Properties

Label 540.2.n.d.179.5
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.5
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24631 - 0.668359i) q^{2} +(1.10659 + 1.66597i) q^{4} +(2.11186 + 0.734875i) q^{5} +(-0.667441 - 1.15604i) q^{7} +(-0.265693 - 2.81592i) q^{8} +(-2.14088 - 2.32737i) q^{10} +(-2.18799 - 3.78971i) q^{11} +(-3.56180 - 2.05641i) q^{13} +(0.0591892 + 1.88688i) q^{14} +(-1.55091 + 3.68710i) q^{16} +6.45392 q^{17} -5.84202i q^{19} +(1.11269 + 4.33150i) q^{20} +(0.194033 + 6.18554i) q^{22} +(0.0875178 + 0.0505284i) q^{23} +(3.91992 + 3.10391i) q^{25} +(3.06470 + 4.94349i) q^{26} +(1.18735 - 2.39120i) q^{28} +(4.53226 - 2.61670i) q^{29} +(4.18262 + 2.41484i) q^{31} +(4.39722 - 3.55871i) q^{32} +(-8.04361 - 4.31354i) q^{34} +(-0.559997 - 2.93189i) q^{35} -3.24337i q^{37} +(-3.90457 + 7.28098i) q^{38} +(1.50824 - 6.14209i) q^{40} +(-3.50518 - 2.02372i) q^{41} +(1.92364 + 3.33185i) q^{43} +(3.89233 - 7.83880i) q^{44} +(-0.0753035 - 0.121468i) q^{46} +(-3.00768 + 1.73649i) q^{47} +(2.60904 - 4.51900i) q^{49} +(-2.81092 - 6.48835i) q^{50} +(-0.515549 - 8.20946i) q^{52} -2.77476 q^{53} +(-1.83577 - 9.61125i) q^{55} +(-3.07799 + 2.18661i) q^{56} +(-7.39751 + 0.232051i) q^{58} +(1.37318 - 2.37841i) q^{59} +(1.04419 + 1.80858i) q^{61} +(-3.59888 - 5.80514i) q^{62} +(-7.85881 + 1.49634i) q^{64} +(-6.01084 - 6.96033i) q^{65} +(0.216298 - 0.374638i) q^{67} +(7.14186 + 10.7520i) q^{68} +(-1.26162 + 4.02833i) q^{70} -8.41810 q^{71} +7.28163i q^{73} +(-2.16773 + 4.04225i) q^{74} +(9.73262 - 6.46473i) q^{76} +(-2.92071 + 5.05882i) q^{77} +(2.58753 - 1.49391i) q^{79} +(-5.98486 + 6.64691i) q^{80} +(3.01598 + 4.86490i) q^{82} +(11.6096 - 6.70282i) q^{83} +(13.6298 + 4.74283i) q^{85} +(-0.170590 - 5.43821i) q^{86} +(-10.0902 + 7.16812i) q^{88} -6.97377i q^{89} +5.49013i q^{91} +(0.0126677 + 0.201716i) q^{92} +(4.90911 - 0.153993i) q^{94} +(4.29315 - 12.3375i) q^{95} +(-2.08608 + 1.20440i) q^{97} +(-6.27200 + 3.88831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24631 0.668359i −0.881276 0.472601i
\(3\) 0 0
\(4\) 1.10659 + 1.66597i 0.553296 + 0.832985i
\(5\) 2.11186 + 0.734875i 0.944453 + 0.328646i
\(6\) 0 0
\(7\) −0.667441 1.15604i −0.252269 0.436943i 0.711881 0.702300i \(-0.247843\pi\)
−0.964150 + 0.265357i \(0.914510\pi\)
\(8\) −0.265693 2.81592i −0.0939368 0.995578i
\(9\) 0 0
\(10\) −2.14088 2.32737i −0.677006 0.735978i
\(11\) −2.18799 3.78971i −0.659705 1.14264i −0.980692 0.195558i \(-0.937348\pi\)
0.320987 0.947083i \(-0.395985\pi\)
\(12\) 0 0
\(13\) −3.56180 2.05641i −0.987867 0.570345i −0.0832309 0.996530i \(-0.526524\pi\)
−0.904636 + 0.426185i \(0.859857\pi\)
\(14\) 0.0591892 + 1.88688i 0.0158190 + 0.504290i
\(15\) 0 0
\(16\) −1.55091 + 3.68710i −0.387727 + 0.921774i
\(17\) 6.45392 1.56531 0.782653 0.622458i \(-0.213866\pi\)
0.782653 + 0.622458i \(0.213866\pi\)
\(18\) 0 0
\(19\) 5.84202i 1.34025i −0.742248 0.670125i \(-0.766240\pi\)
0.742248 0.670125i \(-0.233760\pi\)
\(20\) 1.11269 + 4.33150i 0.248805 + 0.968554i
\(21\) 0 0
\(22\) 0.194033 + 6.18554i 0.0413679 + 1.31876i
\(23\) 0.0875178 + 0.0505284i 0.0182487 + 0.0105359i 0.509097 0.860709i \(-0.329980\pi\)
−0.490848 + 0.871245i \(0.663313\pi\)
\(24\) 0 0
\(25\) 3.91992 + 3.10391i 0.783984 + 0.620782i
\(26\) 3.06470 + 4.94349i 0.601038 + 0.969499i
\(27\) 0 0
\(28\) 1.18735 2.39120i 0.224387 0.451895i
\(29\) 4.53226 2.61670i 0.841620 0.485909i −0.0161948 0.999869i \(-0.505155\pi\)
0.857814 + 0.513960i \(0.171822\pi\)
\(30\) 0 0
\(31\) 4.18262 + 2.41484i 0.751222 + 0.433718i 0.826135 0.563472i \(-0.190535\pi\)
−0.0749136 + 0.997190i \(0.523868\pi\)
\(32\) 4.39722 3.55871i 0.777327 0.629097i
\(33\) 0 0
\(34\) −8.04361 4.31354i −1.37947 0.739766i
\(35\) −0.559997 2.93189i −0.0946568 0.495579i
\(36\) 0 0
\(37\) 3.24337i 0.533206i −0.963806 0.266603i \(-0.914099\pi\)
0.963806 0.266603i \(-0.0859013\pi\)
\(38\) −3.90457 + 7.28098i −0.633404 + 1.18113i
\(39\) 0 0
\(40\) 1.50824 6.14209i 0.238474 0.971149i
\(41\) −3.50518 2.02372i −0.547417 0.316051i 0.200663 0.979660i \(-0.435690\pi\)
−0.748079 + 0.663609i \(0.769024\pi\)
\(42\) 0 0
\(43\) 1.92364 + 3.33185i 0.293353 + 0.508102i 0.974600 0.223951i \(-0.0718957\pi\)
−0.681248 + 0.732053i \(0.738562\pi\)
\(44\) 3.89233 7.83880i 0.586792 1.18174i
\(45\) 0 0
\(46\) −0.0753035 0.121468i −0.0111029 0.0179094i
\(47\) −3.00768 + 1.73649i −0.438715 + 0.253292i −0.703053 0.711138i \(-0.748180\pi\)
0.264337 + 0.964430i \(0.414847\pi\)
\(48\) 0 0
\(49\) 2.60904 4.51900i 0.372721 0.645571i
\(50\) −2.81092 6.48835i −0.397524 0.917592i
\(51\) 0 0
\(52\) −0.515549 8.20946i −0.0714938 1.13845i
\(53\) −2.77476 −0.381143 −0.190571 0.981673i \(-0.561034\pi\)
−0.190571 + 0.981673i \(0.561034\pi\)
\(54\) 0 0
\(55\) −1.83577 9.61125i −0.247535 1.29598i
\(56\) −3.07799 + 2.18661i −0.411313 + 0.292199i
\(57\) 0 0
\(58\) −7.39751 + 0.232051i −0.971341 + 0.0304698i
\(59\) 1.37318 2.37841i 0.178772 0.309642i −0.762688 0.646766i \(-0.776121\pi\)
0.941460 + 0.337124i \(0.109454\pi\)
\(60\) 0 0
\(61\) 1.04419 + 1.80858i 0.133694 + 0.231566i 0.925098 0.379729i \(-0.123983\pi\)
−0.791404 + 0.611294i \(0.790649\pi\)
\(62\) −3.59888 5.80514i −0.457058 0.737254i
\(63\) 0 0
\(64\) −7.85881 + 1.49634i −0.982352 + 0.187043i
\(65\) −6.01084 6.96033i −0.745552 0.863323i
\(66\) 0 0
\(67\) 0.216298 0.374638i 0.0264250 0.0457694i −0.852511 0.522710i \(-0.824921\pi\)
0.878935 + 0.476941i \(0.158254\pi\)
\(68\) 7.14186 + 10.7520i 0.866078 + 1.30388i
\(69\) 0 0
\(70\) −1.26162 + 4.02833i −0.150793 + 0.481477i
\(71\) −8.41810 −0.999044 −0.499522 0.866301i \(-0.666491\pi\)
−0.499522 + 0.866301i \(0.666491\pi\)
\(72\) 0 0
\(73\) 7.28163i 0.852250i 0.904664 + 0.426125i \(0.140122\pi\)
−0.904664 + 0.426125i \(0.859878\pi\)
\(74\) −2.16773 + 4.04225i −0.251994 + 0.469902i
\(75\) 0 0
\(76\) 9.73262 6.46473i 1.11641 0.741555i
\(77\) −2.92071 + 5.05882i −0.332846 + 0.576507i
\(78\) 0 0
\(79\) 2.58753 1.49391i 0.291120 0.168078i −0.347327 0.937744i \(-0.612911\pi\)
0.638447 + 0.769666i \(0.279577\pi\)
\(80\) −5.98486 + 6.64691i −0.669128 + 0.743147i
\(81\) 0 0
\(82\) 3.01598 + 4.86490i 0.333059 + 0.537238i
\(83\) 11.6096 6.70282i 1.27432 0.735730i 0.298524 0.954402i \(-0.403506\pi\)
0.975798 + 0.218672i \(0.0701724\pi\)
