1.44391i −0.691939 0.721956i \(-0.743243\pi\)
0.691939 0.721956i \(-0.256757\pi\)
\(882\) 0 0
\(883\) 28.8663 0.971427 0.485713 0.874118i \(-0.338560\pi\)
0.485713 + 0.874118i \(0.338560\pi\)
\(884\) 44.2212 29.3732i 1.48732 0.987927i
\(885\) 0 0
\(886\) −4.69779 + 8.76013i −0.157825 + 0.294302i
\(887\) 13.1498 7.59206i 0.441528 0.254917i −0.262717 0.964873i \(-0.584619\pi\)
0.704246 + 0.709956i \(0.251285\pi\)
\(888\) 0 0
\(889\) −12.8037 + 22.1767i −0.429424 + 0.743784i
\(890\) −20.5906 + 7.89710i −0.690197 + 0.264711i
\(891\) 0 0
\(892\) 20.6795 41.6465i 0.692400 1.39443i
\(893\) 10.1446 17.5709i 0.339475 0.587989i
\(894\) 0 0
\(895\) −39.4136 + 13.7149i −1.31745 + 0.458440i
\(896\) −14.4096 4.52205i −0.481390 0.151071i
\(897\) 0 0
\(898\) −23.5713 + 0.739402i −0.786584 + 0.0246742i
\(899\) −25.2757 −0.842990
\(900\) 0 0
\(901\) −17.9081 −0.596605
\(902\) −25.0355 + 0.785334i −0.833592 + 0.0261488i
\(903\) 0 0
\(904\) −47.0649 + 33.4351i −1.56536 + 1.11204i
\(905\) −42.0855 + 14.6447i −1.39897 + 0.486806i
\(906\) 0 0
\(907\) −13.5599 + 23.4865i −0.450250 + 0.779856i −0.998401 0.0565230i \(-0.981999\pi\)
0.548151 + 0.836379i \(0.315332\pi\)
\(908\) 30.4793 + 15.1344i 1.01149 + 0.502254i
\(909\) 0 0
\(910\) −16.2100 + 6.21702i −0.537356 + 0.206092i
\(911\) −3.77888 + 6.54521i −0.125200 + 0.216852i −0.921811 0.387640i \(-0.873291\pi\)
0.796611 + 0.604492i \(0.206624\pi\)
\(912\) 0 0
\(913\) −50.8036 + 29.3315i −1.68135 + 0.970729i
\(914\) 19.8490 37.0131i 0.656546 1.22428i
\(915\) 0 0
\(916\) 1.66140 + 2.50124i 0.0548943 + 0.0826431i
\(917\) 22.4643 0.741836
\(918\) 0 0
\(919\) 33.7674i 1.11388i 0.830552 + 0.556942i \(0.188025\pi\)
−0.830552 + 0.556942i \(0.811975\pi\)
\(920\) 0.520830 + 0.370453i 0.0171713 + 0.0122135i
\(921\) 0 0
\(922\) 9.46531 17.6503i 0.311723 0.581281i
\(923\) −29.9836 + 17.3110i −0.986923 + 0.569800i
\(924\) 0 0
\(925\) 10.0671 + 12.7137i 0.331005 + 0.418025i
\(926\) −6.86375 + 4.25516i −0.225557 + 0.139833i
\(927\) 0 0
\(928\) −10.6173 + 27.6352i −0.348529 + 0.907171i
\(929\) −43.7091 25.2355i −1.43405 0.827949i −0.436622 0.899645i \(-0.643825\pi\)
−0.997427 + 0.0716964i \(0.977159\pi\)
\(930\) 0 0
\(931\) 26.4001 15.2421i 0.865227 0.499539i
\(932\) −27.0433 + 1.69830i −0.885833 + 0.0556298i
\(933\) 0 0
\(934\) 26.5697 0.833458i 0.869386 0.0272716i
\(935\) 11.8479 62.0303i 0.387469 2.02861i
\(936\) 0 0
\(937\) 43.7549i 1.42941i −0.699425 0.714706i \(-0.746561\pi\)
0.699425 0.714706i \(-0.253439\pi\)
\(938\) −0.0256049 0.816256i −0.000836031 0.0266517i
\(939\) 0 0
\(940\) −15.4084 1.95200i −0.502568 0.0636671i
\(941\) 12.5420 7.24115i 0.408859 0.236055i −0.281441 0.959579i \(-0.590812\pi\)
0.690299 + 0.723524i \(0.257479\pi\)
\(942\) 0 0
\(943\) 0.204510 0.354222i 0.00665977 0.0115351i
\(944\) −6.63975 8.75173i −0.216106 0.284844i
\(945\) 0 0
\(946\) −20.2360 + 12.5452i −0.657929 + 0.407881i
\(947\) 32.3885 + 18.6995i 1.05249 + 0.607653i 0.923344 0.383973i \(-0.125445\pi\)
0.129141 + 0.991626i \(0.458778\pi\)
\(948\) 0 0
\(949\) 14.9740 + 25.9357i 0.486077 + 0.841910i
\(950\) 31.5659 26.6468i 1.02413 0.864538i
\(951\) 0 0
\(952\) −22.1541 10.1476i −0.718019 0.328884i
\(953\) −22.8733 −0.740937 −0.370469 0.928845i \(-0.620803\pi\)
−0.370469 + 0.928845i \(0.620803\pi\)
\(954\) 0 0
\(955\) −9.08068 + 47.5423i −0.293844 + 1.53843i
\(956\) −16.2077 24.4006i −0.524194 0.789172i
\(957\) 0 0
\(958\) 37.9030 + 20.3262i 1.22459 + 0.656711i
\(959\) 4.00123 + 6.93034i 0.129207 + 0.223792i
\(960\) 0 0
