Properties

Label 540.2.n.d.179.20
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.20
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.24631 + 0.668359i) q^{2} +(1.10659 + 1.66597i) q^{4} +(1.69235 + 1.46149i) q^{5} +(0.667441 + 1.15604i) q^{7} +(0.265693 + 2.81592i) q^{8} +(1.13240 + 2.95257i) q^{10} +(-2.18799 - 3.78971i) q^{11} +(3.56180 + 2.05641i) q^{13} +(0.0591892 + 1.88688i) q^{14} +(-1.55091 + 3.68710i) q^{16} -6.45392 q^{17} -5.84202i q^{19} +(-0.562053 + 4.43668i) q^{20} +(-0.194033 - 6.18554i) q^{22} +(-0.0875178 - 0.0505284i) q^{23} +(0.728104 + 4.94670i) q^{25} +(3.06470 + 4.94349i) q^{26} +(-1.18735 + 2.39120i) q^{28} +(4.53226 - 2.61670i) q^{29} +(4.18262 + 2.41484i) q^{31} +(-4.39722 + 3.55871i) q^{32} +(-8.04361 - 4.31354i) q^{34} +(-0.559997 + 2.93189i) q^{35} +3.24337i q^{37} +(3.90457 - 7.28098i) q^{38} +(-3.66579 + 5.15383i) q^{40} +(-3.50518 - 2.02372i) q^{41} +(-1.92364 - 3.33185i) q^{43} +(3.89233 - 7.83880i) q^{44} +(-0.0753035 - 0.121468i) q^{46} +(3.00768 - 1.73649i) q^{47} +(2.60904 - 4.51900i) q^{49} +(-2.39873 + 6.65177i) q^{50} +(0.515549 + 8.20946i) q^{52} +2.77476 q^{53} +(1.83577 - 9.61125i) q^{55} +(-3.07799 + 2.18661i) q^{56} +(7.39751 - 0.232051i) q^{58} +(1.37318 - 2.37841i) q^{59} +(1.04419 + 1.80858i) q^{61} +(3.59888 + 5.80514i) q^{62} +(-7.85881 + 1.49634i) q^{64} +(3.02241 + 8.68570i) q^{65} +(-0.216298 + 0.374638i) q^{67} +(-7.14186 - 10.7520i) q^{68} +(-2.65749 + 3.27977i) q^{70} -8.41810 q^{71} -7.28163i q^{73} +(-2.16773 + 4.04225i) q^{74} +(9.73262 - 6.46473i) q^{76} +(2.92071 - 5.05882i) q^{77} +(2.58753 - 1.49391i) q^{79} +(-8.01333 + 3.97323i) q^{80} +(-3.01598 - 4.86490i) q^{82} +(-11.6096 + 6.70282i) q^{83} +(-10.9223 - 9.43234i) q^{85} +(-0.170590 - 5.43821i) q^{86} +(10.0902 - 7.16812i) q^{88} -6.97377i q^{89} +5.49013i q^{91} +(-0.0126677 - 0.201716i) q^{92} +(4.90911 - 0.153993i) q^{94} +(8.53804 - 9.88674i) q^{95} +(2.08608 - 1.20440i) q^{97} +(6.27200 - 3.88831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24631 + 0.668359i 0.881276 + 0.472601i
\(3\) 0 0
\(4\) 1.10659 + 1.66597i 0.553296 + 0.832985i
\(5\) 1.69235 + 1.46149i 0.756842 + 0.653597i
\(6\) 0 0
\(7\) 0.667441 + 1.15604i 0.252269 + 0.436943i 0.964150 0.265357i \(-0.0854898\pi\)
−0.711881 + 0.702300i \(0.752157\pi\)
\(8\) 0.265693 + 2.81592i 0.0939368 + 0.995578i
\(9\) 0 0
\(10\) 1.13240 + 2.95257i 0.358096 + 0.933685i
\(11\) −2.18799 3.78971i −0.659705 1.14264i −0.980692 0.195558i \(-0.937348\pi\)
0.320987 0.947083i \(-0.395985\pi\)
\(12\) 0 0