\(84\) 0 0
\(85\) 13.6298 + 4.74283i 1.47836 + 0.514432i
\(86\) −0.170590 5.43821i −0.0183952 0.586417i
\(87\) 0 0
\(88\) −10.0902 + 7.16812i −1.07562 + 0.764124i
\(89\) 6.97377i 0.739218i −0.929187 0.369609i \(-0.879492\pi\)
0.929187 0.369609i \(-0.120508\pi\)
\(90\) 0 0
\(91\) 5.49013i 0.575522i
\(92\) 0.0126677 + 0.201716i 0.00132070 + 0.0210304i
\(93\) 0 0
\(94\) 4.90911 0.153993i 0.506336 0.0158831i
\(95\) 4.29315 12.3375i 0.440468 1.26580i
\(96\) 0 0
\(97\) −2.08608 + 1.20440i −0.211809 + 0.122288i −0.602152 0.798382i \(-0.705690\pi\)
0.390343 + 0.920670i \(0.372356\pi\)
\(98\) −6.27200 + 3.88831i −0.633568 + 0.392778i
\(99\) 0 0
\(100\) −0.833267 + 9.96522i −0.0833267 + 0.996522i
\(101\) 3.92717 2.26735i 0.390768 0.225610i −0.291725 0.956502i \(-0.594229\pi\)
0.682493 + 0.730892i \(0.260896\pi\)
\(102\) 0 0
\(103\) −1.95140 + 3.37992i −0.192277 + 0.333034i −0.946005 0.324153i \(-0.894921\pi\)
0.753727 + 0.657187i \(0.228254\pi\)
\(104\) −4.84434 + 10.5761i −0.475026 + 1.03708i
\(105\) 0 0
\(106\) 3.45822 + 1.85454i 0.335892 + 0.180129i
\(107\) 4.98830i 0.482237i 0.970496 + 0.241118i \(0.0775142\pi\)
−0.970496 + 0.241118i \(0.922486\pi\)
\(108\) 0 0
\(109\) −4.98669 −0.477638 −0.238819 0.971064i \(-0.576760\pi\)
−0.238819 + 0.971064i \(0.576760\pi\)
\(110\) −4.13582 + 13.2056i −0.394335 + 1.25910i
\(111\) 0 0
\(112\) 5.29758 0.668004i 0.500574 0.0631204i
\(113\) −10.2057 + 17.6768i −0.960073 + 1.66290i −0.237767 + 0.971322i \(0.576416\pi\)
−0.722306 + 0.691574i \(0.756918\pi\)
\(114\) 0 0
\(115\) 0.147693 + 0.171024i 0.0137725 + 0.0159480i
\(116\) 9.37471 + 4.65499i 0.870420 + 0.432205i
\(117\) 0 0
\(118\) −3.30104 + 2.04647i −0.303885 + 0.188393i
\(119\) −4.30762 7.46101i −0.394879 0.683950i
\(120\) 0 0
\(121\) −4.07462 + 7.05746i −0.370420 + 0.641587i
\(122\) −0.0925992 2.95195i −0.00838354 0.267257i
\(123\) 0 0
\(124\) 0.605409 + 9.64037i 0.0543673 + 0.865730i
\(125\) 5.99734 + 9.43567i 0.536418 + 0.843952i
\(126\) 0 0
\(127\) 19.1833 1.70224 0.851122 0.524968i \(-0.175923\pi\)
0.851122 + 0.524968i \(0.175923\pi\)
\(128\) 10.7946 + 3.38760i 0.954120 + 0.299424i
\(129\) 0 0
\(130\) 2.83938 + 12.6921i 0.249030 + 1.11318i
\(131\) −8.41433 + 14.5740i −0.735163 + 1.27334i 0.219488 + 0.975615i \(0.429561\pi\)
−0.954652 + 0.297725i \(0.903772\pi\)
\(132\) 0 0
\(133\) −6.75362 + 3.89920i −0.585613 + 0.338104i
\(134\) −0.519967 + 0.322352i −0.0449183 + 0.0278470i
\(135\) 0 0
\(136\) −1.71477 18.1737i −0.147040 1.55839i
\(137\) −2.99744 5.19172i −0.256089 0.443559i 0.709102 0.705106i \(-0.249101\pi\)
−0.965191 + 0.261547i \(0.915767\pi\)
\(138\) 0 0
\(139\) −0.206175 0.119035i −0.0174875 0.0100964i 0.491231 0.871029i \(-0.336547\pi\)
−0.508718 + 0.860933i \(0.669881\pi\)
\(140\) 4.26475 4.17734i 0.360437 0.353050i
\(141\) 0 0
\(142\) 10.4916 + 5.62631i 0.880434 + 0.472150i
\(143\) 17.9976i 1.50504i
\(144\) 0 0
\(145\) 11.4945 2.19547i 0.954563 0.182324i
\(146\) 4.86674 9.07519i 0.402775 0.751068i
\(147\) 0 0
\(148\) 5.40335 3.58908i 0.444153 0.295021i
\(149\) 8.84885 + 5.10889i 0.724926 + 0.418536i 0.816563 0.577256i \(-0.195877\pi\)
−0.0916368 + 0.995792i \(0.529210\pi\)
\(150\) 0 0
\(151\) −13.0489 + 7.53379i −1.06190 + 0.613091i −0.925958 0.377625i \(-0.876741\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(152\) −16.4507 + 1.55219i −1.33432 + 0.125899i
\(153\) 0 0
\(154\) 7.02124 4.35279i 0.565787 0.350758i
\(155\) 7.05852 + 8.17351i 0.566954 + 0.656512i
\(156\) 0 0
\(157\) −2.77448 1.60184i −0.221427 0.127841i 0.385184 0.922840i \(-0.374138\pi\)
−0.606611 + 0.794999i \(0.707471\pi\)
\(158\) −4.22334 + 0.132481i −0.335991 + 0.0105396i
\(159\) 0 0
\(160\) 11.9015 4.28410i 0.940899 0.338688i
\(161\) 0.134899i 0.0106315i
\(162\) 0 0
\(163\) −10.6182 −0.831684 −0.415842 0.909437i \(-0.636513\pi\)
−0.415842 + 0.909437i \(0.636513\pi\)
\(164\) −0.507353 8.07895i −0.0396176 0.630860i
\(165\) 0 0
\(166\) −18.9491 + 0.594411i −1.47074 + 0.0461352i
\(167\) −10.9127 6.30046i −0.844451 0.487544i 0.0143236 0.999897i \(-0.495440\pi\)
−0.858775 + 0.512353i \(0.828774\pi\)
\(168\) 0 0
\(169\) 1.95764 + 3.39073i 0.150587 + 0.260825i
\(170\) −13.8171 15.0206i −1.05972 1.15203i
\(171\) 0 0
\(172\) −3.42207 + 6.89172i −0.260930 + 0.525489i
\(173\) −0.858165 1.48639i −0.0652451 0.113008i 0.831558 0.555439i \(-0.187450\pi\)
−0.896803 + 0.442431i \(0.854116\pi\)
\(174\) 0 0
\(175\) 0.971933 6.60327i 0.0734712 0.499160i
\(176\) 17.3664 2.18984i 1.30904 0.165065i
\(177\) 0 0
\(178\) −4.66099 + 8.69150i −0.349356 + 0.651456i
\(179\) 18.6630 1.39494 0.697468 0.716616i \(-0.254310\pi\)
0.697468 + 0.716616i \(0.254310\pi\)
\(180\) 0 0
\(181\) −19.9281 −1.48125 −0.740623 0.671920i \(-0.765470\pi\)
−0.740623 + 0.671920i \(0.765470\pi\)
\(182\) 3.66938 6.84242i 0.271992 0.507194i
\(183\) 0 0
\(184\) 0.119031 0.259868i 0.00877509 0.0191577i
\(185\) 2.38347 6.84954i 0.175236 0.503588i
\(186\) 0 0
\(187\) −14.1211 24.4585i −1.03264 1.78859i
\(188\) −6.22121 3.08912i −0.453728 0.225298i
\(189\) 0 0
\(190\) −13.5965 + 12.5071i −0.986395 + 0.907357i
\(191\) 10.8229 + 18.7459i 0.783121 + 1.35641i 0.930115 + 0.367268i \(0.119707\pi\)
−0.146994 + 0.989137i \(0.546960\pi\)
\(192\) 0 0
\(193\) −9.00614 5.19970i −0.648276 0.374282i 0.139519 0.990219i \(-0.455444\pi\)
−0.787795 + 0.615937i \(0.788778\pi\)
\(194\) 3.40487 0.106807i 0.244456 0.00766827i
\(195\) 0 0
\(196\) 10.4157 0.654097i 0.743976 0.0467212i
\(197\) 8.15715 0.581173 0.290586 0.956849i \(-0.406150\pi\)
0.290586 + 0.956849i \(0.406150\pi\)
\(198\) 0 0
\(199\) 9.18172i 0.650875i 0.945564 + 0.325438i \(0.105512\pi\)
−0.945564 + 0.325438i \(0.894488\pi\)
\(200\) 7.69886 11.8629i 0.544392 0.838831i
\(201\) 0 0
\(202\) −6.40988 + 0.201070i −0.450998 + 0.0141473i
\(203\) −6.05004 3.49299i −0.424629 0.245160i
\(204\) 0 0
\(205\) −5.91527 6.84967i −0.413141 0.478402i
\(206\) 4.69106 2.90821i 0.326842 0.202624i
\(207\) 0 0
\(208\) 13.1062 9.94341i 0.908752 0.689452i
\(209\) −22.1396 + 12.7823i −1.53143 + 0.884170i
\(210\) 0 0
\(211\) 8.87092 + 5.12163i 0.610699 + 0.352587i 0.773239 0.634115i \(-0.218635\pi\)
−0.162540 + 0.986702i \(0.551969\pi\)
\(212\) −3.07053 4.62267i −0.210885 0.317486i
\(213\) 0 0
\(214\) 3.33397 6.21698i 0.227906 0.424984i
