Properties

Label 900.2.r.g.851.8
Level $900$
Weight $2$
Character 900.851
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 851.8
Character \(\chi\) \(=\) 900.851
Dual form 900.2.r.g.551.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.668359 + 1.24631i) q^{2} +(-0.461412 - 1.66946i) q^{3} +(-1.10659 - 1.66597i) q^{4} +(2.38906 + 0.540736i) q^{6} +(1.15604 - 0.667441i) q^{7} +(2.81592 - 0.265693i) q^{8} +(-2.57420 + 1.54062i) q^{9} +(2.18799 + 3.78971i) q^{11} +(-2.27068 + 2.61611i) q^{12} +(-2.05641 + 3.56180i) q^{13} +(0.0591892 + 1.88688i) q^{14} +(-1.55091 + 3.68710i) q^{16} -6.45392i q^{17} +(-0.199603 - 4.23794i) q^{18} +5.84202i q^{19} +(-1.64768 - 1.62200i) q^{21} +(-6.18554 + 0.194033i) q^{22} +(-0.0505284 + 0.0875178i) q^{23} +(-1.74286 - 4.57847i) q^{24} +(-3.06470 - 4.94349i) q^{26} +(3.75977 + 3.58666i) q^{27} +(-2.39120 - 1.18735i) q^{28} +(4.53226 - 2.61670i) q^{29} +(4.18262 + 2.41484i) q^{31} +(-3.55871 - 4.39722i) q^{32} +(5.31721 - 5.40139i) q^{33} +(8.04361 + 4.31354i) q^{34} +(5.41521 + 2.58370i) q^{36} +3.24337 q^{37} +(-7.28098 - 3.90457i) q^{38} +(6.89514 + 1.78964i) q^{39} +(3.50518 + 2.02372i) q^{41} +(3.12276 - 0.969443i) q^{42} +(3.33185 - 1.92364i) q^{43} +(3.89233 - 7.83880i) q^{44} +(-0.0753035 - 0.121468i) q^{46} +(1.73649 + 3.00768i) q^{47} +(6.87107 + 0.887912i) q^{48} +(-2.60904 + 4.51900i) q^{49} +(-10.7746 + 2.97792i) q^{51} +(8.20946 - 0.515549i) q^{52} -2.77476i q^{53} +(-6.98298 + 2.28867i) q^{54} +(3.07799 - 2.18661i) q^{56} +(9.75302 - 2.69558i) q^{57} +(0.232051 + 7.39751i) q^{58} +(1.37318 - 2.37841i) q^{59} +(1.04419 + 1.80858i) q^{61} +(-5.80514 + 3.59888i) q^{62} +(-1.94761 + 3.49915i) q^{63} +(7.85881 - 1.49634i) q^{64} +(3.17801 + 10.2370i) q^{66} +(0.374638 + 0.216298i) q^{67} +(-10.7520 + 7.14186i) q^{68} +(0.169422 + 0.0439735i) q^{69} +8.41810 q^{71} +(-6.83941 + 5.02220i) q^{72} +7.28163 q^{73} +(-2.16773 + 4.04225i) q^{74} +(9.73262 - 6.46473i) q^{76} +(5.05882 + 2.92071i) q^{77} +(-6.83888 + 7.39739i) q^{78} +(-2.58753 + 1.49391i) q^{79} +(4.25299 - 7.93171i) q^{81} +(-4.86490 + 3.01598i) q^{82} +(6.70282 + 11.6096i) q^{83} +(-0.878898 + 4.53988i) q^{84} +(0.170590 + 5.43821i) q^{86} +(-6.45972 - 6.35905i) q^{87} +(7.16812 + 10.0902i) q^{88} -6.97377i q^{89} +5.49013i q^{91} +(0.201716 - 0.0126677i) q^{92} +(2.10157 - 8.09696i) q^{93} +(-4.90911 + 0.153993i) q^{94} +(-5.69896 + 7.97006i) q^{96} +(-1.20440 - 2.08608i) q^{97} +(-3.88831 - 6.27200i) q^{98} +(-11.4708 - 6.38462i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.668359 + 1.24631i −0.472601 + 0.881276i
\(3\) −0.461412 1.66946i −0.266396 0.963864i
\(4\) −1.10659 1.66597i −0.553296 0.832985i
\(5\) 0 0
\(6\) 2.38906 + 0.540736i 0.975329 + 0.220755i
\(7\) 1.15604 0.667441i 0.436943 0.252269i −0.265357 0.964150i \(-0.585490\pi\)
0.702300 + 0.711881i \(0.252157\pi\)
\(8\) 2.81592 0.265693i 0.995578 0.0939368i
\(9\) −2.57420 + 1.54062i −0.858066 + 0.513539i
\(10\) 0 0
\(11\) 2.18799 + 3.78971i 0.659705 + 1.14264i 0.980692 + 0.195558i \(0.0626519\pi\)
−0.320987 + 0.947083i \(0.604015\pi\)
\(12\) −2.27068 + 2.61611i −0.655488 + 0.755206i
\(13\) −2.05641 + 3.56180i −0.570345 + 0.987867i 0.426185 + 0.904636i \(0.359857\pi\)
−0.996530 + 0.0832309i \(0.973476\pi\)
\(14\) 0.0591892 + 1.88688i 0.0158190 + 0.504290i
\(15\) 0 0
\(16\) −1.55091 + 3.68710i −0.387727 + 0.921774i
\(17\) 6.45392i 1.56531i −0.622458 0.782653i \(-0.713866\pi\)
0.622458 0.782653i \(-0.286134\pi\)
\(18\) −0.199603 4.23794i −0.0470468 0.998893i
\(19\) 5.84202i 1.34025i 0.742248 + 0.670125i \(0.233760\pi\)
−0.742248 + 0.670125i \(0.766240\pi\)
\(20\) 0 0
\(21\) −1.64768 1.62200i −0.359553 0.353950i
\(22\) −6.18554 + 0.194033i −1.31876 + 0.0413679i
\(23\) −0.0505284 + 0.0875178i −0.0105359 + 0.0182487i −0.871245 0.490848i \(-0.836687\pi\)
0.860709 + 0.509097i \(0.170020\pi\)
\(24\) −1.74286 4.57847i −0.355761 0.934577i
\(25\) 0 0
\(26\) −3.06470 4.94349i −0.601038 0.969499i
\(27\) 3.75977 + 3.58666i 0.723567 + 0.690254i
\(28\) −2.39120 1.18735i −0.451895 0.224387i
\(29\) 4.53226 2.61670i 0.841620 0.485909i −0.0161948 0.999869i \(-0.505155\pi\)
0.857814 + 0.513960i \(0.171822\pi\)
\(30\) 0 0
\(31\) 4.18262 + 2.41484i 0.751222 + 0.433718i 0.826135 0.563472i \(-0.190535\pi\)
−0.0749136 + 0.997190i \(0.523868\pi\)
\(32\) −3.55871 4.39722i −0.629097 0.777327i
\(33\) 5.31721 5.40139i 0.925608 0.940261i
\(34\) 8.04361 + 4.31354i 1.37947 + 0.739766i
\(35\) 0 0
\(36\) 5.41521 + 2.58370i 0.902535 + 0.430617i
\(37\) 3.24337 0.533206 0.266603 0.963806i \(-0.414099\pi\)
0.266603 + 0.963806i \(0.414099\pi\)
\(38\) −7.28098 3.90457i −1.18113 0.633404i
\(39\) 6.89514 + 1.78964i 1.10411 + 0.286571i
\(40\) 0 0
\(41\) 3.50518 + 2.02372i 0.547417 + 0.316051i 0.748079 0.663609i \(-0.230976\pi\)
−0.200663 + 0.979660i \(0.564310\pi\)
\(42\) 3.12276 0.969443i 0.481853 0.149588i
\(43\) 3.33185 1.92364i 0.508102 0.293353i −0.223951 0.974600i \(-0.571896\pi\)
0.732053 + 0.681248i \(0.238562\pi\)
\(44\) 3.89233 7.83880i 0.586792 1.18174i
\(45\) 0 0
\(46\) −0.0753035 0.121468i −0.0111029 0.0179094i
\(47\) 1.73649 + 3.00768i 0.253292 + 0.438715i 0.964430 0.264337i \(-0.0851532\pi\)
−0.711138 + 0.703053i \(0.751820\pi\)
\(48\) 6.87107 + 0.887912i 0.991754 + 0.128159i
\(49\) −2.60904 + 4.51900i −0.372721 + 0.645571i
\(50\) 0 0
\(51\) −10.7746 + 2.97792i −1.50874 + 0.416992i
\(52\) 8.20946 0.515549i 1.13845 0.0714938i
\(53\) 2.77476i 0.381143i −0.981673 0.190571i \(-0.938966\pi\)
0.981673 0.190571i \(-0.0610340\pi\)
\(54\) −6.98298 + 2.28867i −0.950263 + 0.311448i
\(55\) 0 0
\(56\) 3.07799 2.18661i 0.411313 0.292199i
\(57\) 9.75302 2.69558i 1.29182 0.357038i
\(58\) 0.232051 + 7.39751i 0.0304698 + 0.971341i
\(59\) 1.37318 2.37841i 0.178772 0.309642i −0.762688 0.646766i \(-0.776121\pi\)
0.941460 + 0.337124i \(0.109454\pi\)
\(60\) 0 0
\(61\) 1.04419 + 1.80858i 0.133694 + 0.231566i 0.925098 0.379729i \(-0.123983\pi\)
−0.791404 + 0.611294i \(0.790649\pi\)
\(62\) −5.80514 + 3.59888i −0.737254 + 0.457058i
\(63\) −1.94761 + 3.49915i −0.245376 + 0.440851i
\(64\) 7.85881 1.49634i 0.982352 0.187043i
\(65\) 0 0
\(66\) 3.17801 + 10.2370i 0.391186 + 1.26009i
\(67\) 0.374638 + 0.216298i 0.0457694 + 0.0264250i 0.522710 0.852511i \(-0.324921\pi\)
−0.476941 + 0.878935i \(0.658254\pi\)
\(68\) −10.7520 + 7.14186i −1.30388 + 0.866078i
\(69\) 0.169422 + 0.0439735i 0.0203960 + 0.00529379i
\(70\) 0 0
\(71\) 8.41810 0.999044 0.499522 0.866301i \(-0.333509\pi\)
0.499522 + 0.866301i \(0.333509\pi\)
\(72\) −6.83941 + 5.02220i −0.806032 + 0.591872i
\(73\) 7.28163 0.852250 0.426125 0.904664i \(-0.359878\pi\)
0.426125 + 0.904664i \(0.359878\pi\)
\(74\) −2.16773 + 4.04225i −0.251994 + 0.469902i
\(75\) 0 0
\(76\) 9.73262 6.46473i 1.11641 0.741555i
\(77\) 5.05882 + 2.92071i 0.576507 + 0.332846i
\(78\) −6.83888 + 7.39739i −0.774351 + 0.837589i
\(79\) −2.58753 + 1.49391i −0.291120 + 0.168078i −0.638447 0.769666i \(-0.720423\pi\)