\(13\) 3.56180 + 2.05641i 0.987867 + 0.570345i 0.904636 0.426185i \(-0.140143\pi\)
0.0832309 + 0.996530i \(0.473476\pi\)
\(14\) 0.0591892 + 1.88688i 0.0158190 + 0.504290i
\(15\) 0 0
\(16\) −1.55091 + 3.68710i −0.387727 + 0.921774i
\(17\) −6.45392 −1.56531 −0.782653 0.622458i \(-0.786134\pi\)
−0.782653 + 0.622458i \(0.786134\pi\)
\(18\) 0 0
\(19\) 5.84202i 1.34025i −0.742248 0.670125i \(-0.766240\pi\)
0.742248 0.670125i \(-0.233760\pi\)
\(20\) −0.562053 + 4.43668i −0.125679 + 0.992071i
\(21\) 0 0
\(22\) −0.194033 6.18554i −0.0413679 1.31876i
\(23\) −0.0875178 0.0505284i −0.0182487 0.0105359i 0.490848 0.871245i \(-0.336687\pi\)
−0.509097 + 0.860709i \(0.670020\pi\)
\(24\) 0 0
\(25\) 0.728104 + 4.94670i 0.145621 + 0.989340i
\(26\) 3.06470 + 4.94349i 0.601038 + 0.969499i
\(27\) 0 0
\(28\) −1.18735 + 2.39120i −0.224387 + 0.451895i
\(29\) 4.53226 2.61670i 0.841620 0.485909i −0.0161948 0.999869i \(-0.505155\pi\)
0.857814 + 0.513960i \(0.171822\pi\)
\(30\) 0 0
\(31\) 4.18262 + 2.41484i 0.751222 + 0.433718i 0.826135 0.563472i \(-0.190535\pi\)
−0.0749136 + 0.997190i \(0.523868\pi\)
\(32\) −4.39722 + 3.55871i −0.777327 + 0.629097i
\(33\) 0 0
\(34\) −8.04361 4.31354i −1.37947 0.739766i
\(35\) −0.559997 + 2.93189i −0.0946568 + 0.495579i
\(36\) 0 0
\(37\) 3.24337i 0.533206i 0.963806 + 0.266603i \(0.0859013\pi\)
−0.963806 + 0.266603i \(0.914099\pi\)
\(38\) 3.90457 7.28098i 0.633404 1.18113i
\(39\) 0 0
\(40\) −3.66579 + 5.15383i −0.579612 + 0.814893i
\(41\) −3.50518 2.02372i −0.547417 0.316051i 0.200663 0.979660i \(-0.435690\pi\)
−0.748079 + 0.663609i \(0.769024\pi\)
\(42\) 0 0
\(43\) −1.92364 3.33185i −0.293353 0.508102i 0.681248 0.732053i \(-0.261438\pi\)
−0.974600 + 0.223951i \(0.928104\pi\)
\(44\) 3.89233 7.83880i 0.586792 1.18174i
\(45\) 0 0
\(46\) −0.0753035 0.121468i −0.0111029 0.0179094i
\(47\) 3.00768 1.73649i 0.438715 0.253292i −0.264337 0.964430i \(-0.585153\pi\)
0.703053 + 0.711138i \(0.251820\pi\)
\(48\) 0 0
\(49\) 2.60904 4.51900i 0.372721 0.645571i
\(50\) −2.39873 + 6.65177i −0.339232 + 0.940703i
\(51\) 0 0
\(52\) 0.515549 + 8.20946i 0.0714938 + 1.13845i
\(53\) 2.77476 0.381143 0.190571 0.981673i \(-0.438966\pi\)
0.190571 + 0.981673i \(0.438966\pi\)
\(54\) 0 0
\(55\) 1.83577 9.61125i 0.247535 1.29598i
\(56\) −3.07799 + 2.18661i −0.411313 + 0.292199i
\(57\) 0 0
\(58\) 7.39751 0.232051i 0.971341 0.0304698i
\(59\) 1.37318 2.37841i 0.178772 0.309642i −0.762688 0.646766i \(-0.776121\pi\)
0.941460 + 0.337124i \(0.109454\pi\)
\(60\) 0 0