\(215\) 1.61398 + 8.45003i 0.110072 + 0.576287i
\(216\) 0 0
\(217\) 6.44705i 0.437655i
\(218\) 6.21497 + 3.33290i 0.420931 + 0.225732i
\(219\) 0 0
\(220\) 13.9806 13.6941i 0.942572 0.923254i
\(221\) −22.9876 13.2719i −1.54631 0.892765i
\(222\) 0 0
\(223\) 11.6245 + 20.1343i 0.778436 + 1.34829i 0.932843 + 0.360283i \(0.117320\pi\)
−0.154407 + 0.988007i \(0.549347\pi\)
\(224\) −7.04891 2.70815i −0.470975 0.180946i
\(225\) 0 0
\(226\) 24.5340 15.2098i 1.63198 1.01174i
\(227\) 14.7354 8.50750i 0.978024 0.564663i 0.0763513 0.997081i \(-0.475673\pi\)
0.901673 + 0.432418i \(0.142340\pi\)
\(228\) 0 0
\(229\) −0.750685 + 1.30022i −0.0496066 + 0.0859212i −0.889762 0.456424i \(-0.849130\pi\)
0.840156 + 0.542345i \(0.182463\pi\)
\(230\) −0.0697670 0.311861i −0.00460030 0.0205635i
\(231\) 0 0
\(232\) −8.57262 12.0672i −0.562820 0.792253i
\(233\) 13.5483 0.887579 0.443789 0.896131i \(-0.353634\pi\)
0.443789 + 0.896131i \(0.353634\pi\)
\(234\) 0 0
\(235\) −7.62791 + 1.45695i −0.497590 + 0.0950408i
\(236\) 5.48190 0.344260i 0.356841 0.0224094i
\(237\) 0 0
\(238\) 0.382002 + 12.1778i 0.0247615 + 0.789369i
\(239\) −7.32324 + 12.6842i −0.473701 + 0.820474i −0.999547 0.0301057i \(-0.990416\pi\)
0.525846 + 0.850580i \(0.323749\pi\)
\(240\) 0 0
\(241\) −12.2259 21.1758i −0.787537 1.36405i −0.927472 0.373894i \(-0.878022\pi\)
0.139934 0.990161i \(-0.455311\pi\)
\(242\) 9.79517 6.07249i 0.629658 0.390354i
\(243\) 0 0
\(244\) −1.85756 + 3.74095i −0.118918 + 0.239490i
\(245\) 8.83084 7.62617i 0.564181 0.487218i
\(246\) 0 0
\(247\) −12.0136 + 20.8081i −0.764406 + 1.32399i
\(248\) 5.68870 12.4195i 0.361233 0.788642i
\(249\) 0 0
\(250\) −1.16814 15.7682i −0.0738799 0.997267i
\(251\) −13.1808 −0.831965 −0.415982 0.909373i \(-0.636562\pi\)
−0.415982 + 0.909373i \(0.636562\pi\)
\(252\) 0 0
\(253\) 0.442223i 0.0278024i
\(254\) −23.9084 12.8214i −1.50015 0.804483i
\(255\) 0 0
\(256\) −11.1894 11.4367i −0.699335 0.714794i
\(257\) 3.48508 6.03633i 0.217393 0.376536i −0.736617 0.676310i \(-0.763578\pi\)
0.954010 + 0.299774i \(0.0969113\pi\)
\(258\) 0 0
\(259\) −3.74947 + 2.16476i −0.232981 + 0.134511i
\(260\) 4.94416 17.7161i 0.306624 1.09871i
\(261\) 0 0
\(262\) 20.2276 12.5400i 1.24966 0.774725i
\(263\) −13.9809 + 8.07190i −0.862102 + 0.497735i −0.864716 0.502262i \(-0.832501\pi\)
0.00261352 + 0.999997i \(0.499168\pi\)
\(264\) 0 0
\(265\) −5.85991 2.03910i −0.359971 0.125261i
\(266\) 11.0232 0.345784i 0.675875 0.0212014i
\(267\) 0 0
\(268\) 0.863489 0.0542266i 0.0527460 0.00331242i
\(269\) 21.7634i 1.32694i 0.748204 + 0.663468i \(0.230916\pi\)
−0.748204 + 0.663468i \(0.769084\pi\)
\(270\) 0 0
\(271\) 30.1548i 1.83177i 0.401436 + 0.915887i \(0.368511\pi\)
−0.401436 + 0.915887i \(0.631489\pi\)
\(272\) −10.0095 + 23.7962i −0.606912 + 1.44286i
\(273\) 0 0
\(274\) 0.265815 + 8.47388i 0.0160585 + 0.511926i
\(275\) 3.18617 21.6467i 0.192133 1.30535i
\(276\) 0 0
\(277\) 11.2614 6.50177i 0.676632 0.390654i −0.121953 0.992536i \(-0.538916\pi\)
0.798585 + 0.601882i \(0.205582\pi\)
\(278\) 0.177400 + 0.286153i 0.0106397 + 0.0171623i
\(279\) 0 0
\(280\) −8.10717 + 2.35589i −0.484496 + 0.140791i
\(281\) 0.936692 0.540799i 0.0558784 0.0322614i −0.471801 0.881705i \(-0.656396\pi\)
0.527679 + 0.849444i \(0.323062\pi\)
\(282\) 0 0
\(283\) 14.6158 25.3154i 0.868821 1.50484i 0.00561859 0.999984i \(-0.498212\pi\)
0.863202 0.504858i \(-0.168455\pi\)
\(284\) −9.31540 14.0243i −0.552767 0.832189i
\(285\) 0 0
\(286\) 12.0289 22.4307i 0.711283 1.32635i
\(287\) 5.40284i 0.318920i
\(288\) 0 0
\(289\) 24.6531 1.45019
\(290\) −15.7930 4.94619i −0.927400 0.290450i
\(291\) 0 0
\(292\) −12.1310 + 8.05779i −0.709911 + 0.471547i
\(293\) 2.81552 4.87662i 0.164484 0.284895i −0.771988 0.635637i \(-0.780737\pi\)
0.936472 + 0.350742i \(0.114071\pi\)
\(294\) 0 0
\(295\) 4.64779 4.01376i 0.270605 0.233690i
\(296\) −9.13306 + 0.861741i −0.530848 + 0.0500877i
\(297\) 0 0
\(298\) −7.61387 12.2815i −0.441060 0.711447i
\(299\) −0.207814 0.359945i −0.0120182 0.0208162i
\(300\) 0 0
\(301\) 2.56784 4.44762i 0.148008 0.256357i
\(302\) 21.2983 0.668101i 1.22558 0.0384449i
\(303\) 0 0
\(304\) 21.5401 + 9.06044i 1.23541 + 0.519652i
\(305\) 0.876095 + 4.58683i 0.0501650 + 0.262641i
\(306\) 0 0
\(307\) −15.2931 −0.872826 −0.436413 0.899747i \(-0.643751\pi\)
−0.436413 + 0.899747i \(0.643751\pi\)
\(308\) −11.6599 + 0.732233i −0.664384 + 0.0417229i
\(309\) 0 0
\(310\) −3.33428 14.9044i −0.189374 0.846512i
\(311\) −1.83417 + 3.17688i −0.104006 + 0.180144i −0.913332 0.407216i \(-0.866500\pi\)
0.809326 + 0.587360i \(0.199833\pi\)
\(312\) 0 0
\(313\) 21.3301 12.3149i 1.20565 0.696081i 0.243842 0.969815i \(-0.421592\pi\)
0.961805 + 0.273734i \(0.0882588\pi\)
\(314\) 2.38726 + 3.85075i 0.134721 + 0.217310i
\(315\) 0 0
\(316\) 5.35215 + 2.65759i 0.301082 + 0.149501i
\(317\) −5.32466 9.22258i −0.299063 0.517992i 0.676859 0.736113i \(-0.263341\pi\)
−0.975922 + 0.218121i \(0.930007\pi\)
\(318\) 0 0
\(319\) −19.8331 11.4506i −1.11044 0.641113i
\(320\) −17.6964 2.61518i −0.989256 0.146193i
\(321\) 0 0
\(322\) −0.0901611 + 0.168126i −0.00502448 + 0.00936932i
\(323\) 37.7039i 2.09790i
\(324\) 0 0
\(325\) −7.57908 19.1165i −0.420412 1.06039i
\(326\) 13.2336 + 7.09679i 0.732943 + 0.393055i
\(327\) 0 0
\(328\) −4.76732 + 10.4080i −0.263231 + 0.574685i
\(329\) 4.01490 + 2.31800i 0.221349 + 0.127796i
\(330\) 0 0
\(331\) 3.04582 1.75851i 0.167414 0.0966563i −0.413952 0.910299i \(-0.635852\pi\)
0.581366 + 0.813642i \(0.302519\pi\)
\(332\) 24.0138 + 11.9240i 1.31793 + 0.654415i
\(333\) 0 0
\(334\) 9.38969 + 15.1460i 0.513781 + 0.828750i
\(335\) 0.732103 0.632233i 0.0399990 0.0345426i
\(336\) 0 0
\(337\) 20.3763 + 11.7643i 1.10997 + 0.640841i 0.938821 0.344405i \(-0.111919\pi\)
0.171147 + 0.985245i \(0.445253\pi\)
\(338\) −0.173605 5.53431i −0.00944284 0.301027i
\(339\) 0 0
\(340\) 7.18121 + 27.9552i 0.389456 + 1.51608i
\(341\) 21.1346i 1.14450i
\(342\) 0 0
\(343\) −16.3097 −0.880642
\(344\) 8.87111 6.30207i 0.478298 0.339785i
\(345\) 0 0
\(346\) 0.0761027 + 2.42607i 0.00409131 + 0.130426i
\(347\) 3.63147 + 2.09663i 0.194947 + 0.112553i 0.594297 0.804246i \(-0.297431\pi\)
−0.399349 + 0.916799i \(0.630764\pi\)
\(348\) 0 0
\(349\) 2.78198 + 4.81854i 0.148916 + 0.257930i 0.930827 0.365460i \(-0.119088\pi\)