0.347327 + 0.937744i \(0.387089\pi\)
\(80\) 0 0
\(81\) 4.25299 7.93171i 0.472555 0.881301i
\(82\) −4.86490 + 3.01598i −0.537238 + 0.333059i
\(83\) 6.70282 + 11.6096i 0.735730 + 1.27432i 0.954402 + 0.298524i \(0.0964943\pi\)
−0.218672 + 0.975798i \(0.570172\pi\)
\(84\) −0.878898 + 4.53988i −0.0958957 + 0.495341i
\(85\) 0 0
\(86\) 0.170590 + 5.43821i 0.0183952 + 0.586417i
\(87\) −6.45972 6.35905i −0.692555 0.681762i
\(88\) 7.16812 + 10.0902i 0.764124 + 1.07562i
\(89\) 6.97377i 0.739218i −0.929187 0.369609i \(-0.879492\pi\)
0.929187 0.369609i \(-0.120508\pi\)
\(90\) 0 0
\(91\) 5.49013i 0.575522i
\(92\) 0.201716 0.0126677i 0.0210304 0.00132070i
\(93\) 2.10157 8.09696i 0.217922 0.839616i
\(94\) −4.90911 + 0.153993i −0.506336 + 0.0158831i
\(95\) 0 0
\(96\) −5.69896 + 7.97006i −0.581648 + 0.813441i
\(97\) −1.20440 2.08608i −0.122288 0.211809i 0.798382 0.602152i \(-0.205690\pi\)
−0.920670 + 0.390343i \(0.872356\pi\)
\(98\) −3.88831 6.27200i −0.392778 0.633568i
\(99\) −11.4708 6.38462i −1.15286 0.641678i
\(100\) 0 0
\(101\) −3.92717 + 2.26735i −0.390768 + 0.225610i −0.682493 0.730892i \(-0.739104\pi\)
0.291725 + 0.956502i \(0.405771\pi\)
\(102\) 3.48987 15.4188i 0.345549 1.52669i
\(103\) 3.37992 + 1.95140i 0.333034 + 0.192277i 0.657187 0.753727i \(-0.271746\pi\)
−0.324153 + 0.946005i \(0.605079\pi\)
\(104\) −4.84434 + 10.5761i −0.475026 + 1.03708i
\(105\) 0 0
\(106\) 3.45822 + 1.85454i 0.335892 + 0.180129i
\(107\) 4.98830 0.482237 0.241118 0.970496i \(-0.422486\pi\)
0.241118 + 0.970496i \(0.422486\pi\)
\(108\) 1.81475 10.2326i 0.174624 0.984635i
\(109\) 4.98669 0.477638 0.238819 0.971064i \(-0.423240\pi\)
0.238819 + 0.971064i \(0.423240\pi\)
\(110\) 0 0
\(111\) −1.49653 5.41467i −0.142044 0.513938i
\(112\) 0.668004 + 5.29758i 0.0631204 + 0.500574i
\(113\) −17.6768 10.2057i −1.66290 0.960073i −0.971322 0.237767i \(-0.923584\pi\)
−0.691574 0.722306i \(-0.743082\pi\)
\(114\) −3.15899 + 13.9569i −0.295866 + 1.30719i
\(115\) 0 0
\(116\) −9.37471 4.65499i −0.870420 0.432205i
\(117\) −0.193775 12.3369i −0.0179145 1.14055i
\(118\) 2.04647 + 3.30104i 0.188393 + 0.303885i
\(119\) −4.30762 7.46101i −0.394879 0.683950i
\(120\) 0 0
\(121\) −4.07462 + 7.05746i −0.370420 + 0.641587i
\(122\) −2.95195 + 0.0925992i −0.267257 + 0.00838354i
\(123\) 1.76118 6.78552i 0.158800 0.611830i
\(124\) −0.605409 9.64037i −0.0543673 0.865730i
\(125\) 0 0
\(126\) −3.05933 4.76602i −0.272547 0.424591i
\(127\) 19.1833i 1.70224i 0.524968 + 0.851122i \(0.324077\pi\)
−0.524968 + 0.851122i \(0.675923\pi\)
\(128\) −3.38760 + 10.7946i −0.299424 + 0.954120i
\(129\) −4.74880 4.67479i −0.418108 0.411593i
\(130\) 0 0
\(131\) 8.41433 14.5740i 0.735163 1.27334i −0.219488 0.975615i \(-0.570439\pi\)
0.954652 0.297725i \(-0.0962279\pi\)
\(132\) −14.8825 2.88119i −1.29536 0.250775i
\(133\) 3.89920 + 6.75362i 0.338104 + 0.585613i
\(134\) −0.519967 + 0.322352i −0.0449183 + 0.0278470i
\(135\) 0 0
\(136\) −1.71477 18.1737i −0.147040 1.55839i
\(137\) −5.19172 + 2.99744i −0.443559 + 0.256089i −0.705106 0.709102i \(-0.749101\pi\)
0.261547 + 0.965191i \(0.415767\pi\)
\(138\) −0.168040 + 0.181763i −0.0143045 + 0.0154727i
\(139\) 0.206175 + 0.119035i 0.0174875 + 0.0100964i 0.508718 0.860933i \(-0.330119\pi\)
−0.491231 + 0.871029i \(0.663453\pi\)
\(140\) 0 0
\(141\) 4.21997 4.28677i 0.355386 0.361012i
\(142\) −5.62631 + 10.4916i −0.472150 + 0.880434i
\(143\) −17.9976 −1.50504
\(144\) −1.68806 11.8807i −0.140672 0.990056i
\(145\) 0 0
\(146\) −4.86674 + 9.07519i −0.402775 + 0.751068i
\(147\) 8.74813 + 2.27058i 0.721534 + 0.187274i
\(148\) −3.58908 5.40335i −0.295021 0.444153i
\(149\) 8.84885 + 5.10889i 0.724926 + 0.418536i 0.816563 0.577256i \(-0.195877\pi\)
−0.0916368 + 0.995792i \(0.529210\pi\)
\(150\) 0 0
\(151\) −13.0489 + 7.53379i −1.06190 + 0.613091i −0.925958 0.377625i \(-0.876741\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(152\) 1.55219 + 16.4507i 0.125899 + 1.33432i
\(153\) 9.94303 + 16.6137i 0.803846 + 1.34314i
\(154\) −7.02124 + 4.35279i −0.565787 + 0.350758i
\(155\) 0 0
\(156\) −4.64863 13.4675i −0.372188 1.07826i
\(157\) 1.60184 2.77448i 0.127841 0.221427i −0.794999 0.606611i \(-0.792529\pi\)
0.922840 + 0.385184i \(0.125862\pi\)
\(158\) −0.132481 4.22334i −0.0105396 0.335991i
\(159\) −4.63235 + 1.28031i −0.367370 + 0.101535i
\(160\) 0 0
\(161\) 0.134899i 0.0106315i
\(162\) 7.04287 + 10.6018i 0.553340 + 0.832956i
\(163\) 10.6182i 0.831684i 0.909437 + 0.415842i \(0.136513\pi\)
−0.909437 + 0.415842i \(0.863487\pi\)
\(164\) −0.507353 8.07895i −0.0396176 0.630860i
\(165\) 0 0
\(166\) −18.9491 + 0.594411i −1.47074 + 0.0461352i
\(167\) −6.30046 + 10.9127i −0.487544 + 0.844451i −0.999897 0.0143236i \(-0.995440\pi\)
0.512353 + 0.858775i \(0.328774\pi\)
\(168\) −5.07069 4.12965i −0.391212 0.318609i
\(169\) −1.95764 3.39073i −0.150587 0.260825i
\(170\) 0 0
\(171\) −9.00032 15.0385i −0.688271 1.15002i
\(172\) −6.89172 3.42207i −0.525489 0.260930i
\(173\) 1.48639 0.858165i 0.113008 0.0652451i −0.442431 0.896803i \(-0.645884\pi\)
0.555439 + 0.831558i \(0.312550\pi\)
\(174\) 12.2428 3.80070i 0.928123 0.288130i
\(175\) 0 0
\(176\) −17.3664 + 2.18984i −1.30904 + 0.165065i
\(177\) −4.60426 1.19504i −0.346077 0.0898244i
\(178\) 8.69150 + 4.66099i 0.651456 + 0.349356i
\(179\) 18.6630 1.39494 0.697468 0.716616i \(-0.254310\pi\)
0.697468 + 0.716616i \(0.254310\pi\)
\(180\) 0 0
\(181\) −19.9281 −1.48125 −0.740623 0.671920i \(-0.765470\pi\)
−0.740623 + 0.671920i \(0.765470\pi\)
\(182\) −6.84242 3.66938i −0.507194 0.271992i
\(183\) 2.53756 2.57773i 0.187582 0.190551i
\(184\) −0.119031 + 0.259868i −0.00877509 + 0.0191577i
\(185\) 0 0
\(186\) 8.68675 + 8.03089i 0.636943 + 0.588853i
\(187\) 24.4585 14.1211i 1.78859 1.03264i
\(188\) 3.08912 6.22121i 0.225298 0.453728i
\(189\) 6.74034 + 1.63691i 0.490287 + 0.119068i
\(190\) 0 0
\(191\) −10.8229 18.7459i −0.783121 1.35641i −0.930115 0.367268i \(-0.880293\pi\)
0.146994 0.989137i \(-0.453040\pi\)
\(192\) −6.12424 12.4296i −0.441979 0.897026i
\(193\) −5.19970 + 9.00614i −0.374282 + 0.648276i −0.990219 0.139519i \(-0.955444\pi\)
0.615937 + 0.787795i \(0.288778\pi\)
\(194\) 3.40487 0.106807i 0.244456 0.00766827i
\(195\) 0 0
\(196\) 10.4157 0.654097i 0.743976 0.0467212i
\(197\) 8.15715i 0.581173i −0.956849 0.290586i \(-0.906150\pi\)
0.956849 0.290586i \(-0.0938503\pi\)
\(198\) 15.6239 10.0290i 1.11034 0.712732i
\(199\) 9.18172i 0.650875i −0.945564 0.325438i \(-0.894488\pi\)
0.945564 0.325438i \(-0.105512\pi\)
\(200\) 0 0
\(201\) 0.188238 0.725246i 0.0132773 0.0511549i
\(202\) −0.201070 6.40988i −0.0141473 0.450998i
\(203\) 3.49299 6.05004i 0.245160 0.424629i
\(204\) 16.8842 + 14.6548i 1.18213 + 1.02604i
\(205\) 0 0
\(206\) −4.69106 + 2.90821i −0.326842 + 0.202624i
\(207\) −0.00476130 0.303133i −0.000330933 0.0210692i
\(208\) −9.94341 13.1062i −0.689452 0.908752i
\(209\) −22.1396 + 12.7823i −1.53143 + 0.884170i
\(210\) 0 0