\(61\) 1.04419 + 1.80858i 0.133694 + 0.231566i 0.925098 0.379729i \(-0.123983\pi\)
−0.791404 + 0.611294i \(0.790649\pi\)
\(62\) 3.59888 + 5.80514i 0.457058 + 0.737254i
\(63\) 0 0
\(64\) −7.85881 + 1.49634i −0.982352 + 0.187043i
\(65\) 3.02241 + 8.68570i 0.374883 + 1.07733i
\(66\) 0 0
\(67\) −0.216298 + 0.374638i −0.0264250 + 0.0457694i −0.878935 0.476941i \(-0.841746\pi\)
0.852511 + 0.522710i \(0.175079\pi\)
\(68\) −7.14186 10.7520i −0.866078 1.30388i
\(69\) 0 0
\(70\) −2.65749 + 3.27977i −0.317630 + 0.392007i
\(71\) −8.41810 −0.999044 −0.499522 0.866301i \(-0.666491\pi\)
−0.499522 + 0.866301i \(0.666491\pi\)
\(72\) 0 0
\(73\) 7.28163i 0.852250i −0.904664 0.426125i \(-0.859878\pi\)
0.904664 0.426125i \(-0.140122\pi\)
\(74\) −2.16773 + 4.04225i −0.251994 + 0.469902i
\(75\) 0 0
\(76\) 9.73262 6.46473i 1.11641 0.741555i
\(77\) 2.92071 5.05882i 0.332846 0.576507i
\(78\) 0 0
\(79\) 2.58753 1.49391i 0.291120 0.168078i −0.347327 0.937744i \(-0.612911\pi\)
0.638447 + 0.769666i \(0.279577\pi\)
\(80\) −8.01333 + 3.97323i −0.895918 + 0.444220i
\(81\) 0 0
\(82\) −3.01598 4.86490i −0.333059 0.537238i
\(83\) −11.6096 + 6.70282i −1.27432 + 0.735730i −0.975798 0.218672i \(-0.929828\pi\)
−0.298524 + 0.954402i \(0.596494\pi\)
\(84\) 0 0
\(85\) −10.9223 9.43234i −1.18469 1.02308i
\(86\) −0.170590 5.43821i −0.0183952 0.586417i
\(87\) 0 0
\(88\) 10.0902 7.16812i 1.07562 0.764124i
\(89\) 6.97377i 0.739218i −0.929187 0.369609i \(-0.879492\pi\)
0.929187 0.369609i \(-0.120508\pi\)
\(90\) 0 0
\(91\) 5.49013i 0.575522i
\(92\) −0.0126677 0.201716i −0.00132070 0.0210304i
\(93\) 0 0
\(94\) 4.90911 0.153993i 0.506336 0.0158831i
\(95\) 8.53804 9.88674i 0.875984 1.01436i
\(96\) 0 0
\(97\) 2.08608 1.20440i 0.211809 0.122288i −0.390343 0.920670i \(-0.627644\pi\)
0.602152 + 0.798382i \(0.294310\pi\)
\(98\) 6.27200 3.88831i 0.633568 0.392778i
\(99\) 0 0
\(100\) −7.43534 + 6.68698i −0.743534 + 0.668698i
\(101\) 3.92717 2.26735i 0.390768 0.225610i −0.291725 0.956502i \(-0.594229\pi\)
0.682493 + 0.730892i \(0.260896\pi\)
\(102\) 0 0
\(103\) 1.95140 3.37992i 0.192277 0.333034i −0.753727 0.657187i \(-0.771746\pi\)
0.946005 + 0.324153i \(0.105079\pi\)
\(104\) −4.84434 + 10.5761i −0.475026 + 1.03708i
\(105\) 0 0
\(106\) 3.45822 + 1.85454i 0.335892 + 0.180129i
\(107\) 4.98830i 0.482237i −0.970496 0.241118i \(-0.922486\pi\)
0.970496 0.241118i \(-0.0775142\pi\)
\(108\) 0 0
\(109\) −4.98669 −0.477638 −0.238819 0.971064i \(-0.576760\pi\)
−0.238819 + 0.971064i \(0.576760\pi\)
\(110\) 8.71172 10.7517i 0.830630 1.02513i
\(111\) 0 0
\(112\) −5.29758 + 0.668004i −0.500574 + 0.0631204i