−0.781911 + 0.623390i \(0.785755\pi\)
\(350\) −5.62469 + 7.58014i −0.300652 + 0.405175i
\(351\) 0 0
\(352\) −23.1076 8.87779i −1.23164 0.473188i
\(353\) −5.51109 9.54549i −0.293326 0.508055i 0.681268 0.732034i \(-0.261429\pi\)
−0.974594 + 0.223979i \(0.928095\pi\)
\(354\) 0 0
\(355\) −17.7779 6.18625i −0.943550 0.328332i
\(356\) 11.6181 7.71712i 0.615758 0.409006i
\(357\) 0 0
\(358\) −23.2599 12.4736i −1.22932 0.659248i
\(359\) 27.2920 1.44042 0.720209 0.693757i \(-0.244046\pi\)
0.720209 + 0.693757i \(0.244046\pi\)
\(360\) 0 0
\(361\) −15.1292 −0.796272
\(362\) 24.8367 + 13.3192i 1.30539 + 0.700039i
\(363\) 0 0
\(364\) −9.14639 + 6.07533i −0.479401 + 0.318434i
\(365\) −5.35109 + 15.3778i −0.280089 + 0.804910i
\(366\) 0 0
\(367\) 15.7443 + 27.2699i 0.821846 + 1.42348i 0.904306 + 0.426885i \(0.140389\pi\)
−0.0824597 + 0.996594i \(0.526278\pi\)
\(368\) −0.322035 + 0.244322i −0.0167873 + 0.0127361i
\(369\) 0 0
\(370\) −7.54850 + 6.94366i −0.392428 + 0.360984i
\(371\) 1.85199 + 3.20774i 0.0961505 + 0.166538i
\(372\) 0 0
\(373\) −20.2988 11.7195i −1.05103 0.606812i −0.128092 0.991762i \(-0.540885\pi\)
−0.922937 + 0.384950i \(0.874219\pi\)
\(374\) 1.25227 + 39.9210i 0.0647535 + 2.06426i
\(375\) 0 0
\(376\) 5.68893 + 8.00802i 0.293384 + 0.412982i
\(377\) −21.5240 −1.10854
\(378\) 0 0
\(379\) 11.5529i 0.593434i −0.954965 0.296717i \(-0.904108\pi\)
0.954965 0.296717i \(-0.0958918\pi\)
\(380\) 25.3047 6.50035i 1.29810 0.333461i
\(381\) 0 0
\(382\) −0.959787 30.5969i −0.0491070 1.56547i
\(383\) 22.7016 + 13.1068i 1.16000 + 0.669725i 0.951304 0.308256i \(-0.0997452\pi\)
0.208695 + 0.977981i \(0.433079\pi\)
\(384\) 0 0
\(385\) −9.88575 + 8.53718i −0.503824 + 0.435095i
\(386\) 7.74920 + 12.4998i 0.394424 + 0.636222i
\(387\) 0 0
\(388\) −4.31492 2.14256i −0.219057 0.108772i
\(389\) 1.38545 0.799888i 0.0702449 0.0405559i −0.464466 0.885591i \(-0.653754\pi\)
0.534711 + 0.845035i \(0.320420\pi\)
\(390\) 0 0
\(391\) 0.564834 + 0.326107i 0.0285649 + 0.0164919i
\(392\) −13.4183 6.14619i −0.677729 0.310430i
\(393\) 0 0
\(394\) −10.1664 5.45190i −0.512174 0.274663i
\(395\) 6.56234 1.25342i 0.330187 0.0630665i
\(396\) 0 0
\(397\) 25.9373i 1.30176i 0.759182 + 0.650879i \(0.225599\pi\)
−0.759182 + 0.650879i \(0.774401\pi\)
\(398\) 6.13669 11.4433i 0.307605 0.573601i
\(399\) 0 0
\(400\) −17.5238 + 9.63924i −0.876192 + 0.481962i
\(401\) 21.5383 + 12.4351i 1.07557 + 0.620980i 0.929698 0.368323i \(-0.120068\pi\)
0.145872 + 0.989304i \(0.453401\pi\)
\(402\) 0 0
\(403\) −9.93179 17.2024i −0.494738 0.856911i
\(404\) 8.12311 + 4.03351i 0.404140 + 0.200675i
\(405\) 0 0
\(406\) 5.20567 + 8.39696i 0.258353 + 0.416734i
\(407\) −12.2914 + 7.09646i −0.609264 + 0.351759i
\(408\) 0 0
\(409\) −10.6869 + 18.5102i −0.528433 + 0.915272i 0.471018 + 0.882124i \(0.343887\pi\)
−0.999450 + 0.0331484i \(0.989447\pi\)
\(410\) 2.79424 + 12.4904i 0.137998 + 0.616855i
\(411\) 0 0
\(412\) −7.79025 + 0.489223i −0.383798 + 0.0241023i
\(413\) −3.66606 −0.180395
\(414\) 0 0
\(415\) 29.4437 5.62381i 1.44533 0.276062i
\(416\) −22.9802 + 3.63295i −1.12670 + 0.178120i
\(417\) 0 0
\(418\) 36.1360 1.13354i 1.76747 0.0554434i
\(419\) −3.12824 + 5.41826i −0.152824 + 0.264700i −0.932265 0.361777i \(-0.882170\pi\)
0.779440 + 0.626476i \(0.215504\pi\)
\(420\) 0 0
\(421\) 15.3599 + 26.6041i 0.748596 + 1.29661i 0.948496 + 0.316790i \(0.102605\pi\)
−0.199900 + 0.979816i \(0.564062\pi\)
\(422\) −7.63286 12.3121i −0.371562 0.599344i
\(423\) 0 0
\(424\) 0.737236 + 7.81350i 0.0358033 + 0.379457i
\(425\) 25.2989 + 20.0324i 1.22717 + 0.971713i
\(426\) 0 0
\(427\) 1.39387 2.41425i 0.0674540 0.116834i
\(428\) −8.31035 + 5.52001i −0.401696 + 0.266820i
\(429\) 0 0
\(430\) 3.63614 11.6101i 0.175350 0.559889i
\(431\) −35.1049 −1.69094 −0.845472 0.534020i \(-0.820681\pi\)
−0.845472 + 0.534020i \(0.820681\pi\)
\(432\) 0 0
\(433\) 24.5043i 1.17760i 0.808279 + 0.588800i \(0.200399\pi\)
−0.808279 + 0.588800i \(0.799601\pi\)
\(434\) −4.30895 + 8.03505i −0.206836 + 0.385695i
\(435\) 0 0
\(436\) −5.51823 8.30767i −0.264275 0.397865i
\(437\) 0.295188 0.511281i 0.0141208 0.0244579i
\(438\) 0 0
\(439\) 15.3741 8.87623i 0.733765 0.423639i −0.0860332 0.996292i \(-0.527419\pi\)
0.819798 + 0.572653i \(0.194086\pi\)
\(440\) −26.5768 + 7.72303i −1.26700 + 0.368181i
\(441\) 0 0
\(442\) 19.7794 + 31.9049i 0.940808 + 1.51756i
\(443\) −6.08715 + 3.51442i −0.289209 + 0.166975i −0.637585 0.770380i \(-0.720067\pi\)
0.348376 + 0.937355i \(0.386733\pi\)
\(444\) 0 0
\(445\) 5.12485 14.7276i 0.242941 0.698157i
\(446\) −1.03087 32.8630i −0.0488132 1.55611i
\(447\) 0 0
\(448\) 6.97513 + 8.08640i 0.329544 + 0.382047i
\(449\) 16.6756i 0.786971i −0.919331 0.393485i \(-0.871269\pi\)
0.919331 0.393485i \(-0.128731\pi\)
\(450\) 0 0
\(451\) 17.7115i 0.834002i
\(452\) −40.7426 + 2.55861i −1.91637 + 0.120347i
\(453\) 0 0
\(454\) −24.0510 + 0.754451i −1.12877 + 0.0354081i
\(455\) −4.03456 + 11.5944i −0.189143 + 0.543554i
\(456\) 0 0
\(457\) −25.7193 + 14.8490i −1.20310 + 0.694608i −0.961242 0.275704i \(-0.911089\pi\)
−0.241854 + 0.970313i \(0.577756\pi\)
\(458\) 1.80460 1.11876i 0.0843236 0.0522762i
\(459\) 0 0
\(460\) −0.121484 + 0.435306i −0.00566422 + 0.0202963i
\(461\) −12.2647 + 7.08100i −0.571222 + 0.329795i −0.757637 0.652676i \(-0.773646\pi\)
0.186415 + 0.982471i \(0.440313\pi\)
\(462\) 0 0
\(463\) −2.85520 + 4.94535i −0.132692 + 0.229830i −0.924714 0.380664i \(-0.875696\pi\)
0.792021 + 0.610494i \(0.209029\pi\)
\(464\) 2.61891 + 20.7691i 0.121580 + 0.964184i
\(465\) 0 0
\(466\) −16.8854 9.05513i −0.782202 0.419471i
\(467\) 18.7968i 0.869813i −0.900476 0.434907i \(-0.856781\pi\)
0.900476 0.434907i \(-0.143219\pi\)
\(468\) 0 0
\(469\) −0.577464 −0.0266648
\(470\) 10.4805 + 3.28237i 0.483430 + 0.151404i
\(471\) 0 0
\(472\) −7.06225 3.23482i −0.325067 0.148895i
\(473\) 8.41783 14.5801i 0.387052 0.670394i
\(474\) 0 0
\(475\) 18.1331 22.9002i 0.832003 1.05073i
\(476\) 7.66304 15.4327i 0.351235 0.707354i
\(477\) 0 0
\(478\) 17.6047 10.9140i 0.805219 0.499193i
\(479\) −15.2061 26.3377i −0.694783 1.20340i −0.970254 0.242090i \(-0.922167\pi\)
0.275471 0.961309i \(-0.411166\pi\)
\(480\) 0 0
\(481\) −6.66969 + 11.5522i −0.304112 + 0.526737i
\(482\) 1.08420 + 34.5630i 0.0493839 + 1.57430i
\(483\) 0 0