\(211\) 8.87092 + 5.12163i 0.610699 + 0.352587i 0.773239 0.634115i \(-0.218635\pi\)
−0.162540 + 0.986702i \(0.551969\pi\)
\(212\) −4.62267 + 3.07053i −0.317486 + 0.210885i
\(213\) −3.88421 14.0537i −0.266142 0.962942i
\(214\) −3.33397 + 6.21698i −0.227906 + 0.424984i
\(215\) 0 0
\(216\) 11.5402 + 9.10081i 0.785208 + 0.619232i
\(217\) 6.44705 0.437655
\(218\) −3.33290 + 6.21497i −0.225732 + 0.420931i
\(219\) −3.35983 12.1564i −0.227036 0.821453i
\(220\) 0 0
\(221\) 22.9876 + 13.2719i 1.54631 + 0.892765i
\(222\) 7.74859 + 1.75381i 0.520052 + 0.117708i
\(223\) 20.1343 11.6245i 1.34829 0.778436i 0.360283 0.932843i \(-0.382680\pi\)
0.988007 + 0.154407i \(0.0493467\pi\)
\(224\) −7.04891 2.70815i −0.470975 0.180946i
\(225\) 0 0
\(226\) 24.5340 15.2098i 1.63198 1.01174i
\(227\) −8.50750 14.7354i −0.564663 0.978024i −0.997081 0.0763513i \(-0.975673\pi\)
0.432418 0.901673i \(-0.357660\pi\)
\(228\) −15.2834 13.2653i −1.01217 0.878518i
\(229\) 0.750685 1.30022i 0.0496066 0.0859212i −0.840156 0.542345i \(-0.817537\pi\)
0.889762 + 0.456424i \(0.150870\pi\)
\(230\) 0 0
\(231\) 2.54182 9.79316i 0.167239 0.644343i
\(232\) 12.0672 8.57262i 0.792253 0.562820i
\(233\) 13.5483i 0.887579i 0.896131 + 0.443789i \(0.146366\pi\)
−0.896131 + 0.443789i \(0.853634\pi\)
\(234\) 15.5052 + 8.00400i 1.01361 + 0.523238i
\(235\) 0 0
\(236\) −5.48190 + 0.344260i −0.356841 + 0.0224094i
\(237\) 3.68794 + 3.63047i 0.239557 + 0.235824i
\(238\) 12.1778 0.382002i 0.789369 0.0247615i
\(239\) −7.32324 + 12.6842i −0.473701 + 0.820474i −0.999547 0.0301057i \(-0.990416\pi\)
0.525846 + 0.850580i \(0.323749\pi\)
\(240\) 0 0
\(241\) −12.2259 21.1758i −0.787537 1.36405i −0.927472 0.373894i \(-0.878022\pi\)
0.139934 0.990161i \(-0.455311\pi\)
\(242\) −6.07249 9.79517i −0.390354 0.629658i
\(243\) −15.2041 3.44042i −0.975341 0.220703i
\(244\) 1.85756 3.74095i 0.118918 0.239490i
\(245\) 0 0
\(246\) 7.27978 + 6.73015i 0.464142 + 0.429099i
\(247\) −20.8081 12.0136i −1.32399 0.764406i
\(248\) 12.4195 + 5.68870i 0.788642 + 0.361233i
\(249\) 16.2891 16.5469i 1.03228 1.04862i
\(250\) 0 0
\(251\) 13.1808 0.831965 0.415982 0.909373i \(-0.363438\pi\)
0.415982 + 0.909373i \(0.363438\pi\)
\(252\) 7.98468 0.627467i 0.502988 0.0395267i
\(253\) −0.442223 −0.0278024
\(254\) −23.9084 12.8214i −1.50015 0.804483i
\(255\) 0 0
\(256\) −11.1894 11.4367i −0.699335 0.714794i
\(257\) −6.03633 3.48508i −0.376536 0.217393i 0.299774 0.954010i \(-0.403089\pi\)
−0.676310 + 0.736617i \(0.736422\pi\)
\(258\) 9.00016 2.79405i 0.560325 0.173950i
\(259\) 3.74947 2.16476i 0.232981 0.134511i
\(260\) 0 0
\(261\) −7.63560 + 13.7184i −0.472632 + 0.849147i
\(262\) 12.5400 + 20.2276i 0.774725 + 1.24966i
\(263\) −8.07190 13.9809i −0.497735 0.862102i 0.502262 0.864716i \(-0.332501\pi\)
−0.999997 + 0.00261352i \(0.999168\pi\)
\(264\) 13.5377 16.6226i 0.833190 1.02305i
\(265\) 0 0
\(266\) −11.0232 + 0.345784i −0.675875 + 0.0212014i
\(267\) −11.6424 + 3.21778i −0.712506 + 0.196925i
\(268\) −0.0542266 0.863489i −0.00331242 0.0527460i
\(269\) 21.7634i 1.32694i 0.748204 + 0.663468i \(0.230916\pi\)
−0.748204 + 0.663468i \(0.769084\pi\)
\(270\) 0 0
\(271\) 30.1548i 1.83177i 0.401436 + 0.915887i \(0.368511\pi\)
−0.401436 + 0.915887i \(0.631489\pi\)
\(272\) 23.7962 + 10.0095i 1.44286 + 0.606912i
\(273\) 9.16556 2.53321i 0.554725 0.153317i
\(274\) −0.265815 8.47388i −0.0160585 0.511926i
\(275\) 0 0
\(276\) −0.114223 0.330913i −0.00687539 0.0199186i
\(277\) 6.50177 + 11.2614i 0.390654 + 0.676632i 0.992536 0.121953i \(-0.0389157\pi\)
−0.601882 + 0.798585i \(0.705582\pi\)
\(278\) −0.286153 + 0.177400i −0.0171623 + 0.0106397i
\(279\) −14.4872 + 0.227550i −0.867329 + 0.0136231i
\(280\) 0 0
\(281\) −0.936692 + 0.540799i −0.0558784 + 0.0322614i −0.527679 0.849444i \(-0.676938\pi\)
0.471801 + 0.881705i \(0.343604\pi\)
\(282\) 2.52221 + 8.12451i 0.150195 + 0.483808i
\(283\) −25.3154 14.6158i −1.50484 0.868821i −0.999984 0.00561859i \(-0.998212\pi\)
−0.504858 0.863202i \(-0.668455\pi\)
\(284\) −9.31540 14.0243i −0.552767 0.832189i
\(285\) 0 0
\(286\) 12.0289 22.4307i 0.711283 1.32635i
\(287\) 5.40284 0.318920
\(288\) 15.9353 + 5.83671i 0.938995 + 0.343931i
\(289\) −24.6531 −1.45019
\(290\) 0 0
\(291\) −2.92690 + 2.97323i −0.171578 + 0.174294i
\(292\) −8.05779 12.1310i −0.471547 0.709911i
\(293\) 4.87662 + 2.81552i 0.284895 + 0.164484i 0.635637 0.771988i \(-0.280737\pi\)
−0.350742 + 0.936472i \(0.614071\pi\)
\(294\) −8.67675 + 9.38535i −0.506038 + 0.547365i
\(295\) 0 0
\(296\) 9.13306 0.861741i 0.530848 0.0500877i
\(297\) −5.36609 + 22.0960i −0.311372 + 1.28214i
\(298\) −12.2815 + 7.61387i −0.711447 + 0.441060i
\(299\) −0.207814 0.359945i −0.0120182 0.0208162i
\(300\) 0 0
\(301\) 2.56784 4.44762i 0.148008 0.256357i
\(302\) −0.668101 21.2983i −0.0384449 1.22558i
\(303\) 5.59729 + 5.51007i 0.321556 + 0.316545i
\(304\) −21.5401 9.06044i −1.23541 0.519652i
\(305\) 0 0
\(306\) −27.3514 + 1.28822i −1.56357 + 0.0736426i
\(307\) 15.2931i 0.872826i −0.899747 0.436413i \(-0.856249\pi\)
0.899747 0.436413i \(-0.143751\pi\)
\(308\) −0.732233 11.6599i −0.0417229 0.664384i
\(309\) 1.69825 6.54305i 0.0966100 0.372221i
\(310\) 0 0
\(311\) 1.83417 3.17688i 0.104006 0.180144i −0.809326 0.587360i \(-0.800167\pi\)
0.913332 + 0.407216i \(0.133500\pi\)
\(312\) 19.8917 + 3.20748i 1.12614 + 0.181588i
\(313\) −12.3149 21.3301i −0.696081 1.20565i −0.969815 0.243842i \(-0.921592\pi\)
0.273734 0.961805i \(-0.411741\pi\)
\(314\) 2.38726 + 3.85075i 0.134721 + 0.217310i
\(315\) 0 0
\(316\) 5.35215 + 2.65759i 0.301082 + 0.149501i
\(317\) −9.22258 + 5.32466i −0.517992 + 0.299063i −0.736113 0.676859i \(-0.763341\pi\)
0.218121 + 0.975922i \(0.430007\pi\)
\(318\) 1.50041 6.62907i 0.0841390 0.371740i
\(319\) 19.8331 + 11.4506i 1.11044 + 0.641113i
\(320\) 0 0
\(321\) −2.30166 8.32777i −0.128466 0.464811i
\(322\) −0.168126 0.0901611i −0.00936932 0.00502448i
\(323\) 37.7039 2.09790
\(324\) −17.9203 + 1.69181i −0.995573 + 0.0939894i
\(325\) 0 0
\(326\) −13.2336 7.09679i −0.732943 0.393055i
\(327\) −2.30092 8.32508i −0.127241 0.460378i
\(328\) 10.4080 + 4.76732i 0.574685 + 0.263231i
\(329\) 4.01490 + 2.31800i 0.221349 + 0.127796i
\(330\) 0 0
\(331\) 3.04582 1.75851i 0.167414 0.0966563i −0.413952 0.910299i \(-0.635852\pi\)
0.581366 + 0.813642i \(0.302519\pi\)
\(332\) 11.9240 24.0138i 0.654415 1.31793i
\(333\) −8.34907 + 4.99679i −0.457526 + 0.273822i
\(334\) −9.38969 15.1460i −0.513781 0.828750i
\(335\) 0 0
\(336\) 8.53588 3.55957i 0.465670 0.194191i
\(337\) −11.7643 + 20.3763i −0.640841 + 1.10997i 0.344405 + 0.938821i \(0.388081\pi\)
−0.985245 + 0.171147i \(0.945253\pi\)
\(338\) 5.53431 0.173605i 0.301027 0.00944284i
\(339\) −8.88175 + 34.2198i −0.482391 + 1.85856i
\(340\) 0 0
\(341\) 21.1346i 1.14450i
\(342\) 24.7581 1.16608i 1.33877 0.0630545i
\(343\) 16.3097i 0.880642i
\(344\) 8.87111 6.30207i 0.478298 0.339785i
\(345\) 0 0
\(346\) 0.0761027 + 2.42607i 0.00409131 + 0.130426i
\(347\) 2.09663 3.63147i 0.112553 0.194947i −0.804246 0.594297i \(-0.797431\pi\)