\(113\) 10.2057 17.6768i 0.960073 1.66290i 0.237767 0.971322i \(-0.423584\pi\)
0.722306 0.691574i \(-0.243082\pi\)
\(114\) 0 0
\(115\) −0.0742642 0.213418i −0.00692517 0.0199013i
\(116\) 9.37471 + 4.65499i 0.870420 + 0.432205i
\(117\) 0 0
\(118\) 3.30104 2.04647i 0.303885 0.188393i
\(119\) −4.30762 7.46101i −0.394879 0.683950i
\(120\) 0 0
\(121\) −4.07462 + 7.05746i −0.370420 + 0.641587i
\(122\) 0.0925992 + 2.95195i 0.00838354 + 0.267257i
\(123\) 0 0
\(124\) 0.605409 + 9.64037i 0.0543673 + 0.865730i
\(125\) −5.99734 + 9.43567i −0.536418 + 0.843952i
\(126\) 0 0
\(127\) −19.1833 −1.70224 −0.851122 0.524968i \(-0.824077\pi\)
−0.851122 + 0.524968i \(0.824077\pi\)
\(128\) −10.7946 3.38760i −0.954120 0.299424i
\(129\) 0 0
\(130\) −2.03831 + 12.8452i −0.178771 + 1.12659i
\(131\) −8.41433 + 14.5740i −0.735163 + 1.27334i 0.219488 + 0.975615i \(0.429561\pi\)
−0.954652 + 0.297725i \(0.903772\pi\)
\(132\) 0 0
\(133\) 6.75362 3.89920i 0.585613 0.338104i
\(134\) −0.519967 + 0.322352i −0.0449183 + 0.0278470i
\(135\) 0 0
\(136\) −1.71477 18.1737i −0.147040 1.55839i
\(137\) 2.99744 + 5.19172i 0.256089 + 0.443559i 0.965191 0.261547i \(-0.0842327\pi\)
−0.709102 + 0.705106i \(0.750899\pi\)
\(138\) 0 0
\(139\) −0.206175 0.119035i −0.0174875 0.0100964i 0.491231 0.871029i \(-0.336547\pi\)
−0.508718 + 0.860933i \(0.669881\pi\)
\(140\) −5.50412 + 2.31146i −0.465183 + 0.195354i
\(141\) 0 0
\(142\) −10.4916 5.62631i −0.880434 0.472150i
\(143\) 17.9976i 1.50504i
\(144\) 0 0
\(145\) 11.4945 + 2.19547i 0.954563 + 0.182324i
\(146\) 4.86674 9.07519i 0.402775 0.751068i
\(147\) 0 0
\(148\) −5.40335 + 3.58908i −0.444153 + 0.295021i
\(149\) 8.84885 + 5.10889i 0.724926 + 0.418536i 0.816563 0.577256i \(-0.195877\pi\)
−0.0916368 + 0.995792i \(0.529210\pi\)
\(150\) 0 0
\(151\) −13.0489 + 7.53379i −1.06190 + 0.613091i −0.925958 0.377625i \(-0.876741\pi\)
−0.135946 + 0.990716i \(0.543407\pi\)
\(152\) 16.4507 1.55219i 1.33432 0.125899i
\(153\) 0 0
\(154\) 7.02124 4.35279i 0.565787 0.350758i
\(155\) 3.54921 + 10.1996i 0.285079 + 0.819253i
\(156\) 0 0
\(157\) 2.77448 + 1.60184i 0.221427 + 0.127841i 0.606611 0.794999i \(-0.292529\pi\)
−0.385184 + 0.922840i \(0.625862\pi\)
\(158\) 4.22334 0.132481i 0.335991 0.0105396i
\(159\) 0 0
\(160\) −12.6427 0.403902i −0.999490 0.0319313i
\(161\) 0.134899i 0.0106315i
\(162\) 0 0
\(163\) 10.6182 0.831684 0.415842 0.909437i \(-0.363487\pi\)
0.415842 + 0.909437i \(0.363487\pi\)
\(164\) −0.507353 8.07895i −0.0396176 0.630860i
\(165\) 0 0
\(166\) −18.9491 + 0.594411i −1.47074 + 0.0461352i