\(484\) −16.2665 + 1.02152i −0.739384 + 0.0464329i
\(485\) −5.29058 + 1.01051i −0.240233 + 0.0458851i
\(486\) 0 0
\(487\) 3.67889 0.166706 0.0833532 0.996520i \(-0.473437\pi\)
0.0833532 + 0.996520i \(0.473437\pi\)
\(488\) 4.81540 3.42088i 0.217983 0.154856i
\(489\) 0 0
\(490\) −16.1030 + 3.60243i −0.727460 + 0.162741i
\(491\) 9.05671 15.6867i 0.408724 0.707930i −0.586023 0.810294i \(-0.699307\pi\)
0.994747 + 0.102364i \(0.0326406\pi\)
\(492\) 0 0
\(493\) 29.2509 16.8880i 1.31739 0.760597i
\(494\) 28.8800 17.9040i 1.29937 0.805541i
\(495\) 0 0
\(496\) −15.3906 + 11.6765i −0.691059 + 0.524292i
\(497\) 5.61859 + 9.73168i 0.252028 + 0.436525i
\(498\) 0 0
\(499\) 19.9488 + 11.5175i 0.893032 + 0.515592i 0.874933 0.484244i \(-0.160905\pi\)
0.0180991 + 0.999836i \(0.494239\pi\)
\(500\) −9.08293 + 20.4328i −0.406201 + 0.913784i
\(501\) 0 0
\(502\) 16.4274 + 8.80951i 0.733191 + 0.393188i
\(503\) 31.1266i 1.38787i 0.720039 + 0.693934i \(0.244124\pi\)
−0.720039 + 0.693934i \(0.755876\pi\)
\(504\) 0 0
\(505\) 9.95985 1.90235i 0.443208 0.0846537i
\(506\) −0.295564 + 0.551149i −0.0131394 + 0.0245016i
\(507\) 0 0
\(508\) 21.2281 + 31.9588i 0.941845 + 1.41794i
\(509\) 0.489681 + 0.282717i 0.0217047 + 0.0125312i 0.510813 0.859692i \(-0.329344\pi\)
−0.489108 + 0.872223i \(0.662678\pi\)
\(510\) 0 0
\(511\) 8.41787 4.86006i 0.372385 0.214996i
\(512\) 6.30162 + 21.7322i 0.278495 + 0.960438i
\(513\) 0 0
\(514\) −8.37793 + 5.19387i −0.369535 + 0.229092i
\(515\) −6.60491 + 5.70390i −0.291047 + 0.251344i
\(516\) 0 0
\(517\) 13.1616 + 7.59884i 0.578845 + 0.334196i
\(518\) 6.11985 0.191972i 0.268891 0.00843477i
\(519\) 0 0
\(520\) −18.0027 + 18.7753i −0.789471 + 0.823353i
\(521\) 4.80678i 0.210589i 0.994441 + 0.105294i \(0.0335785\pi\)
−0.994441 + 0.105294i \(0.966422\pi\)
\(522\) 0 0
\(523\) 19.6207 0.857954 0.428977 0.903315i \(-0.358874\pi\)
0.428977 + 0.903315i \(0.358874\pi\)
\(524\) −33.5911 + 2.10950i −1.46744 + 0.0921540i
\(525\) 0 0
\(526\) 22.8196 0.715822i 0.994980 0.0312113i
\(527\) 26.9943 + 15.5852i 1.17589 + 0.678902i
\(528\) 0 0
\(529\) −11.4949 19.9097i −0.499778 0.865641i
\(530\) 5.94043 + 6.45788i 0.258036 + 0.280513i
\(531\) 0 0
\(532\) −13.9695 6.93650i −0.605653 0.300735i
\(533\) 8.32317 + 14.4162i 0.360517 + 0.624433i
\(534\) 0 0
\(535\) −3.66577 + 10.5346i −0.158485 + 0.455450i
\(536\) −1.11242 0.509538i −0.0480493 0.0220087i
\(537\) 0 0
\(538\) 14.5458 27.1240i 0.627112 1.16940i
\(539\) −22.8343 −0.983542
\(540\) 0 0
\(541\) 40.3065 1.73291 0.866457 0.499252i \(-0.166392\pi\)
0.866457 + 0.499252i \(0.166392\pi\)
\(542\) 20.1542 37.5823i 0.865699 1.61430i
\(543\) 0 0
\(544\) 28.3793 22.9677i 1.21675 0.984730i
\(545\) −10.5312 3.66459i −0.451107 0.156974i
\(546\) 0 0
\(547\) −1.44201 2.49763i −0.0616557 0.106791i 0.833550 0.552444i \(-0.186305\pi\)
−0.895206 + 0.445653i \(0.852971\pi\)
\(548\) 5.33231 10.7388i 0.227785 0.458737i
\(549\) 0 0
\(550\) −18.4387 + 24.8491i −0.786230 + 1.05957i
\(551\) −15.2868 26.4775i −0.651240 1.12798i
\(552\) 0 0
\(553\) −3.45405 1.99419i −0.146881 0.0848018i
\(554\) −18.3807 + 0.576582i −0.780923 + 0.0244966i
\(555\) 0 0
\(556\) −0.0298425 0.475204i −0.00126560 0.0201531i
\(557\) −17.0510 −0.722475 −0.361237 0.932474i \(-0.617646\pi\)
−0.361237 + 0.932474i \(0.617646\pi\)
\(558\) 0 0
\(559\) 15.8232i 0.669249i
\(560\) 11.6787 + 2.48233i 0.493513 + 0.104897i
\(561\) 0 0
\(562\) −1.52886 + 0.0479585i −0.0644910 + 0.00202301i
\(563\) −19.0842 11.0182i −0.804302 0.464364i 0.0406715 0.999173i \(-0.487050\pi\)
−0.844973 + 0.534809i \(0.820384\pi\)
\(564\) 0 0
\(565\) −34.5433 + 29.8311i −1.45325 + 1.25500i
\(566\) −35.1357 + 21.7822i −1.47686 + 0.915576i
\(567\) 0 0
\(568\) 2.23663 + 23.7047i 0.0938470 + 0.994627i
\(569\) 24.1641 13.9512i 1.01301 0.584864i 0.100941 0.994892i \(-0.467815\pi\)
0.912073 + 0.410029i \(0.134481\pi\)
\(570\) 0 0
\(571\) −11.2510 6.49576i −0.470839 0.271839i 0.245752 0.969333i \(-0.420965\pi\)
−0.716591 + 0.697494i \(0.754298\pi\)
\(572\) −29.9835 + 19.9160i −1.25367 + 0.832731i
\(573\) 0 0
\(574\) 3.61104 6.73364i 0.150722 0.281057i
\(575\) 0.186227 + 0.469715i 0.00776621 + 0.0195885i
\(576\) 0 0
\(577\) 34.6251i 1.44146i −0.693216 0.720730i \(-0.743807\pi\)
0.693216 0.720730i \(-0.256193\pi\)
\(578\) −30.7255 16.4772i −1.27801 0.685359i
\(579\) 0 0
\(580\) 16.3773 + 16.7199i 0.680028 + 0.694257i
\(581\) −15.4975 8.94748i −0.642944 0.371204i
\(582\) 0 0
\(583\) 6.07116 + 10.5156i 0.251442 + 0.435510i
\(584\) 20.5045 1.93468i 0.848482 0.0800577i
\(585\) 0 0
\(586\) −6.76835 + 4.19601i −0.279598 + 0.173336i
\(587\) 9.41209 5.43407i 0.388479 0.224288i −0.293022 0.956106i \(-0.594661\pi\)
0.681501 + 0.731817i \(0.261328\pi\)
\(588\) 0 0
\(589\) 14.1075 24.4350i 0.581291 1.00683i
\(590\) −8.47523 + 1.89601i −0.348920 + 0.0780574i
\(591\) 0 0
\(592\) 11.9586 + 5.03017i 0.491496 + 0.206739i
\(593\) 4.49540 0.184604 0.0923019 0.995731i \(-0.470578\pi\)
0.0923019 + 0.995731i \(0.470578\pi\)
\(594\) 0 0
\(595\) −3.61418 18.9222i −0.148167 0.775734i
\(596\) 1.28082 + 20.3954i 0.0524643 + 0.835427i
\(597\) 0 0
\(598\) 0.0184291 + 0.587499i 0.000753623 + 0.0240246i
\(599\) 3.45192 5.97890i 0.141042 0.244291i −0.786847 0.617148i \(-0.788288\pi\)
0.927889 + 0.372856i \(0.121621\pi\)
\(600\) 0 0
\(601\) −15.7058 27.2032i −0.640653 1.10964i −0.985287 0.170906i \(-0.945331\pi\)
0.344635 0.938737i \(-0.388003\pi\)
\(602\) −6.17294 + 3.82689i −0.251590 + 0.155973i
\(603\) 0 0
\(604\) −26.9909 13.4022i −1.09824 0.545330i
\(605\) −13.7914 + 11.9100i −0.560700 + 0.484212i
\(606\) 0 0
\(607\) 9.81362 16.9977i 0.398322 0.689915i −0.595197 0.803580i \(-0.702926\pi\)
0.993519 + 0.113665i \(0.0362592\pi\)
\(608\) −20.7901 25.6887i −0.843148 1.04181i
\(609\) 0 0
\(610\) 1.97376 6.30217i 0.0799152 0.255167i
\(611\) 14.2837 0.577857
\(612\) 0 0
\(613\) 28.8088i 1.16358i 0.813340 + 0.581788i \(0.197647\pi\)
−0.813340 + 0.581788i \(0.802353\pi\)
\(614\) 19.0600 + 10.2213i 0.769200 + 0.412499i
\(615\) 0 0
\(616\) 15.0213 + 6.88040i 0.605224 + 0.277219i
\(617\) −8.02269 + 13.8957i −0.322981 + 0.559420i −0.981102 0.193493i \(-0.938018\pi\)
0.658120 + 0.752913i \(0.271352\pi\)
\(618\) 0 0
\(619\) −2.13387 + 1.23199i −0.0857674 + 0.0495178i −0.542270 0.840204i \(-0.682435\pi\)