0.916799 + 0.399349i \(0.130764\pi\)
\(348\) −3.44572 + 17.7986i −0.184710 + 0.954104i
\(349\) −2.78198 4.81854i −0.148916 0.257930i 0.781911 0.623390i \(-0.214245\pi\)
−0.930827 + 0.365460i \(0.880912\pi\)
\(350\) 0 0
\(351\) −20.5066 + 6.01591i −1.09456 + 0.321105i
\(352\) 8.87779 23.1076i 0.473188 1.23164i
\(353\) 9.54549 5.51109i 0.508055 0.293326i −0.223979 0.974594i \(-0.571905\pi\)
0.732034 + 0.681268i \(0.238571\pi\)
\(354\) 4.56669 4.93964i 0.242717 0.262539i
\(355\) 0 0
\(356\) −11.6181 + 7.71712i −0.615758 + 0.409006i
\(357\) −10.4683 + 10.6340i −0.554040 + 0.562811i
\(358\) −12.4736 + 23.2599i −0.659248 + 1.22932i
\(359\) 27.2920 1.44042 0.720209 0.693757i \(-0.244046\pi\)
0.720209 + 0.693757i \(0.244046\pi\)
\(360\) 0 0
\(361\) −15.1292 −0.796272
\(362\) 13.3192 24.8367i 0.700039 1.30539i
\(363\) 13.6622 + 3.54603i 0.717081 + 0.186118i
\(364\) 9.14639 6.07533i 0.479401 0.318434i
\(365\) 0 0
\(366\) 1.51666 + 4.88545i 0.0792770 + 0.255366i
\(367\) −27.2699 + 15.7443i −1.42348 + 0.821846i −0.996594 0.0824597i \(-0.973722\pi\)
−0.426885 + 0.904306i \(0.640389\pi\)
\(368\) −0.244322 0.322035i −0.0127361 0.0167873i
\(369\) −12.1408 + 0.190695i −0.632024 + 0.00992717i
\(370\) 0 0
\(371\) −1.85199 3.20774i −0.0961505 0.166538i
\(372\) −15.8149 + 5.45889i −0.819963 + 0.283030i
\(373\) −11.7195 + 20.2988i −0.606812 + 1.05103i 0.384950 + 0.922937i \(0.374219\pi\)
−0.991762 + 0.128092i \(0.959115\pi\)
\(374\) 1.25227 + 39.9210i 0.0647535 + 2.06426i
\(375\) 0 0
\(376\) 5.68893 + 8.00802i 0.293384 + 0.412982i
\(377\) 21.5240i 1.10854i
\(378\) −6.54507 + 7.30652i −0.336642 + 0.375807i
\(379\) 11.5529i 0.593434i 0.954965 + 0.296717i \(0.0958918\pi\)
−0.954965 + 0.296717i \(0.904108\pi\)
\(380\) 0 0
\(381\) 32.0258 8.85141i 1.64073 0.453472i
\(382\) 30.5969 0.959787i 1.56547 0.0491070i
\(383\) −13.1068 + 22.7016i −0.669725 + 1.16000i 0.308256 + 0.951304i \(0.400255\pi\)
−0.977981 + 0.208695i \(0.933079\pi\)
\(384\) 19.5843 + 0.674692i 0.999407 + 0.0344302i
\(385\) 0 0
\(386\) −7.74920 12.4998i −0.394424 0.636222i
\(387\) −5.61323 + 10.0849i −0.285337 + 0.512646i
\(388\) −2.14256 + 4.31492i −0.108772 + 0.219057i
\(389\) 1.38545 0.799888i 0.0702449 0.0405559i −0.464466 0.885591i \(-0.653754\pi\)
0.534711 + 0.845035i \(0.320420\pi\)
\(390\) 0 0
\(391\) 0.564834 + 0.326107i 0.0285649 + 0.0164919i
\(392\) −6.14619 + 13.4183i −0.310430 + 0.677729i
\(393\) −28.2133 7.32275i −1.42317 0.369384i
\(394\) 10.1664 + 5.45190i 0.512174 + 0.274663i
\(395\) 0 0
\(396\) 2.05695 + 26.1752i 0.103366 + 1.31535i
\(397\) −25.9373 −1.30176 −0.650879 0.759182i \(-0.725599\pi\)
−0.650879 + 0.759182i \(0.725599\pi\)
\(398\) 11.4433 + 6.13669i 0.573601 + 0.307605i
\(399\) 9.47576 9.62577i 0.474382 0.481891i
\(400\) 0 0
\(401\) −21.5383 12.4351i −1.07557 0.620980i −0.145872 0.989304i \(-0.546599\pi\)
−0.929698 + 0.368323i \(0.879932\pi\)
\(402\) 0.778073 + 0.719328i 0.0388068 + 0.0358768i
\(403\) −17.2024 + 9.93179i −0.856911 + 0.494738i
\(404\) 8.12311 + 4.03351i 0.404140 + 0.200675i
\(405\) 0 0
\(406\) 5.20567 + 8.39696i 0.258353 + 0.416734i
\(407\) 7.09646 + 12.2914i 0.351759 + 0.609264i
\(408\) −29.5491 + 11.2483i −1.46290 + 0.556874i
\(409\) 10.6869 18.5102i 0.528433 0.915272i −0.471018 0.882124i \(-0.656113\pi\)
0.999450 0.0331484i \(-0.0105534\pi\)
\(410\) 0 0
\(411\) 7.39963 + 7.28432i 0.364997 + 0.359309i
\(412\) −0.489223 7.79025i −0.0241023 0.383798i
\(413\) 3.66606i 0.180395i
\(414\) 0.380981 + 0.196668i 0.0187242 + 0.00966570i
\(415\) 0 0
\(416\) 22.9802 3.63295i 1.12670 0.178120i
\(417\) 0.103593 0.399124i 0.00507296 0.0195452i
\(418\) −1.13354 36.1360i −0.0554434 1.76747i
\(419\) −3.12824 + 5.41826i −0.152824 + 0.264700i −0.932265 0.361777i \(-0.882170\pi\)
0.779440 + 0.626476i \(0.215504\pi\)
\(420\) 0 0
\(421\) 15.3599 + 26.6041i 0.748596 + 1.29661i 0.948496 + 0.316790i \(0.102605\pi\)
−0.199900 + 0.979816i \(0.564062\pi\)
\(422\) −12.3121 + 7.63286i −0.599344 + 0.371562i
\(423\) −9.10375 5.06711i −0.442639 0.246371i
\(424\) −0.737236 7.81350i −0.0358033 0.379457i
\(425\) 0 0
\(426\) 20.1113 + 4.55197i 0.974397 + 0.220544i
\(427\) 2.41425 + 1.39387i 0.116834 + 0.0674540i
\(428\) −5.52001 8.31035i −0.266820 0.401696i
\(429\) 8.30432 + 30.0463i 0.400936 + 1.45065i
\(430\) 0 0
\(431\) 35.1049 1.69094 0.845472 0.534020i \(-0.179319\pi\)
0.845472 + 0.534020i \(0.179319\pi\)
\(432\) −19.0554 + 8.30003i −0.916805 + 0.399335i
\(433\) 24.5043 1.17760 0.588800 0.808279i \(-0.299601\pi\)
0.588800 + 0.808279i \(0.299601\pi\)
\(434\) −4.30895 + 8.03505i −0.206836 + 0.385695i
\(435\) 0 0
\(436\) −5.51823 8.30767i −0.264275 0.397865i
\(437\) −0.511281 0.295188i −0.0244579 0.0141208i
\(438\) 17.3962 + 3.93744i 0.831225 + 0.188138i
\(439\) −15.3741 + 8.87623i −0.733765 + 0.423639i −0.819798 0.572653i \(-0.805914\pi\)
0.0860332 + 0.996292i \(0.472581\pi\)
\(440\) 0 0
\(441\) −0.245850 15.6523i −0.0117072 0.745349i
\(442\) −31.9049 + 19.7794i −1.51756 + 0.940808i
\(443\) −3.51442 6.08715i −0.166975 0.289209i 0.770380 0.637585i \(-0.220067\pi\)
−0.937355 + 0.348376i \(0.886733\pi\)
\(444\) −7.36463 + 8.48500i −0.349510 + 0.402680i
\(445\) 0 0
\(446\) 1.03087 + 32.8630i 0.0488132 + 1.55611i
\(447\) 4.44612 17.1301i 0.210294 0.810227i
\(448\) 8.08640 6.97513i 0.382047 0.329544i
\(449\) 16.6756i 0.786971i −0.919331 0.393485i \(-0.871269\pi\)
0.919331 0.393485i \(-0.128731\pi\)
\(450\) 0 0
\(451\) 17.7115i 0.834002i
\(452\) 2.55861 + 40.7426i 0.120347 + 1.91637i
\(453\) 18.5983 + 18.3085i 0.873823 + 0.860206i
\(454\) 24.0510 0.754451i 1.12877 0.0354081i
\(455\) 0 0
\(456\) 26.7475 10.1818i 1.25257 0.476808i
\(457\) −14.8490 25.7193i −0.694608 1.20310i −0.970313 0.241854i \(-0.922244\pi\)
0.275704 0.961242i \(-0.411089\pi\)
\(458\) 1.11876 + 1.80460i 0.0522762 + 0.0843236i
\(459\) 23.1481 24.2652i 1.08046 1.13260i
\(460\) 0 0
\(461\) 12.2647 7.08100i 0.571222 0.329795i −0.186415 0.982471i \(-0.559687\pi\)
0.757637 + 0.652676i \(0.226354\pi\)
\(462\) 10.5065 + 9.71325i 0.488806 + 0.451901i
\(463\) 4.94535 + 2.85520i 0.229830 + 0.132692i 0.610494 0.792021i \(-0.290971\pi\)
−0.380664 + 0.924714i \(0.624304\pi\)
\(464\) 2.61891 + 20.7691i 0.121580 + 0.964184i
\(465\) 0 0
\(466\) −16.8854 9.05513i −0.782202 0.419471i
\(467\) −18.7968 −0.869813 −0.434907 0.900476i \(-0.643219\pi\)
−0.434907 + 0.900476i \(0.643219\pi\)
\(468\) −20.3385 + 13.9748i −0.940149 + 0.645984i
\(469\) 0.577464 0.0266648
\(470\) 0 0
\(471\) −5.37099 1.39404i −0.247482 0.0642340i
\(472\) 3.23482 7.06225i 0.148895 0.325067i
\(473\) 14.5801 + 8.41783i 0.670394 + 0.387052i
\(474\) −6.98957 + 2.16987i −0.321042 + 0.0996654i
\(475\) 0 0
\(476\) −7.66304 + 15.4327i −0.351235 + 0.707354i
\(477\) 4.27485 + 7.14278i 0.195732 + 0.327046i
\(478\) −10.9140 17.6047i −0.499193 0.805219i
\(479\) −15.2061 26.3377i −0.694783 1.20340i −0.970254 0.242090i \(-0.922167\pi\)