\(961\) −3.83710 + 6.64606i −0.123777 + 0.214389i
\(962\) 16.0336 9.93996i 0.516943 0.320477i
\(963\) 0 0
\(964\) 21.7492 43.8009i 0.700496 1.41073i
\(965\) −15.1986 + 17.5994i −0.489260 + 0.566545i
\(966\) 0 0
\(967\) −29.1950 50.5672i −0.938848 1.62613i −0.767625 0.640899i \(-0.778562\pi\)
−0.171223 0.985232i \(-0.554772\pi\)
\(968\) −18.7906 + 13.3489i −0.603954 + 0.429051i
\(969\) 0 0
\(970\) 1.19379 7.52314i 0.0383304 0.241553i
\(971\) −35.2792 −1.13216 −0.566082 0.824349i \(-0.691541\pi\)
−0.566082 + 0.824349i \(0.691541\pi\)
\(972\) 0 0
\(973\) 0.317795i 0.0101881i
\(974\) −0.163123 5.20018i −0.00522680 0.166624i
\(975\) 0 0
\(976\) 3.23888 7.70004i 0.103674 0.246472i
\(977\) 4.78940 + 8.29548i 0.153226 + 0.265396i 0.932412 0.361398i \(-0.117700\pi\)
−0.779185 + 0.626794i \(0.784367\pi\)
\(978\) 0 0
\(979\) 26.4286 + 15.2586i 0.844662 + 0.487666i
\(980\) −18.5829 14.1154i −0.593609 0.450900i
\(981\) 0 0
\(982\) 21.7718 13.4974i 0.694767 0.430719i
\(983\) 27.2657 + 15.7419i 0.869641 + 0.502088i 0.867229 0.497910i \(-0.165899\pi\)
0.00241215 + 0.999997i \(0.499232\pi\)
\(984\) 0 0
\(985\) 17.2268 5.99448i 0.548890 0.191000i
\(986\) −22.5745 + 42.0955i −0.718919 + 1.34059i
\(987\) 0 0
\(988\) −26.5882 40.0285i −0.845885 1.27348i
\(989\) 0.388795i 0.0123629i
\(990\) 0 0
\(991\) 30.7819i 0.977818i −0.872335 0.488909i \(-0.837395\pi\)
0.872335 0.488909i \(-0.162605\pi\)
\(992\) −17.1874 21.2372i −0.545702 0.674281i
\(993\) 0 0
\(994\) 14.0050 + 7.51047i 0.444213 + 0.238218i
\(995\) 6.74742 + 19.3905i 0.213908 + 0.614721i
\(996\) 0 0
\(997\) −29.1919 16.8539i −0.924516 0.533770i −0.0394432 0.999222i \(-0.512558\pi\)
−0.885073 + 0.465452i \(0.845892\pi\)
\(998\) −17.1647 27.6873i −0.543338 0.876428i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.359.13 48
3.2 odd 2 180.2.n.d.119.12 yes 48
4.3 odd 2 inner 540.2.n.d.359.5 48
5.4 even 2 inner 540.2.n.d.359.12 48
9.4 even 3 180.2.n.d.59.5 48
9.5 odd 6 inner 540.2.n.d.179.20 48
12.11 even 2 180.2.n.d.119.20 yes 48
15.2 even 4 900.2.r.g.551.24 48
15.8 even 4 900.2.r.g.551.1 48
15.14 odd 2 180.2.n.d.119.13 yes 48
20.19 odd 2 inner 540.2.n.d.359.20 48
36.23 even 6 inner 540.2.n.d.179.12 48
36.31 odd 6 180.2.n.d.59.13 yes 48
45.4 even 6 180.2.n.d.59.20 yes 48
45.13 odd 12 900.2.r.g.851.8 48
45.14 odd 6 inner 540.2.n.d.179.5 48
45.22 odd 12 900.2.r.g.851.17 48
60.23 odd 4 900.2.r.g.551.8 48
60.47 odd 4 900.2.r.g.551.17 48
60.59 even 2 180.2.n.d.119.5 yes 48
180.59 even 6 inner 540.2.n.d.179.13 48
180.67 even 12 900.2.r.g.851.24 48
180.103 even 12 900.2.r.g.851.1 48
180.139 odd 6 180.2.n.d.59.12 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.5 48 9.4 even 3
180.2.n.d.59.12 yes 48 180.139 odd 6
180.2.n.d.59.13 yes 48 36.31 odd 6
180.2.n.d.59.20 yes 48 45.4 even 6
180.2.n.d.119.5 yes 48 60.59 even 2
180.2.n.d.119.12 yes 48 3.2 odd 2
180.2.n.d.119.13 yes 48 15.14 odd 2
180.2.n.d.119.20 yes 48 12.11 even 2
540.2.n.d.179.5 48 45.14 odd 6 inner
540.2.n.d.179.12 48 36.23 even 6 inner
540.2.n.d.179.13 48 180.59 even 6 inner
540.2.n.d.179.20 48 9.5 odd 6 inner
540.2.n.d.359.5 48 4.3 odd 2 inner
540.2.n.d.359.12 48 5.4 even 2 inner
540.2.n.d.359.13 48 1.1 even 1 trivial
540.2.n.d.359.20 48 20.19 odd 2 inner
900.2.r.g.551.1 48 15.8 even 4
900.2.r.g.551.8 48 60.23 odd 4
900.2.r.g.551.17 48 60.47 odd 4
900.2.r.g.551.24 48 15.2 even 4
900.2.r.g.851.1 48 180.103 even 12
900.2.r.g.851.8 48 45.13 odd 12
900.2.r.g.851.17 48 45.22 odd 12
900.2.r.g.851.24 48 180.67 even 12