0.456503 + 0.889722i \(0.349102\pi\)
\(620\) −5.80592 + 20.8040i −0.233171 + 0.835509i
\(621\) 0 0
\(622\) 4.40924 2.73350i 0.176795 0.109603i
\(623\) −8.06198 + 4.65458i −0.322996 + 0.186482i
\(624\) 0 0
\(625\) 5.73152 + 24.3341i 0.229261 + 0.973365i
\(626\) −34.8148 + 1.09210i −1.39148 + 0.0436490i
\(627\) 0 0
\(628\) −0.401588 6.39478i −0.0160251 0.255179i
\(629\) 20.9324i 0.834631i
\(630\) 0 0
\(631\) 44.4737i 1.77047i −0.465144 0.885235i \(-0.653997\pi\)
0.465144 0.885235i \(-0.346003\pi\)
\(632\) −4.89422 6.88935i −0.194682 0.274044i
\(633\) 0 0
\(634\) 0.472194 + 15.0530i 0.0187532 + 0.597831i
\(635\) 40.5125 + 14.0973i 1.60769 + 0.559436i
\(636\) 0 0
\(637\) −18.5858 + 10.7305i −0.736397 + 0.425159i
\(638\) 17.0651 + 27.5267i 0.675614 + 1.08979i
\(639\) 0 0
\(640\) 20.3073 + 15.0868i 0.802717 + 0.596360i
\(641\) 14.1935 8.19465i 0.560611 0.323669i −0.192779 0.981242i \(-0.561750\pi\)
0.753391 + 0.657573i \(0.228417\pi\)
\(642\) 0 0
\(643\) 17.5507 30.3987i 0.692133 1.19881i −0.279005 0.960290i \(-0.590005\pi\)
0.971138 0.238520i \(-0.0766621\pi\)
\(644\) 0.224738 0.149278i 0.00885591 0.00588239i
\(645\) 0 0
\(646\) −25.1998 + 46.9909i −0.991472 + 1.84883i
\(647\) 19.0579i 0.749243i −0.927178 0.374621i \(-0.877773\pi\)
0.927178 0.374621i \(-0.122227\pi\)
\(648\) 0 0
\(649\) −12.0180 −0.471747
\(650\) −3.33076 + 28.8906i −0.130643 + 1.13318i
\(651\) 0 0
\(652\) −11.7500 17.6896i −0.460167 0.692780i
\(653\) 21.0708 36.4956i 0.824563 1.42818i −0.0776903 0.996978i \(-0.524755\pi\)
0.902253 0.431207i \(-0.141912\pi\)
\(654\) 0 0
\(655\) −28.4800 + 24.5949i −1.11281 + 0.961002i
\(656\) 12.8978 9.78533i 0.503576 0.382053i
\(657\) 0 0
\(658\) −3.45456 5.57236i −0.134673 0.217233i
\(659\) −10.0696 17.4410i −0.392256 0.679407i 0.600491 0.799631i \(-0.294972\pi\)
−0.992747 + 0.120225i \(0.961638\pi\)
\(660\) 0 0
\(661\) 3.54725 6.14402i 0.137972 0.238975i −0.788757 0.614705i \(-0.789275\pi\)
0.926729 + 0.375731i \(0.122608\pi\)
\(662\) −4.97136 + 0.155946i −0.193218 + 0.00606100i
\(663\) 0 0
\(664\) −21.9592 30.9109i −0.852183 1.19958i
\(665\) −17.1281 + 3.27151i −0.664201 + 0.126864i
\(666\) 0 0
\(667\) 0.528872 0.0204780
\(668\) −1.57955 25.1523i −0.0611145 0.973171i
\(669\) 0 0
\(670\) −1.33499 + 0.298652i −0.0515751 + 0.0115379i
\(671\) 4.56935 7.91434i 0.176398 0.305530i
\(672\) 0 0
\(673\) 19.8408 11.4551i 0.764806 0.441561i −0.0662129 0.997806i \(-0.521092\pi\)
0.831018 + 0.556245i \(0.187758\pi\)
\(674\) −17.5325 28.2807i −0.675327 1.08933i
\(675\) 0 0
\(676\) −3.48254 + 7.01351i −0.133944 + 0.269750i
\(677\) 11.6227 + 20.1311i 0.446696 + 0.773699i 0.998169 0.0604934i \(-0.0192674\pi\)
−0.551473 + 0.834193i \(0.685934\pi\)
\(678\) 0 0
\(679\) 2.78467 + 1.60773i 0.106866 + 0.0616989i
\(680\) 9.73408 39.6406i 0.373285 1.52015i
\(681\) 0 0
\(682\) −14.1255 + 26.3403i −0.540894 + 1.00862i
\(683\) 30.3578i 1.16161i −0.814043 0.580804i \(-0.802738\pi\)
0.814043 0.580804i \(-0.197262\pi\)
\(684\) 0 0
\(685\) −2.51492 13.1669i −0.0960900 0.503083i
\(686\) 20.3270 + 10.9007i 0.776089 + 0.416193i
\(687\) 0 0
\(688\) −15.2682 + 1.92526i −0.582096 + 0.0734000i
\(689\) 9.88316 + 5.70604i 0.376518 + 0.217383i
\(690\) 0 0
\(691\) 10.6015 6.12077i 0.403299 0.232845i −0.284607 0.958644i \(-0.591863\pi\)
0.687907 + 0.725799i \(0.258530\pi\)
\(692\) 1.52664 3.07450i 0.0580340 0.116875i
\(693\) 0 0
\(694\) −3.12464 5.04018i −0.118610 0.191323i
\(695\) −0.347936 0.402898i −0.0131980 0.0152828i
\(696\) 0 0
\(697\) −22.6222 13.0609i −0.856875 0.494717i
\(698\) −0.246708 7.86477i −0.00933804 0.297686i
\(699\) 0 0
\(700\) 12.0764 5.68791i 0.456444 0.214983i
\(701\) 0.0365464i 0.00138034i −1.00000 0.000690169i \(-0.999780\pi\)
1.00000 0.000690169i \(-0.000219688\pi\)
\(702\) 0 0
\(703\) −18.9478 −0.714630
\(704\) 22.8657 + 26.5087i 0.861785 + 0.999083i
\(705\) 0 0
\(706\) 0.488727 + 15.5801i 0.0183935 + 0.586363i
\(707\) −5.24231 3.02665i −0.197157 0.113829i
\(708\) 0 0
\(709\) 13.6359 + 23.6181i 0.512109 + 0.886998i 0.999901 + 0.0140387i \(0.00446880\pi\)
−0.487793 + 0.872959i \(0.662198\pi\)
\(710\) 18.0221 + 19.5920i 0.676359 + 0.735274i
\(711\) 0 0
\(712\) −19.6376 + 1.85289i −0.735950 + 0.0694398i
\(713\) 0.244036 + 0.422683i 0.00913923 + 0.0158296i
\(714\) 0 0
\(715\) −13.2260 + 38.0085i −0.494625 + 1.42144i
\(716\) 20.6523 + 31.0919i 0.771812 + 1.16196i
\(717\) 0 0
\(718\) −34.0144 18.2409i −1.26941 0.680743i
\(719\) 7.73269 0.288381 0.144190 0.989550i \(-0.453942\pi\)
0.144190 + 0.989550i \(0.453942\pi\)
\(720\) 0 0
\(721\) 5.20978 0.194022
\(722\) 18.8557 + 10.1117i 0.701735 + 0.376319i
\(723\) 0 0
\(724\) −22.0523 33.1997i −0.819568 1.23386i
\(725\) 25.8881 + 3.81046i 0.961460 + 0.141517i
\(726\) 0 0
\(727\) −8.24957 14.2887i −0.305960 0.529938i 0.671515 0.740991i \(-0.265644\pi\)
−0.977475 + 0.211053i \(0.932311\pi\)
\(728\) 15.4598 1.45869i 0.572977 0.0540627i
\(729\) 0 0
\(730\) 16.9470 15.5891i 0.627237 0.576978i
\(731\) 12.4150 + 21.5035i 0.459187 + 0.795335i
\(732\) 0 0
\(733\) 37.1399 + 21.4427i 1.37179 + 0.792006i 0.991154 0.132717i \(-0.0423702\pi\)
0.380641 + 0.924723i \(0.375703\pi\)
\(734\) −1.39622 44.5097i −0.0515353 1.64288i
\(735\) 0 0
\(736\) 0.564652 0.0892658i 0.0208133 0.00329038i
\(737\) −1.89303 −0.0697307
\(738\) 0 0
\(739\) 3.04457i 0.111996i −0.998431 0.0559981i \(-0.982166\pi\)
0.998431 0.0559981i \(-0.0178341\pi\)
\(740\) 14.0487 3.60886i 0.516439 0.132664i
\(741\) 0 0
\(742\) −0.164236 5.23564i −0.00602928 0.192207i
\(743\) −35.0211 20.2194i −1.28480 0.741779i −0.307078 0.951684i \(-0.599351\pi\)
−0.977722 + 0.209905i \(0.932684\pi\)
\(744\) 0 0
\(745\) 14.9332 + 17.2921i 0.547109 + 0.633532i
\(746\) 17.4658 + 28.1730i 0.639467 + 1.03149i
\(747\) 0 0
\(748\) 25.1208 50.5910i 0.918509 1.84979i
\(749\) 5.76668 3.32940i 0.210710 0.121653i
\(750\) 0 0
\(751\) 12.0862 + 6.97795i 0.441030 + 0.254629i 0.704034 0.710166i \(-0.251380\pi\)
−0.263004 + 0.964795i \(0.584713\pi\)
\(752\) −1.73795 13.7827i −0.0633765 0.502605i
\(753\) 0 0
\(754\) 26.8257 + 14.3858i 0.976934 + 0.523900i
\(755\) −33.0939 + 6.32101i −1.20441 + 0.230045i
\(756\) 0 0
\(757\) 31.7859i 1.15528i −0.816293 0.577639i \(-0.803974\pi\)
0.816293 0.577639i \(-0.196026\pi\)
\(758\) −7.72151 + 14.3986i −0.280458 + 0.522979i