0.275471 0.961309i \(-0.411166\pi\)
\(480\) 0 0
\(481\) −6.66969 + 11.5522i −0.304112 + 0.526737i
\(482\) 34.5630 1.08420i 1.57430 0.0493839i
\(483\) 0.225209 0.0622440i 0.0102474 0.00283220i
\(484\) 16.2665 1.02152i 0.739384 0.0464329i
\(485\) 0 0
\(486\) 14.4496 16.6496i 0.655448 0.755240i
\(487\) 3.67889i 0.166706i 0.996520 + 0.0833532i \(0.0265630\pi\)
−0.996520 + 0.0833532i \(0.973437\pi\)
\(488\) 3.42088 + 4.81540i 0.154856 + 0.217983i
\(489\) 17.7267 4.89938i 0.801630 0.221557i
\(490\) 0 0
\(491\) −9.05671 + 15.6867i −0.408724 + 0.707930i −0.994747 0.102364i \(-0.967359\pi\)
0.586023 + 0.810294i \(0.300693\pi\)
\(492\) −13.2534 + 4.57473i −0.597509 + 0.206245i
\(493\) −16.8880 29.2509i −0.760597 1.31739i
\(494\) 28.8800 17.9040i 1.29937 0.805541i
\(495\) 0 0
\(496\) −15.3906 + 11.6765i −0.691059 + 0.524292i
\(497\) 9.73168 5.61859i 0.436525 0.252028i
\(498\) 9.73570 + 31.3606i 0.436267 + 1.40530i
\(499\) −19.9488 11.5175i −0.893032 0.515592i −0.0180991 0.999836i \(-0.505761\pi\)
−0.874933 + 0.484244i \(0.839095\pi\)
\(500\) 0 0
\(501\) 21.1255 + 5.48311i 0.943816 + 0.244967i
\(502\) −8.80951 + 16.4274i −0.393188 + 0.733191i
\(503\) −31.1266 −1.38787 −0.693934 0.720039i \(-0.744124\pi\)
−0.693934 + 0.720039i \(0.744124\pi\)
\(504\) −4.55462 + 10.3708i −0.202879 + 0.461951i
\(505\) 0 0
\(506\) 0.295564 0.551149i 0.0131394 0.0245016i
\(507\) −4.75741 + 4.83272i −0.211284 + 0.214629i
\(508\) 31.9588 21.2281i 1.41794 0.941845i
\(509\) 0.489681 + 0.282717i 0.0217047 + 0.0125312i 0.510813 0.859692i \(-0.329344\pi\)
−0.489108 + 0.872223i \(0.662678\pi\)
\(510\) 0 0
\(511\) 8.41787 4.86006i 0.372385 0.214996i
\(512\) 21.7322 6.30162i 0.960438 0.278495i
\(513\) −20.9534 + 21.9646i −0.925113 + 0.969762i
\(514\) 8.37793 5.19387i 0.369535 0.229092i
\(515\) 0 0
\(516\) −2.53308 + 13.0844i −0.111513 + 0.576010i
\(517\) −7.59884 + 13.1616i −0.334196 + 0.578845i
\(518\) 0.191972 + 6.11985i 0.00843477 + 0.268891i
\(519\) −2.11851 2.08550i −0.0929923 0.0915431i
\(520\) 0 0
\(521\) 4.80678i 0.210589i −0.994441 0.105294i \(-0.966422\pi\)
0.994441 0.105294i \(-0.0335785\pi\)
\(522\) −11.9941 18.6852i −0.524967 0.817827i
\(523\) 19.6207i 0.857954i −0.903315 0.428977i \(-0.858874\pi\)
0.903315 0.428977i \(-0.141126\pi\)
\(524\) −33.5911 + 2.10950i −1.46744 + 0.0921540i
\(525\) 0 0
\(526\) 22.8196 0.715822i 0.994980 0.0312113i
\(527\) 15.5852 26.9943i 0.678902 1.17589i
\(528\) 11.6689 + 27.9821i 0.507824 + 1.21777i
\(529\) 11.4949 + 19.9097i 0.499778 + 0.865641i
\(530\) 0 0
\(531\) 0.129394 + 8.23803i 0.00561523 + 0.357500i
\(532\) 6.93650 13.9695i 0.300735 0.605653i
\(533\) −14.4162 + 8.32317i −0.624433 + 0.360517i
\(534\) 3.77097 16.6608i 0.163186 0.720981i
\(535\) 0 0
\(536\) 1.11242 + 0.509538i 0.0480493 + 0.0220087i
\(537\) −8.61131 31.1571i −0.371606 1.34453i
\(538\) −27.1240 14.5458i −1.16940 0.627112i
\(539\) −22.8343 −0.983542
\(540\) 0 0
\(541\) 40.3065 1.73291 0.866457 0.499252i \(-0.166392\pi\)
0.866457 + 0.499252i \(0.166392\pi\)
\(542\) −37.5823 20.1542i −1.61430 0.865699i
\(543\) 9.19508 + 33.2692i 0.394599 + 1.42772i
\(544\) −28.3793 + 22.9677i −1.21675 + 0.984730i
\(545\) 0 0
\(546\) −2.96871 + 13.1162i −0.127049 + 0.561324i
\(547\) 2.49763 1.44201i 0.106791 0.0616557i −0.445653 0.895206i \(-0.647029\pi\)
0.552444 + 0.833550i \(0.313695\pi\)
\(548\) 10.7388 + 5.33231i 0.458737 + 0.227785i
\(549\) −5.47428 3.04696i −0.233637 0.130041i
\(550\) 0 0
\(551\) 15.2868 + 26.4775i 0.651240 + 1.12798i
\(552\) 0.488762 + 0.0788115i 0.0208031 + 0.00335444i
\(553\) −1.99419 + 3.45405i −0.0848018 + 0.146881i
\(554\) −18.3807 + 0.576582i −0.780923 + 0.0244966i
\(555\) 0 0
\(556\) −0.0298425 0.475204i −0.00126560 0.0201531i
\(557\) 17.0510i 0.722475i 0.932474 + 0.361237i \(0.117646\pi\)
−0.932474 + 0.361237i \(0.882354\pi\)
\(558\) 9.39909 18.2077i 0.397895 0.770795i
\(559\) 15.8232i 0.669249i
\(560\) 0 0
\(561\) −34.8601 34.3169i −1.47180 1.44886i
\(562\) −0.0479585 1.52886i −0.00202301 0.0644910i
\(563\) 11.0182 19.0842i 0.464364 0.804302i −0.534809 0.844973i \(-0.679616\pi\)
0.999173 + 0.0406715i \(0.0129497\pi\)
\(564\) −11.8114 2.28663i −0.497351 0.0962847i
\(565\) 0 0
\(566\) 35.1357 21.7822i 1.47686 0.915576i
\(567\) −0.377311 12.0080i −0.0158456 0.504289i
\(568\) 23.7047 2.23663i 0.994627 0.0938470i
\(569\) 24.1641 13.9512i 1.01301 0.584864i 0.100941 0.994892i \(-0.467815\pi\)
0.912073 + 0.410029i \(0.134481\pi\)
\(570\) 0 0
\(571\) −11.2510 6.49576i −0.470839 0.271839i 0.245752 0.969333i \(-0.420965\pi\)
−0.716591 + 0.697494i \(0.754298\pi\)
\(572\) 19.9160 + 29.9835i 0.832731 + 1.25367i
\(573\) −26.3017 + 26.7181i −1.09877 + 1.11616i
\(574\) −3.61104 + 6.73364i −0.150722 + 0.281057i
\(575\) 0 0
\(576\) −17.9249 + 15.9593i −0.746869 + 0.664971i
\(577\) 34.6251 1.44146 0.720730 0.693216i \(-0.243807\pi\)
0.720730 + 0.693216i \(0.243807\pi\)
\(578\) 16.4772 30.7255i 0.685359 1.27801i
\(579\) 17.4346 + 4.52515i 0.724557 + 0.188059i
\(580\) 0 0
\(581\) 15.4975 + 8.94748i 0.642944 + 0.371204i
\(582\) −1.74936 5.63502i −0.0725132 0.233579i
\(583\) 10.5156 6.07116i 0.435510 0.251442i
\(584\) 20.5045 1.93468i 0.848482 0.0800577i
\(585\) 0 0
\(586\) −6.76835 + 4.19601i −0.279598 + 0.173336i
\(587\) −5.43407 9.41209i −0.224288 0.388479i 0.731817 0.681501i \(-0.238672\pi\)
−0.956106 + 0.293022i \(0.905339\pi\)
\(588\) −5.89790 17.0867i −0.243225 0.704645i
\(589\) −14.1075 + 24.4350i −0.581291 + 1.00683i
\(590\) 0 0
\(591\) −13.6180 + 3.76380i −0.560171 + 0.154822i
\(592\) −5.03017 + 11.9586i −0.206739 + 0.491496i
\(593\) 4.49540i 0.184604i 0.995731 + 0.0923019i \(0.0294225\pi\)
−0.995731 + 0.0923019i \(0.970578\pi\)
\(594\) −23.9521 21.4559i −0.982767 0.880347i
\(595\) 0 0
\(596\) −1.28082 20.3954i −0.0524643 0.835427i
\(597\) −15.3285 + 4.23656i −0.627355 + 0.173391i
\(598\) 0.587499 0.0184291i 0.0240246 0.000753623i
\(599\) 3.45192 5.97890i 0.141042 0.244291i −0.786847 0.617148i \(-0.788288\pi\)
0.927889 + 0.372856i \(0.121621\pi\)
\(600\) 0 0
\(601\) −15.7058 27.2032i −0.640653 1.10964i −0.985287 0.170906i \(-0.945331\pi\)
0.344635 0.938737i \(-0.388003\pi\)
\(602\) 3.82689 + 6.17294i 0.155973 + 0.251590i
\(603\) −1.29763 + 0.0203817i −0.0528434 + 0.000830008i
\(604\) 26.9909 + 13.4022i 1.09824 + 0.545330i
\(605\) 0 0
\(606\) −10.6083 + 3.29327i −0.430932 + 0.133780i
\(607\) 16.9977 + 9.81362i 0.689915 + 0.398322i 0.803580 0.595197i \(-0.202926\pi\)
−0.113665 + 0.993519i \(0.536259\pi\)
\(608\) 25.6887 20.7901i 1.04181 0.843148i
\(609\) −11.7120 3.03985i −0.474594 0.123181i
\(610\) 0 0
\(611\) −14.2837 −0.577857
\(612\) 16.6750 34.9494i 0.674047 1.41274i
\(613\) 28.8088 1.16358 0.581788 0.813340i \(-0.302353\pi\)
0.581788 + 0.813340i \(0.302353\pi\)
\(614\) 19.0600 + 10.2213i 0.769200 + 0.412499i
\(615\) 0 0
\(616\) 15.0213 + 6.88040i 0.605224 + 0.277219i
\(617\) 13.8957 + 8.02269i 0.559420 + 0.322981i 0.752913 0.658120i \(-0.228648\pi\)