\(167\) 10.9127 + 6.30046i 0.844451 + 0.487544i 0.858775 0.512353i \(-0.171226\pi\)
−0.0143236 + 0.999897i \(0.504560\pi\)
\(168\) 0 0
\(169\) 1.95764 + 3.39073i 0.150587 + 0.260825i
\(170\) −7.30842 19.0557i −0.560530 1.46150i
\(171\) 0 0
\(172\) 3.42207 6.89172i 0.260930 0.525489i
\(173\) 0.858165 + 1.48639i 0.0652451 + 0.113008i 0.896803 0.442431i \(-0.145884\pi\)
−0.831558 + 0.555439i \(0.812550\pi\)
\(174\) 0 0
\(175\) −5.23263 + 4.14335i −0.395550 + 0.313208i
\(176\) 17.3664 2.18984i 1.30904 0.165065i
\(177\) 0 0
\(178\) 4.66099 8.69150i 0.349356 0.651456i
\(179\) 18.6630 1.39494 0.697468 0.716616i \(-0.254310\pi\)
0.697468 + 0.716616i \(0.254310\pi\)
\(180\) 0 0
\(181\) −19.9281 −1.48125 −0.740623 0.671920i \(-0.765470\pi\)
−0.740623 + 0.671920i \(0.765470\pi\)
\(182\) −3.66938 + 6.84242i −0.271992 + 0.507194i
\(183\) 0 0
\(184\) 0.119031 0.259868i 0.00877509 0.0191577i
\(185\) −4.74014 + 5.48891i −0.348502 + 0.403553i
\(186\) 0 0
\(187\) 14.1211 + 24.4585i 1.03264 + 1.78859i
\(188\) 6.22121 + 3.08912i 0.453728 + 0.225298i
\(189\) 0 0
\(190\) 17.2490 6.61550i 1.25137 0.479939i
\(191\) 10.8229 + 18.7459i 0.783121 + 1.35641i 0.930115 + 0.367268i \(0.119707\pi\)
−0.146994 + 0.989137i \(0.546960\pi\)
\(192\) 0 0
\(193\) 9.00614 + 5.19970i 0.648276 + 0.374282i 0.787795 0.615937i \(-0.211222\pi\)
−0.139519 + 0.990219i \(0.544556\pi\)
\(194\) 3.40487 0.106807i 0.244456 0.00766827i
\(195\) 0 0
\(196\) 10.4157 0.654097i 0.743976 0.0467212i
\(197\) −8.15715 −0.581173 −0.290586 0.956849i \(-0.593850\pi\)
−0.290586 + 0.956849i \(0.593850\pi\)
\(198\) 0 0
\(199\) 9.18172i 0.650875i 0.945564 + 0.325438i \(0.105512\pi\)
−0.945564 + 0.325438i \(0.894488\pi\)
\(200\) −13.7361 + 3.36459i −0.971287 + 0.237912i
\(201\) 0 0
\(202\) 6.40988 0.201070i 0.450998 0.0141473i
\(203\) 6.05004 + 3.49299i 0.424629 + 0.245160i
\(204\) 0 0
\(205\) −2.97435 8.54761i −0.207738 0.596991i
\(206\) 4.69106 2.90821i 0.326842 0.202624i
\(207\) 0 0
\(208\) −13.1062 + 9.94341i −0.908752 + 0.689452i
\(209\) −22.1396 + 12.7823i −1.53143 + 0.884170i
\(210\) 0 0
\(211\) 8.87092 + 5.12163i 0.610699 + 0.352587i 0.773239 0.634115i \(-0.218635\pi\)
−0.162540 + 0.986702i \(0.551969\pi\)
\(212\) 3.07053 + 4.62267i 0.210885 + 0.317486i
\(213\) 0 0
\(214\) 3.33397 6.21698i 0.227906 0.424984i
\(215\) 1.61398 8.45003i 0.110072 0.576287i
\(216\) 0 0
\(217\) 6.44705i 0.437655i
\(218\) −6.21497 3.33290i −0.420931 0.225732i
\(219\) 0 0
\(220\) 18.0435 7.57739i 1.21649 0.510868i
\(221\) −22.9876 13.2719i −1.54631 0.892765i