\(759\) 0 0
\(760\) −35.8822 8.81117i −1.30158 0.319615i
\(761\) 21.6921 + 12.5240i 0.786339 + 0.453993i 0.838672 0.544637i \(-0.183332\pi\)
−0.0523332 + 0.998630i \(0.516666\pi\)
\(762\) 0 0
\(763\) 3.32832 + 5.76482i 0.120493 + 0.208700i
\(764\) −19.2535 + 38.7748i −0.696568 + 1.40282i
\(765\) 0 0
\(766\) −19.5333 31.5080i −0.705766 1.13843i
\(767\) −9.78196 + 5.64762i −0.353206 + 0.203924i
\(768\) 0 0
\(769\) −1.59810 + 2.76799i −0.0576290 + 0.0998164i −0.893401 0.449261i \(-0.851687\pi\)
0.835772 + 0.549077i \(0.185021\pi\)
\(770\) 18.0266 4.03277i 0.649635 0.145331i
\(771\) 0 0
\(772\) −1.30358 20.7579i −0.0469170 0.747093i
\(773\) −26.8609 −0.966121 −0.483060 0.875587i \(-0.660475\pi\)
−0.483060 + 0.875587i \(0.660475\pi\)
\(774\) 0 0
\(775\) 8.90011 + 22.4485i 0.319701 + 0.806372i
\(776\) 3.94574 + 5.55422i 0.141644 + 0.199385i
\(777\) 0 0
\(778\) −2.26131 + 0.0709346i −0.0810720 + 0.00254313i
\(779\) −11.8226 + 20.4773i −0.423588 + 0.733676i
\(780\) 0 0
\(781\) 18.4187 + 31.9022i 0.659074 + 1.14155i
\(782\) −0.486003 0.783943i −0.0173794 0.0280337i
\(783\) 0 0
\(784\) 12.6156 + 16.6284i 0.450557 + 0.593870i
\(785\) −4.68215 5.42177i −0.167113 0.193511i
\(786\) 0 0
\(787\) −16.8518 + 29.1883i −0.600703 + 1.04045i 0.392011 + 0.919960i \(0.371779\pi\)
−0.992715 + 0.120488i \(0.961554\pi\)
\(788\) 9.02663 + 13.5896i 0.321560 + 0.484108i
\(789\) 0 0
\(790\) −9.01646 2.82384i −0.320791 0.100468i
\(791\) 27.2469 0.968787
\(792\) 0 0
\(793\) 8.58910i 0.305008i
\(794\) 17.3355 32.3260i 0.615212 1.14721i
\(795\) 0 0
\(796\) −15.2965 + 10.1604i −0.542169 + 0.360127i
\(797\) 14.4698 25.0624i 0.512546 0.887755i −0.487348 0.873208i \(-0.662036\pi\)
0.999894 0.0145477i \(-0.00463085\pi\)
\(798\) 0 0
\(799\) −19.4113 + 11.2071i −0.686724 + 0.396480i
\(800\) 28.2827 0.301282i 0.999943 0.0106519i
\(801\) 0 0
\(802\) −18.5323 29.8934i −0.654398 1.05557i
\(803\) 27.5953 15.9322i 0.973817 0.562233i
\(804\) 0 0
\(805\) 0.0991340 0.284888i 0.00349401 0.0100410i
\(806\) 0.880759 + 28.0775i 0.0310234 + 0.988989i
\(807\) 0 0
\(808\) −7.42810 10.4562i −0.261320 0.367847i
\(809\) 14.9996i 0.527358i −0.964610 0.263679i \(-0.915064\pi\)
0.964610 0.263679i \(-0.0849360\pi\)
\(810\) 0 0
\(811\) 17.4677i 0.613376i −0.951810 0.306688i \(-0.900779\pi\)
0.951810 0.306688i \(-0.0992207\pi\)
\(812\) −0.875705 13.9445i −0.0307312 0.489356i
\(813\) 0 0
\(814\) 20.0620 0.629319i 0.703171 0.0220576i
\(815\) −22.4242 7.80307i −0.785487 0.273330i
\(816\) 0 0
\(817\) 19.4647 11.2379i 0.680984 0.393166i
\(818\) 25.6907 15.9269i 0.898254 0.556870i
\(819\) 0 0
\(820\) 4.86555 17.4345i 0.169913 0.608838i
\(821\) −15.8290 + 9.13886i −0.552435 + 0.318948i −0.750103 0.661320i \(-0.769996\pi\)
0.197669 + 0.980269i \(0.436663\pi\)
\(822\) 0 0
\(823\) −14.6369 + 25.3518i −0.510210 + 0.883710i 0.489720 + 0.871880i \(0.337099\pi\)
−0.999930 + 0.0118300i \(0.996234\pi\)
\(824\) 10.0361 + 4.59696i 0.349623 + 0.160143i
\(825\) 0 0
\(826\) 4.56905 + 2.45024i 0.158978 + 0.0852548i
\(827\) 24.5270i 0.852886i 0.904514 + 0.426443i \(0.140233\pi\)
−0.904514 + 0.426443i \(0.859767\pi\)
\(828\) 0 0
\(829\) −42.2094 −1.46599 −0.732996 0.680233i \(-0.761879\pi\)
−0.732996 + 0.680233i \(0.761879\pi\)
\(830\) −40.4547 12.6699i −1.40420 0.439779i
\(831\) 0 0
\(832\) 31.0687 + 10.8313i 1.07711 + 0.375506i
\(833\) 16.8386 29.1653i 0.583422 1.01052i
\(834\) 0 0
\(835\) −18.4161 21.3252i −0.637315 0.737988i
\(836\) −45.7944 22.7391i −1.58383 0.786448i
\(837\) 0 0
\(838\) 7.52011 4.66207i 0.259778 0.161048i
\(839\) 18.2179 + 31.5544i 0.628953 + 1.08938i 0.987762 + 0.155967i \(0.0498494\pi\)
−0.358810 + 0.933411i \(0.616817\pi\)
\(840\) 0 0
\(841\) −0.805742 + 1.39559i −0.0277842 + 0.0481237i
\(842\) −1.36213 43.4230i −0.0469420 1.49646i
\(843\) 0 0
\(844\) 1.28401 + 20.4462i 0.0441975 + 0.703788i
\(845\) 1.64250 + 8.59936i 0.0565036 + 0.295827i
\(846\) 0 0
\(847\) 10.8783 0.373783
\(848\) 4.30340 10.2308i 0.147779 0.351327i
\(849\) 0 0
\(850\) −18.1415 41.8753i −0.622247 1.43631i
\(851\) 0.163882 0.283852i 0.00561781 0.00973033i
\(852\) 0 0
\(853\) 27.1128 15.6536i 0.928324 0.535968i 0.0420430 0.999116i \(-0.486613\pi\)
0.886281 + 0.463148i \(0.153280\pi\)
\(854\) −3.35078 + 2.07731i −0.114661 + 0.0710839i
\(855\) 0 0
\(856\) 14.0466 1.32536i 0.480104 0.0452998i
\(857\) 4.60165 + 7.97029i 0.157189 + 0.272260i 0.933854 0.357654i \(-0.116423\pi\)
−0.776665 + 0.629914i \(0.783090\pi\)
\(858\) 0 0
\(859\) 4.62482 + 2.67014i 0.157797 + 0.0911040i 0.576819 0.816872i \(-0.304294\pi\)
−0.419022 + 0.907976i \(0.637627\pi\)
\(860\) −12.2915 + 12.0396i −0.419136 + 0.410546i
\(861\) 0 0
\(862\) 43.7517 + 23.4627i 1.49019 + 0.799142i
\(863\) 19.0360i 0.647992i 0.946058 + 0.323996i \(0.105026\pi\)
−0.946058 + 0.323996i \(0.894974\pi\)
\(864\) 0 0
\(865\) −0.720019 3.76969i −0.0244814 0.128173i
\(866\) 16.3776 30.5400i 0.556535 1.03779i
\(867\) 0 0
\(868\) 10.7406 7.13426i 0.364560 0.242152i
\(869\) −11.3230 6.53733i −0.384106 0.221764i
\(870\) 0 0
\(871\) −1.54082 + 0.889593i −0.0522087 + 0.0301427i
\(872\) 1.32493 + 14.0421i 0.0448678 + 0.475526i
\(873\) 0 0
\(874\) −0.709616 + 0.439924i −0.0240031 + 0.0148807i
\(875\) 6.90516 13.2309i 0.233437 0.447287i
\(876\) 0 0
\(877\) −21.1121 12.1891i −0.712904 0.411595i 0.0992316 0.995064i \(-0.468362\pi\)
−0.812135 + 0.583469i \(0.801695\pi\)
\(878\) −25.0934 + 0.787150i −0.846862 + 0.0265650i
\(879\) 0 0
\(880\) 38.2847 + 8.13751i 1.29058 + 0.274316i
\(881\) 42.8577i 1.44391i 0.691939 + 0.721956i \(0.256757\pi\)
−0.691939 + 0.721956i \(0.743243\pi\)
\(882\) 0 0
\(883\) −28.8663 −0.971427 −0.485713 0.874118i \(-0.661440\pi\)
−0.485713 + 0.874118i \(0.661440\pi\)
\(884\) −3.32732 52.9833i −0.111910 1.78202i
\(885\) 0 0
\(886\) 9.93539 0.311661i 0.333786 0.0104705i
\(887\) −13.1498 7.59206i −0.441528 0.254917i 0.262717 0.964873i \(-0.415381\pi\)
−0.704246 + 0.709956i \(0.748715\pi\)
\(888\) 0 0
\(889\) −12.8037 22.1767i −0.429424 0.743784i
\(890\) −16.2305 + 14.9300i −0.544048 + 0.500455i
\(891\) 0 0
\(892\) −20.6795 + 41.6465i −0.692400 + 1.39443i
\(893\) 10.1446 + 17.5709i 0.339475 + 0.587989i
\(894\) 0 0
\(895\) 39.4136 + 13.7149i 1.31745 + 0.458440i
\(896\) −3.28858 14.7401i −0.109864 0.492432i
\(897\) 0 0