−0.193493 + 0.981102i \(0.561982\pi\)
\(618\) 7.01965 + 6.48966i 0.282372 + 0.261052i
\(619\) 2.13387 1.23199i 0.0857674 0.0495178i −0.456503 0.889722i \(-0.650898\pi\)
0.542270 + 0.840204i \(0.317565\pi\)
\(620\) 0 0
\(621\) −0.503872 + 0.147818i −0.0202197 + 0.00593173i
\(622\) 2.73350 + 4.40924i 0.109603 + 0.176795i
\(623\) −4.65458 8.06198i −0.186482 0.322996i
\(624\) −17.2923 + 22.6475i −0.692246 + 0.906626i
\(625\) 0 0
\(626\) 34.8148 1.09210i 1.39148 0.0436490i
\(627\) 31.5550 + 31.0633i 1.26019 + 1.24055i
\(628\) −6.39478 + 0.401588i −0.255179 + 0.0160251i
\(629\) 20.9324i 0.834631i
\(630\) 0 0
\(631\) 44.4737i 1.77047i −0.465144 0.885235i \(-0.653997\pi\)
0.465144 0.885235i \(-0.346003\pi\)
\(632\) −6.88935 + 4.89422i −0.274044 + 0.194682i
\(633\) 4.45721 17.1728i 0.177158 0.682559i
\(634\) −0.472194 15.0530i −0.0187532 0.597831i
\(635\) 0 0
\(636\) 7.25908 + 6.30058i 0.287841 + 0.249834i
\(637\) −10.7305 18.5858i −0.425159 0.736397i
\(638\) −27.5267 + 17.0651i −1.08979 + 0.675614i
\(639\) −21.6698 + 12.9691i −0.857246 + 0.513048i
\(640\) 0 0
\(641\) −14.1935 + 8.19465i −0.560611 + 0.323669i −0.753391 0.657573i \(-0.771583\pi\)
0.192779 + 0.981242i \(0.438250\pi\)
\(642\) 11.9173 + 2.69735i 0.470340 + 0.106456i
\(643\) −30.3987 17.5507i −1.19881 0.692133i −0.238520 0.971138i \(-0.576662\pi\)
−0.960290 + 0.279005i \(0.909995\pi\)
\(644\) 0.224738 0.149278i 0.00885591 0.00588239i
\(645\) 0 0
\(646\) −25.1998 + 46.9909i −0.991472 + 1.84883i
\(647\) −19.0579 −0.749243 −0.374621 0.927178i \(-0.622227\pi\)
−0.374621 + 0.927178i \(0.622227\pi\)
\(648\) 9.86869 23.4651i 0.387679 0.921795i
\(649\) 12.0180 0.471747
\(650\) 0 0
\(651\) −2.97475 10.7631i −0.116590 0.421839i
\(652\) 17.6896 11.7500i 0.692780 0.460167i
\(653\) 36.4956 + 21.0708i 1.42818 + 0.824563i 0.996978 0.0776903i \(-0.0247545\pi\)
0.431207 + 0.902253i \(0.358088\pi\)
\(654\) 11.9135 + 2.69648i 0.465854 + 0.105441i
\(655\) 0 0
\(656\) −12.8978 + 9.78533i −0.503576 + 0.382053i
\(657\) −18.7444 + 11.2182i −0.731287 + 0.437664i
\(658\) −5.57236 + 3.45456i −0.217233 + 0.134673i
\(659\) −10.0696 17.4410i −0.392256 0.679407i 0.600491 0.799631i \(-0.294972\pi\)
−0.992747 + 0.120225i \(0.961638\pi\)
\(660\) 0 0
\(661\) 3.54725 6.14402i 0.137972 0.238975i −0.788757 0.614705i \(-0.789275\pi\)
0.926729 + 0.375731i \(0.122608\pi\)
\(662\) 0.155946 + 4.97136i 0.00606100 + 0.193218i
\(663\) 11.5502 44.5007i 0.448571 1.72827i
\(664\) 21.9592 + 30.9109i 0.852183 + 1.19958i
\(665\) 0 0
\(666\) −0.647384 13.7452i −0.0250856 0.532616i
\(667\) 0.528872i 0.0204780i
\(668\) 25.1523 1.57955i 0.973171 0.0611145i
\(669\) −28.6969 28.2497i −1.10949 1.09220i
\(670\) 0 0
\(671\) −4.56935 + 7.91434i −0.176398 + 0.305530i
\(672\) −1.26869 + 13.0174i −0.0489409 + 0.502159i
\(673\) −11.4551 19.8408i −0.441561 0.764806i 0.556245 0.831018i \(-0.312242\pi\)
−0.997806 + 0.0662129i \(0.978908\pi\)
\(674\) −17.5325 28.2807i −0.675327 1.08933i
\(675\) 0 0
\(676\) −3.48254 + 7.01351i −0.133944 + 0.269750i
\(677\) 20.1311 11.6227i 0.773699 0.446696i −0.0604934 0.998169i \(-0.519267\pi\)
0.834193 + 0.551473i \(0.185934\pi\)
\(678\) −36.7124 33.9406i −1.40993 1.30348i
\(679\) −2.78467 1.60773i −0.106866 0.0616989i
\(680\) 0 0
\(681\) −20.6748 + 21.0020i −0.792258 + 0.804800i
\(682\) −26.3403 14.1255i −1.00862 0.540894i
\(683\) 30.3578 1.16161 0.580804 0.814043i \(-0.302738\pi\)
0.580804 + 0.814043i \(0.302738\pi\)
\(684\) −15.0940 + 31.6357i −0.577134 + 1.20962i
\(685\) 0 0
\(686\) −20.3270 10.9007i −0.776089 0.416193i
\(687\) −2.51705 0.653300i −0.0960313 0.0249249i
\(688\) 1.92526 + 15.2682i 0.0734000 + 0.582096i
\(689\) 9.88316 + 5.70604i 0.376518 + 0.217383i
\(690\) 0 0
\(691\) 10.6015 6.12077i 0.403299 0.232845i −0.284607 0.958644i \(-0.591863\pi\)
0.687907 + 0.725799i \(0.258530\pi\)
\(692\) −3.07450 1.52664i −0.116875 0.0580340i
\(693\) −17.5221 + 0.275219i −0.665610 + 0.0104547i
\(694\) 3.12464 + 5.04018i 0.118610 + 0.191323i
\(695\) 0 0
\(696\) −19.8796 16.1903i −0.753535 0.613691i
\(697\) 13.0609 22.6222i 0.494717 0.856875i
\(698\) 7.86477 0.246708i 0.297686 0.00933804i
\(699\) 22.6184 6.25134i 0.855505 0.236448i
\(700\) 0 0
\(701\) 0.0365464i 0.00138034i 1.00000 0.000690169i \(0.000219688\pi\)
−1.00000 0.000690169i \(0.999780\pi\)
\(702\) 6.20808 29.5784i 0.234309 1.11637i
\(703\) 18.9478i 0.714630i
\(704\) 22.8657 + 26.5087i 0.861785 + 0.999083i
\(705\) 0 0
\(706\) 0.488727 + 15.5801i 0.0183935 + 0.586363i
\(707\) −3.02665 + 5.24231i −0.113829 + 0.197157i
\(708\) 3.10414 + 8.99297i 0.116661 + 0.337977i
\(709\) −13.6359 23.6181i −0.512109 0.886998i −0.999901 0.0140387i \(-0.995531\pi\)
0.487793 0.872959i \(-0.337802\pi\)
\(710\) 0 0
\(711\) 4.35927 7.83201i 0.163485 0.293723i
\(712\) −1.85289 19.6376i −0.0694398 0.735950i
\(713\) −0.422683 + 0.244036i −0.0158296 + 0.00913923i
\(714\) −6.25671 20.1541i −0.234152 0.754248i
\(715\) 0 0
\(716\) −20.6523 31.0919i −0.771812 1.16196i
\(717\) 24.5548 + 6.37321i 0.917017 + 0.238012i
\(718\) −18.2409 + 34.0144i −0.680743 + 1.26941i
\(719\) 7.73269 0.288381 0.144190 0.989550i \(-0.453942\pi\)
0.144190 + 0.989550i \(0.453942\pi\)
\(720\) 0 0
\(721\) 5.20978 0.194022
\(722\) 10.1117 18.8557i 0.376319 0.701735i
\(723\) −29.7110 + 30.1814i −1.10497 + 1.12246i
\(724\) 22.0523 + 33.1997i 0.819568 + 1.23386i
\(725\) 0 0
\(726\) −13.5507 + 14.6574i −0.502915 + 0.543987i
\(727\) 14.2887 8.24957i 0.529938 0.305960i −0.211053 0.977475i \(-0.567689\pi\)
0.740991 + 0.671515i \(0.234356\pi\)
\(728\) 1.45869 + 15.4598i 0.0540627 + 0.572977i
\(729\) 1.27169 + 26.9700i 0.0470995 + 0.998890i
\(730\) 0 0
\(731\) −12.4150 21.5035i −0.459187 0.795335i
\(732\) −7.10247 1.37500i −0.262515 0.0508216i
\(733\) 21.4427 37.1399i 0.792006 1.37179i −0.132717 0.991154i \(-0.542370\pi\)
0.924723 0.380641i \(-0.124297\pi\)
\(734\) −1.39622 44.5097i −0.0515353 1.64288i
\(735\) 0 0
\(736\) 0.564652 0.0892658i 0.0208133 0.00329038i
\(737\) 1.89303i 0.0697307i
\(738\) 7.87675 15.2587i 0.289947 0.561680i
\(739\) 3.04457i 0.111996i 0.998431 + 0.0559981i \(0.0178341\pi\)
−0.998431 + 0.0559981i \(0.982166\pi\)
\(740\) 0 0
\(741\) −10.4551 + 40.2816i −0.384077 + 1.47978i
\(742\) 5.23564 0.164236i 0.192207 0.00602928i
\(743\) 20.2194 35.0211i 0.741779 1.28480i −0.209905 0.977722i \(-0.567316\pi\)
0.951684 0.307078i \(-0.0993511\pi\)
\(744\) 3.76654 23.3588i 0.138088 0.856374i
\(745\) 0 0
\(746\) −17.4658 28.1730i −0.639467 1.03149i
\(747\) −35.1404 19.5590i −1.28572 0.715626i
\(748\) −50.5910 25.1208i −1.84979 0.918509i
\(749\) 5.76668 3.32940i 0.210710 0.121653i
\(750\) 0 0
\(751\) 12.0862 + 6.97795i 0.441030 + 0.254629i 0.704034 0.710166i \(-0.251380\pi\)
−0.263004 + 0.964795i \(0.584713\pi\)
\(752\) −13.7827 + 1.73795i −0.502605 + 0.0633765i
\(753\) −6.08178 22.0048i −0.221632 0.801901i
\(754\) −26.8257 14.3858i −0.976934 0.523900i
\(755\) 0 0
\(756\) −4.73176 13.0406i −0.172092 0.474282i