\(898\) −11.1453 + 20.7830i −0.371923 + 0.693539i
\(899\) 25.2757 0.842990
\(900\) 0 0
\(901\) −17.9081 −0.596605
\(902\) 11.8376 22.0741i 0.394150 0.734986i
\(903\) 0 0
\(904\) 52.4881 + 24.0419i 1.74573 + 0.799621i
\(905\) −42.0855 14.6447i −1.39897 0.486806i
\(906\) 0 0
\(907\) 13.5599 + 23.4865i 0.450250 + 0.779856i 0.998401 0.0565230i \(-0.0180014\pi\)
−0.548151 + 0.836379i \(0.684668\pi\)
\(908\) 30.4793 + 15.1344i 1.01149 + 0.502254i
\(909\) 0 0
\(910\) 12.7775 11.7537i 0.423571 0.389632i
\(911\) 3.77888 + 6.54521i 0.125200 + 0.216852i 0.921811 0.387640i \(-0.126709\pi\)
−0.796611 + 0.604492i \(0.793376\pi\)
\(912\) 0 0
\(913\) −50.8036 29.3315i −1.68135 0.970729i
\(914\) 41.9787 1.31682i 1.38853 0.0435566i
\(915\) 0 0
\(916\) −2.99683 + 0.188199i −0.0990182 + 0.00621828i
\(917\) 22.4643 0.741836
\(918\) 0 0
\(919\) 33.7674i 1.11388i 0.830552 + 0.556942i \(0.188025\pi\)
−0.830552 + 0.556942i \(0.811975\pi\)
\(920\) 0.442348 0.461333i 0.0145838 0.0152097i
\(921\) 0 0
\(922\) 20.0183 0.627948i 0.659266 0.0206804i
\(923\) 29.9836 + 17.3110i 0.986923 + 0.569800i
\(924\) 0 0
\(925\) 10.0671 12.7137i 0.331005 0.418025i
\(926\) 6.86375 4.25516i 0.225557 0.139833i
\(927\) 0 0
\(928\) 10.6173 27.6352i 0.348529 0.907171i
\(929\) −43.7091 + 25.2355i −1.43405 + 0.827949i −0.997427 0.0716964i \(-0.977159\pi\)
−0.436622 + 0.899645i \(0.643825\pi\)
\(930\) 0 0
\(931\) −26.4001 15.2421i −0.865227 0.499539i
\(932\) 14.9924 + 22.5711i 0.491094 + 0.739339i
\(933\) 0 0
\(934\) −12.5630 + 23.4267i −0.411075 + 0.766546i
\(935\) −11.8479 62.0303i −0.387469 2.02861i
\(936\) 0 0
\(937\) 43.7549i 1.42941i 0.699425 + 0.714706i \(0.253439\pi\)
−0.699425 + 0.714706i \(0.746561\pi\)
\(938\) 0.719701 + 0.385953i 0.0234991 + 0.0126018i
\(939\) 0 0
\(940\) −10.8682 11.0956i −0.354482 0.361899i
\(941\) 12.5420 + 7.24115i 0.408859 + 0.236055i 0.690299 0.723524i \(-0.257479\pi\)
−0.281441 + 0.959579i \(0.590812\pi\)
\(942\) 0 0
\(943\) −0.204510 0.354222i −0.00665977 0.0115351i
\(944\) 6.63975 + 8.75173i 0.216106 + 0.284844i
\(945\) 0 0
\(946\) −20.2360 + 12.5452i −0.657929 + 0.407881i
\(947\) −32.3885 + 18.6995i −1.05249 + 0.607653i −0.923344 0.383973i \(-0.874555\pi\)
−0.129141 + 0.991626i \(0.541222\pi\)
\(948\) 0 0
\(949\) 14.9740 25.9357i 0.486077 0.841910i
\(950\) −37.9051 + 16.4214i −1.22980 + 0.532782i
\(951\) 0 0
\(952\) −19.8651 + 14.1122i −0.643832 + 0.457381i
\(953\) −22.8733 −0.740937 −0.370469 0.928845i \(-0.620803\pi\)
−0.370469 + 0.928845i \(0.620803\pi\)
\(954\) 0 0
\(955\) 9.08068 + 47.5423i 0.293844 + 1.53843i
\(956\) −29.2354 + 1.83596i −0.945539 + 0.0593793i
\(957\) 0 0
\(958\) 1.34848 + 42.9881i 0.0435676 + 1.38888i
\(959\) −4.00123 + 6.93034i −0.129207 + 0.223792i
\(960\) 0 0
\(961\) −3.83710 6.64606i −0.123777 0.214389i
\(962\) 16.0336 9.93996i 0.516943 0.320477i
\(963\) 0 0
\(964\) 21.7492 43.8009i 0.700496 1.41073i
\(965\) −15.1986 17.5994i −0.489260 0.566545i
\(966\) 0 0
\(967\) 29.1950 50.5672i 0.938848 1.62613i 0.171223 0.985232i \(-0.445228\pi\)
0.767625 0.640899i \(-0.221438\pi\)
\(968\) 20.9558 + 9.59870i 0.673546 + 0.308514i
\(969\) 0 0
\(970\) 7.26911 + 2.27659i 0.233397 + 0.0730970i
\(971\) 35.2792 1.13216 0.566082 0.824349i \(-0.308459\pi\)
0.566082 + 0.824349i \(0.308459\pi\)
\(972\) 0 0
\(973\) 0.317795i 0.0101881i
\(974\) −4.58505 2.45882i −0.146914 0.0787856i
\(975\) 0 0
\(976\) −8.28787 + 1.04507i −0.265288 + 0.0334518i
\(977\) 4.78940 8.29548i 0.153226 0.265396i −0.779185 0.626794i \(-0.784367\pi\)
0.932412 + 0.361398i \(0.117700\pi\)
\(978\) 0 0
\(979\) −26.4286 + 15.2586i −0.844662 + 0.487666i
\(980\) 22.4771 + 6.27284i 0.718005 + 0.200379i
\(981\) 0 0
\(982\) −21.7718 + 13.4974i −0.694767 + 0.430719i
\(983\) −27.2657 + 15.7419i −0.869641 + 0.502088i −0.867229 0.497910i \(-0.834101\pi\)
−0.00241215 + 0.999997i \(0.500768\pi\)
\(984\) 0 0
\(985\) 17.2268 + 5.99448i 0.548890 + 0.191000i
\(986\) −47.7430 + 1.49764i −1.52045 + 0.0476946i
\(987\) 0 0
\(988\) −47.9598 + 3.01185i −1.52581 + 0.0958196i
\(989\) 0.388795i 0.0123629i
\(990\) 0 0
\(991\) 30.7819i 0.977818i −0.872335 0.488909i \(-0.837395\pi\)
0.872335 0.488909i \(-0.162605\pi\)
\(992\) 26.9857 4.26616i 0.856795 0.135451i
\(993\) 0 0
\(994\) −0.498260 15.8839i −0.0158039 0.503808i
\(995\) −6.74742 + 19.3905i −0.213908 + 0.614721i
\(996\) 0 0
\(997\) −29.1919 + 16.8539i −0.924516 + 0.533770i −0.885073 0.465452i \(-0.845892\pi\)
−0.0394432 + 0.999222i \(0.512558\pi\)
\(998\) −17.1647 27.6873i −0.543338 0.876428i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.5 48
3.2 odd 2 180.2.n.d.59.20 yes 48
4.3 odd 2 inner 540.2.n.d.179.13 48
5.4 even 2 inner 540.2.n.d.179.20 48
9.2 odd 6 inner 540.2.n.d.359.12 48
9.7 even 3 180.2.n.d.119.13 yes 48
12.11 even 2 180.2.n.d.59.12 yes 48
15.2 even 4 900.2.r.g.851.8 48
15.8 even 4 900.2.r.g.851.17 48
15.14 odd 2 180.2.n.d.59.5 48
20.19 odd 2 inner 540.2.n.d.179.12 48
36.7 odd 6 180.2.n.d.119.5 yes 48
36.11 even 6 inner 540.2.n.d.359.20 48
45.7 odd 12 900.2.r.g.551.1 48
45.29 odd 6 inner 540.2.n.d.359.13 48
45.34 even 6 180.2.n.d.119.12 yes 48
45.43 odd 12 900.2.r.g.551.24 48
60.23 odd 4 900.2.r.g.851.24 48
60.47 odd 4 900.2.r.g.851.1 48
60.59 even 2 180.2.n.d.59.13 yes 48
180.7 even 12 900.2.r.g.551.8 48
180.43 even 12 900.2.r.g.551.17 48
180.79 odd 6 180.2.n.d.119.20 yes 48
180.119 even 6 inner 540.2.n.d.359.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.5 48 15.14 odd 2
180.2.n.d.59.12 yes 48 12.11 even 2
180.2.n.d.59.13 yes 48 60.59 even 2
180.2.n.d.59.20 yes 48 3.2 odd 2
180.2.n.d.119.5 yes 48 36.7 odd 6
180.2.n.d.119.12 yes 48 45.34 even 6
180.2.n.d.119.13 yes 48 9.7 even 3
180.2.n.d.119.20 yes 48 180.79 odd 6
540.2.n.d.179.5 48 1.1 even 1 trivial
540.2.n.d.179.12 48 20.19 odd 2 inner
540.2.n.d.179.13 48 4.3 odd 2 inner
540.2.n.d.179.20 48 5.4 even 2 inner
540.2.n.d.359.5 48 180.119 even 6 inner
540.2.n.d.359.12 48 9.2 odd 6 inner
540.2.n.d.359.13 48 45.29 odd 6 inner
540.2.n.d.359.20 48 36.11 even 6 inner
900.2.r.g.551.1 48 45.7 odd 12
900.2.r.g.551.8 48 180.7 even 12
900.2.r.g.551.17 48 180.43 even 12
900.2.r.g.551.24 48 45.43 odd 12
900.2.r.g.851.1 48 60.47 odd 4
900.2.r.g.851.8 48 15.2 even 4
900.2.r.g.851.17 48 15.8 even 4
900.2.r.g.851.24 48 60.23 odd 4