\(757\) 31.7859 1.15528 0.577639 0.816293i \(-0.303974\pi\)
0.577639 + 0.816293i \(0.303974\pi\)
\(758\) −14.3986 7.72151i −0.522979 0.280458i
\(759\) 0.204047 + 0.738275i 0.00740644 + 0.0267977i
\(760\) 0 0
\(761\) −21.6921 12.5240i −0.786339 0.453993i 0.0523332 0.998630i \(-0.483334\pi\)
−0.838672 + 0.544637i \(0.816668\pi\)
\(762\) −10.3731 + 45.8301i −0.375778 + 1.66025i
\(763\) 5.76482 3.32832i 0.208700 0.120493i
\(764\) −19.2535 + 38.7748i −0.696568 + 1.40282i
\(765\) 0 0
\(766\) −19.5333 31.5080i −0.705766 1.13843i
\(767\) 5.64762 + 9.78196i 0.203924 + 0.353206i
\(768\) −13.9302 + 23.9572i −0.502664 + 0.864482i
\(769\) 1.59810 2.76799i 0.0576290 0.0998164i −0.835772 0.549077i \(-0.814979\pi\)
0.893401 + 0.449261i \(0.148313\pi\)
\(770\) 0 0
\(771\) −3.03296 + 11.6855i −0.109230 + 0.420842i
\(772\) 20.7579 1.30358i 0.747093 0.0469170i
\(773\) 26.8609i 0.966121i −0.875587 0.483060i \(-0.839525\pi\)
0.875587 0.483060i \(-0.160475\pi\)
\(774\) −8.81733 13.7362i −0.316932 0.493738i
\(775\) 0 0
\(776\) −3.94574 5.55422i −0.141644 0.199385i
\(777\) −5.34403 5.26075i −0.191716 0.188728i
\(778\) 0.0709346 + 2.26131i 0.00254313 + 0.0810720i
\(779\) −11.8226 + 20.4773i −0.423588 + 0.733676i
\(780\) 0 0
\(781\) 18.4187 + 31.9022i 0.659074 + 1.14155i
\(782\) −0.783943 + 0.486003i −0.0280337 + 0.0173794i
\(783\) 26.4255 + 6.41751i 0.944369 + 0.229343i
\(784\) −12.6156 16.6284i −0.450557 0.593870i
\(785\) 0 0
\(786\) 27.9830 30.2683i 0.998122 1.07964i
\(787\) −29.1883 16.8518i −1.04045 0.600703i −0.120488 0.992715i \(-0.538446\pi\)
−0.919960 + 0.392011i \(0.871779\pi\)
\(788\) −13.5896 + 9.02663i −0.484108 + 0.321560i
\(789\) −19.6162 + 19.9267i −0.698354 + 0.709409i
\(790\) 0 0
\(791\) −27.2469 −0.968787
\(792\) −33.9973 14.9308i −1.20804 0.530545i
\(793\) −8.58910 −0.305008
\(794\) 17.3355 32.3260i 0.615212 1.14721i
\(795\) 0 0
\(796\) −15.2965 + 10.1604i −0.542169 + 0.360127i
\(797\) −25.0624 14.4698i −0.887755 0.512546i −0.0145477 0.999894i \(-0.504631\pi\)
−0.873208 + 0.487348i \(0.837964\pi\)
\(798\) 5.66350 + 18.2432i 0.200486 + 0.645804i
\(799\) 19.4113 11.2071i 0.686724 0.396480i
\(800\) 0 0
\(801\) 10.7439 + 17.9519i 0.379618 + 0.634298i
\(802\) 29.8934 18.5323i 1.05557 0.654398i
\(803\) 15.9322 + 27.5953i 0.562233 + 0.973817i
\(804\) −1.41654 + 0.488953i −0.0499575 + 0.0172441i
\(805\) 0 0
\(806\) −0.880759 28.0775i −0.0310234 0.988989i
\(807\) 36.3331 10.0419i 1.27899 0.353491i
\(808\) −10.4562 + 7.42810i −0.367847 + 0.261320i
\(809\) 14.9996i 0.527358i −0.964610 0.263679i \(-0.915064\pi\)
0.964610 0.263679i \(-0.0849360\pi\)
\(810\) 0 0
\(811\) 17.4677i 0.613376i −0.951810 0.306688i \(-0.900779\pi\)
0.951810 0.306688i \(-0.0992207\pi\)
\(812\) −13.9445 + 0.875705i −0.489356 + 0.0307312i
\(813\) 50.3423 13.9138i 1.76558 0.487978i
\(814\) −20.0620 + 0.629319i −0.703171 + 0.0220576i
\(815\) 0 0
\(816\) 5.73052 44.3454i 0.200608 1.55240i
\(817\) 11.2379 + 19.4647i 0.393166 + 0.680984i
\(818\) 15.9269 + 25.6907i 0.556870 + 0.898254i
\(819\) −8.45819 14.1327i −0.295553 0.493836i
\(820\) 0 0
\(821\) 15.8290 9.13886i 0.552435 0.318948i −0.197669 0.980269i \(-0.563337\pi\)
0.750103 + 0.661320i \(0.230004\pi\)
\(822\) −14.0242 + 4.35372i −0.489149 + 0.151853i
\(823\) 25.3518 + 14.6369i 0.883710 + 0.510210i 0.871880 0.489720i \(-0.162901\pi\)
0.0118300 + 0.999930i \(0.496234\pi\)
\(824\) 10.0361 + 4.59696i 0.349623 + 0.160143i
\(825\) 0 0
\(826\) 4.56905 + 2.45024i 0.158978 + 0.0852548i
\(827\) 24.5270 0.852886 0.426443 0.904514i \(-0.359767\pi\)
0.426443 + 0.904514i \(0.359767\pi\)
\(828\) −0.499742 + 0.343377i −0.0173672 + 0.0119332i
\(829\) 42.2094 1.46599 0.732996 0.680233i \(-0.238121\pi\)
0.732996 + 0.680233i \(0.238121\pi\)
\(830\) 0 0
\(831\) 15.8005 16.0506i 0.548112 0.556789i
\(832\) −10.8313 + 31.0687i −0.375506 + 1.07711i
\(833\) 29.1653 + 16.8386i 1.01052 + 0.583422i
\(834\) 0.428197 + 0.395868i 0.0148272 + 0.0137078i
\(835\) 0 0
\(836\) 45.7944 + 22.7391i 1.58383 + 0.786448i
\(837\) 7.06447 + 24.0809i 0.244184 + 0.832358i
\(838\) −4.66207 7.52011i −0.161048 0.259778i
\(839\) 18.2179 + 31.5544i 0.628953 + 1.08938i 0.987762 + 0.155967i \(0.0498494\pi\)
−0.358810 + 0.933411i \(0.616817\pi\)
\(840\) 0 0
\(841\) −0.805742 + 1.39559i −0.0277842 + 0.0481237i
\(842\) −43.4230 + 1.36213i −1.49646 + 0.0469420i
\(843\) 1.33504 + 1.31424i 0.0459814 + 0.0452648i
\(844\) −1.28401 20.4462i −0.0441975 0.703788i
\(845\) 0 0
\(846\) 12.3998 7.95947i 0.426313 0.273652i
\(847\) 10.8783i 0.373783i
\(848\) 10.2308 + 4.30340i 0.351327 + 0.147779i
\(849\) −12.7197 + 49.0069i −0.436541 + 1.68191i
\(850\) 0 0
\(851\) −0.163882 + 0.283852i −0.00561781 + 0.00973033i
\(852\) −19.1148 + 22.0227i −0.654861 + 0.754484i
\(853\) −15.6536 27.1128i −0.535968 0.928324i −0.999116 0.0420430i \(-0.986613\pi\)
0.463148 0.886281i \(-0.346720\pi\)
\(854\) −3.35078 + 2.07731i −0.114661 + 0.0710839i
\(855\) 0 0
\(856\) 14.0466 1.32536i 0.480104 0.0452998i
\(857\) 7.97029 4.60165i 0.272260 0.157189i −0.357654 0.933854i \(-0.616423\pi\)
0.629914 + 0.776665i \(0.283090\pi\)
\(858\) −42.9974 9.73197i −1.46791 0.332244i
\(859\) −4.62482 2.67014i −0.157797 0.0911040i 0.419022 0.907976i \(-0.362373\pi\)
−0.576819 + 0.816872i \(0.695706\pi\)
\(860\) 0 0
\(861\) −2.49294 9.01984i −0.0849590 0.307395i
\(862\) −23.4627 + 43.7517i −0.799142 + 1.49019i
\(863\) −19.0360 −0.647992 −0.323996 0.946058i \(-0.605026\pi\)
−0.323996 + 0.946058i \(0.605026\pi\)
\(864\) 2.39144 29.2964i 0.0813584 0.996685i
\(865\) 0 0
\(866\) −16.3776 + 30.5400i −0.556535 + 1.03779i
\(867\) 11.3753 + 41.1575i 0.386324 + 1.39778i
\(868\) −7.13426 10.7406i −0.242152 0.364560i
\(869\) −11.3230 6.53733i −0.384106 0.221764i
\(870\) 0 0
\(871\) −1.54082 + 0.889593i −0.0522087 + 0.0301427i
\(872\) 14.0421 1.32493i 0.475526 0.0448678i
\(873\) 6.31420 + 3.51446i 0.213703 + 0.118946i
\(874\) 0.709616 0.439924i 0.0240031 0.0148807i
\(875\) 0 0
\(876\) −16.5342 + 19.0495i −0.558640 + 0.643624i
\(877\) 12.1891 21.1121i 0.411595 0.712904i −0.583469 0.812135i \(-0.698305\pi\)
0.995064 + 0.0992316i \(0.0316385\pi\)
\(878\) −0.787150 25.0934i −0.0265650 0.846862i
\(879\) 2.45026 9.44043i 0.0826454 0.318418i
\(880\) 0 0
\(881\) 42.8577i 1.44391i −0.691939 0.721956i \(-0.743243\pi\)
0.691939 0.721956i \(-0.256757\pi\)
\(882\) 19.6720 + 10.1550i 0.662391 + 0.341936i
\(883\) 28.8663i 0.971427i 0.874118 + 0.485713i \(0.161440\pi\)
−0.874118 + 0.485713i \(0.838560\pi\)
\(884\) −3.32732 52.9833i −0.111910 1.78202i
\(885\) 0 0
\(886\) 9.93539 0.311661i 0.333786 0.0104705i
\(887\) −7.59206 + 13.1498i −0.254917 + 0.441528i −0.964873 0.262717i \(-0.915381\pi\)
0.709956 + 0.704246i \(0.248715\pi\)
\(888\) −5.65274 14.8497i −0.189694 0.498322i
\(889\) 12.8037 + 22.1767i 0.429424 + 0.743784i
\(890\) 0 0
\(891\) 39.3644 1.23689i 1.31876 0.0414375i
\(892\) −41.6465 20.6795i −1.39443 0.692400i
\(893\) −17.5709 + 10.1446i −0.587989 + 0.339475i
\(894\) 18.3779 + 16.9903i 0.614648 + 0.568242i
\(895\) 0 0
\(896\) 3.28858 + 14.7401i 0.109864 + 0.492432i
\(897\) −0.505026 + 0.513021i −0.0168623 + 0.0171293i
\(898\) 20.7830 + 11.1453i 0.693539 + 0.371923i
\(899\) 25.2757 0.842990
\(900\) 0 0
\(901\) −17.9081 −0.596605
\(902\) −22.0741 11.8376i −0.734986 0.394150i
\(903\) −8.60996 2.23472i −0.286522 0.0743667i
\(904\) −52.4881 24.0419i −1.74573 0.799621i
\(905\) 0 0
\(906\) −35.2484 + 10.9427i −1.17105 + 0.363545i
\(907\) −23.4865 + 13.5599i −0.779856 + 0.450250i −0.836379 0.548151i \(-0.815332\pi\)
0.0565230 + 0.998401i \(0.481999\pi\)
\(908\) −15.1344 + 30.4793i −0.502254 + 1.01149i
\(909\) 6.61619 11.8869i 0.219445 0.394263i
\(910\) 0 0
\(911\) −3.77888 6.54521i −0.125200 0.216852i 0.796611 0.604492i \(-0.206624\pi\)
−0.921811 + 0.387640i \(0.873291\pi\)
\(912\) −5.18720 + 40.1409i −0.171765 + 1.32920i
\(913\) −29.3315 + 50.8036i −0.970729 + 1.68135i
\(914\) 41.9787 1.31682i 1.38853 0.0435566i
\(915\) 0 0
\(916\) −2.99683 + 0.188199i −0.0990182 + 0.00621828i
\(917\) 22.4643i 0.741836i
\(918\) 14.7709 + 45.0676i 0.487512 + 1.48745i
\(919\) 33.7674i 1.11388i −0.830552 0.556942i \(-0.811975\pi\)
0.830552 0.556942i \(-0.188025\pi\)
\(920\) 0 0
\(921\) −25.5313 + 7.05643i −0.841285 + 0.232517i
\(922\) 0.627948 + 20.0183i 0.0206804 + 0.659266i
\(923\) −17.3110 + 29.9836i −0.569800 + 0.986923i
\(924\) −19.1279 + 6.60244i −0.629260 + 0.217204i
\(925\) 0 0
\(926\) −6.86375 + 4.25516i −0.225557 + 0.139833i
\(927\) −11.7070 + 0.183880i −0.384507 + 0.00603943i
\(928\) −27.6352 10.6173i −0.907171 0.348529i
\(929\) −43.7091 + 25.2355i −1.43405 + 0.827949i −0.997427 0.0716964i \(-0.977159\pi\)
−0.436622 + 0.899645i \(0.643825\pi\)
\(930\) 0 0
\(931\) −26.4001 15.2421i −0.865227 0.499539i
\(932\) 22.5711 14.9924i 0.739339 0.491094i
\(933\) −6.14998 1.59623i −0.201341 0.0522581i
\(934\) 12.5630 23.4267i 0.411075 0.766546i
\(935\) 0 0
\(936\) −3.82350 34.6883i −0.124975 1.13382i
\(937\) −43.7549 −1.42941 −0.714706 0.699425i \(-0.753439\pi\)
−0.714706 + 0.699425i \(0.753439\pi\)
\(938\) −0.385953 + 0.719701i −0.0126018 + 0.0234991i
\(939\) −29.9275 + 30.4012i −0.976646 + 0.992107i
\(940\) 0 0
\(941\) −12.5420 7.24115i −0.408859 0.236055i 0.281441 0.959579i \(-0.409188\pi\)
−0.690299 + 0.723524i \(0.742521\pi\)
\(942\) 5.32716 5.76221i 0.173568 0.187743i
\(943\) −0.354222 + 0.204510i −0.0115351 + 0.00665977i
\(944\) 6.63975 + 8.75173i 0.216106 + 0.284844i
\(945\) 0 0
\(946\) −20.2360 + 12.5452i −0.657929 + 0.407881i
\(947\) 18.6995 + 32.3885i 0.607653 + 1.05249i 0.991626 + 0.129141i \(0.0412221\pi\)
−0.383973 + 0.923344i \(0.625445\pi\)
\(948\) 1.96721 10.1614i 0.0638919 0.330028i
\(949\) −14.9740 + 25.9357i −0.486077 + 0.841910i
\(950\) 0 0
\(951\) 13.1447 + 12.9399i 0.426247 + 0.419604i
\(952\) −14.1122 19.8651i −0.457381 0.643832i
\(953\) 22.8733i 0.740937i −0.928845 0.370469i \(-0.879197\pi\)
0.928845 0.370469i \(-0.120803\pi\)
\(954\) −11.7593 + 0.553849i −0.380721 + 0.0179315i
\(955\) 0 0
\(956\) 29.2354 1.83596i 0.945539 0.0593793i
\(957\) 9.96518 38.3941i 0.322129 1.24110i
\(958\) 42.9881 1.34848i 1.38888 0.0435676i
\(959\) −4.00123 + 6.93034i −0.129207 + 0.223792i
\(960\) 0 0
\(961\) −3.83710 6.64606i −0.123777 0.214389i
\(962\) −9.93996 16.0336i −0.320477 0.516943i
\(963\) −12.8409 + 7.68506i −0.413791 + 0.247648i
\(964\) −21.7492 + 43.8009i −0.700496 + 1.41073i
\(965\) 0 0
\(966\) −0.0729448 + 0.322282i −0.00234696 + 0.0103693i
\(967\) 50.5672 + 29.1950i 1.62613 + 0.938848i 0.985232 + 0.171223i \(0.0547717\pi\)
0.640899 + 0.767625i \(0.278562\pi\)
\(968\) −9.59870 + 20.9558i −0.308514 + 0.673546i
\(969\) −17.3970 62.9452i −0.558874 2.02209i
\(970\) 0 0
\(971\) −35.2792 −1.13216 −0.566082 0.824349i \(-0.691541\pi\)
−0.566082 + 0.824349i \(0.691541\pi\)
\(972\) 11.0931 + 29.1366i 0.355810 + 0.934558i
\(973\) 0.317795 0.0101881
\(974\) −4.58505 2.45882i −0.146914 0.0787856i
\(975\) 0 0
\(976\) −8.28787 + 1.04507i −0.265288 + 0.0334518i
\(977\) −8.29548 4.78940i −0.265396 0.153226i 0.361398 0.932412i \(-0.382300\pi\)
−0.626794 + 0.779185i \(0.715633\pi\)
\(978\) −5.74166 + 25.3676i −0.183598 + 0.811166i
\(979\) 26.4286 15.2586i 0.844662 0.487666i
\(980\) 0 0
\(981\) −12.8367 + 7.68258i −0.409845 + 0.245286i
\(982\) −13.4974 21.7718i −0.430719 0.694767i
\(983\) −15.7419 27.2657i −0.502088 0.869641i −0.999997 0.00241215i \(-0.999232\pi\)
0.497910 0.867229i \(-0.334101\pi\)
\(984\) 3.15648 19.5754i 0.100625 0.624042i
\(985\) 0 0
\(986\) 47.7430 1.49764i 1.52045 0.0476946i
\(987\) 2.01729 7.77228i 0.0642112 0.247394i
\(988\) 3.01185 + 47.9598i 0.0958196 + 1.52581i
\(989\) 0.388795i 0.0123629i
\(990\) 0 0
\(991\) 30.7819i 0.977818i −0.872335 0.488909i \(-0.837395\pi\)
0.872335 0.488909i \(-0.162605\pi\)
\(992\) −4.26616 26.9857i −0.135451 0.856795i
\(993\) −4.34114 4.27349i −0.137762 0.135615i
\(994\) 0.498260 + 15.8839i 0.0158039 + 0.503808i
\(995\) 0 0
\(996\) −45.5920 8.82639i −1.44464 0.279675i
\(997\) −16.8539 29.1919i −0.533770 0.924516i −0.999222 0.0394432i \(-0.987442\pi\)
0.465452 0.885073i \(-0.345892\pi\)
\(998\) 27.6873 17.1647i 0.876428 0.543338i
\(999\) 12.1943 + 11.6329i 0.385811 + 0.368048i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.851.8 48
4.3 odd 2 inner 900.2.r.g.851.1 48
5.2 odd 4 180.2.n.d.59.5 48
5.3 odd 4 180.2.n.d.59.20 yes 48
5.4 even 2 inner 900.2.r.g.851.17 48
9.2 odd 6 inner 900.2.r.g.551.1 48
15.2 even 4 540.2.n.d.179.20 48
15.8 even 4 540.2.n.d.179.5 48
20.3 even 4 180.2.n.d.59.12 yes 48
20.7 even 4 180.2.n.d.59.13 yes 48
20.19 odd 2 inner 900.2.r.g.851.24 48
36.11 even 6 inner 900.2.r.g.551.8 48
45.2 even 12 180.2.n.d.119.12 yes 48
45.7 odd 12 540.2.n.d.359.13 48
45.29 odd 6 inner 900.2.r.g.551.24 48
45.38 even 12 180.2.n.d.119.13 yes 48
45.43 odd 12 540.2.n.d.359.12 48
60.23 odd 4 540.2.n.d.179.13 48
60.47 odd 4 540.2.n.d.179.12 48
180.7 even 12 540.2.n.d.359.5 48
180.43 even 12 540.2.n.d.359.20 48
180.47 odd 12 180.2.n.d.119.20 yes 48
180.83 odd 12 180.2.n.d.119.5 yes 48
180.119 even 6 inner 900.2.r.g.551.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.5 48 5.2 odd 4
180.2.n.d.59.12 yes 48 20.3 even 4
180.2.n.d.59.13 yes 48 20.7 even 4
180.2.n.d.59.20 yes 48 5.3 odd 4
180.2.n.d.119.5 yes 48 180.83 odd 12
180.2.n.d.119.12 yes 48 45.2 even 12
180.2.n.d.119.13 yes 48 45.38 even 12
180.2.n.d.119.20 yes 48 180.47 odd 12
540.2.n.d.179.5 48 15.8 even 4
540.2.n.d.179.12 48 60.47 odd 4
540.2.n.d.179.13 48 60.23 odd 4
540.2.n.d.179.20 48 15.2 even 4
540.2.n.d.359.5 48 180.7 even 12
540.2.n.d.359.12 48 45.43 odd 12
540.2.n.d.359.13 48 45.7 odd 12
540.2.n.d.359.20 48 180.43 even 12
900.2.r.g.551.1 48 9.2 odd 6 inner
900.2.r.g.551.8 48 36.11 even 6 inner
900.2.r.g.551.17 48 180.119 even 6 inner
900.2.r.g.551.24 48 45.29 odd 6 inner
900.2.r.g.851.1 48 4.3 odd 2 inner
900.2.r.g.851.8 48 1.1 even 1 trivial
900.2.r.g.851.17 48 5.4 even 2 inner
900.2.r.g.851.24 48 20.19 odd 2 inner