\(222\) 0 0
\(223\) −11.6245 20.1343i −0.778436 1.34829i −0.932843 0.360283i \(-0.882680\pi\)
0.154407 0.988007i \(-0.450653\pi\)
\(224\) −7.04891 2.70815i −0.470975 0.180946i
\(225\) 0 0
\(226\) 24.5340 15.2098i 1.63198 1.01174i
\(227\) −14.7354 + 8.50750i −0.978024 + 0.564663i −0.901673 0.432418i \(-0.857660\pi\)
−0.0763513 + 0.997081i \(0.524327\pi\)
\(228\) 0 0
\(229\) −0.750685 + 1.30022i −0.0496066 + 0.0859212i −0.889762 0.456424i \(-0.849130\pi\)
0.840156 + 0.542345i \(0.182463\pi\)
\(230\) 0.0500836 0.315621i 0.00330242 0.0208114i
\(231\) 0 0
\(232\) 8.57262 + 12.0672i 0.562820 + 0.792253i
\(233\) −13.5483 −0.887579 −0.443789 0.896131i \(-0.646366\pi\)
−0.443789 + 0.896131i \(0.646366\pi\)
\(234\) 0 0
\(235\) 7.62791 + 1.45695i 0.497590 + 0.0950408i
\(236\) 5.48190 0.344260i 0.356841 0.0224094i
\(237\) 0 0
\(238\) −0.382002 12.1778i −0.0247615 0.789369i
\(239\) −7.32324 + 12.6842i −0.473701 + 0.820474i −0.999547 0.0301057i \(-0.990416\pi\)
0.525846 + 0.850580i \(0.323749\pi\)
\(240\) 0 0
\(241\) −12.2259 21.1758i −0.787537 1.36405i −0.927472 0.373894i \(-0.878022\pi\)
0.139934 0.990161i \(-0.455311\pi\)
\(242\) −9.79517 + 6.07249i −0.629658 + 0.390354i
\(243\) 0 0
\(244\) −1.85756 + 3.74095i −0.118918 + 0.239490i
\(245\) 11.0199 3.83464i 0.704034 0.244986i
\(246\) 0 0
\(247\) 12.0136 20.8081i 0.764406 1.32399i
\(248\) −5.68870 + 12.4195i −0.361233 + 0.788642i
\(249\) 0 0
\(250\) −13.7810 + 7.75142i −0.871586 + 0.490243i
\(251\) −13.1808 −0.831965 −0.415982 0.909373i \(-0.636562\pi\)
−0.415982 + 0.909373i \(0.636562\pi\)
\(252\) 0 0
\(253\) 0.442223i 0.0278024i
\(254\) −23.9084 12.8214i −1.50015 0.804483i
\(255\) 0 0
\(256\) −11.1894 11.4367i −0.699335 0.714794i
\(257\) −3.48508 + 6.03633i −0.217393 + 0.376536i −0.954010 0.299774i \(-0.903089\pi\)
0.736617 + 0.676310i \(0.236422\pi\)
\(258\) 0 0
\(259\) −3.74947 + 2.16476i −0.232981 + 0.134511i
\(260\) −11.1255 + 14.6468i −0.689977 + 0.908354i
\(261\) 0 0
\(262\) −20.2276 + 12.5400i −1.24966 + 0.774725i
\(263\) 13.9809 8.07190i 0.862102 0.497735i −0.00261352 0.999997i \(-0.500832\pi\)
0.864716 + 0.502262i \(0.167499\pi\)
\(264\) 0 0
\(265\) 4.69587 + 4.05528i 0.288465 + 0.249114i
\(266\) 11.0232 0.345784i 0.675875 0.0212014i
\(267\) 0 0
\(268\) −0.863489 + 0.0542266i −0.0527460 + 0.00331242i
\(269\) 21.7634i 1.32694i 0.748204 + 0.663468i \(0.230916\pi\)
−0.748204 + 0.663468i \(0.769084\pi\)
\(270\) 0 0
\(271\) 30.1548i 1.83177i 0.401436 + 0.915887i \(0.368511\pi\)
−0.401436 + 0.915887i \(0.631489\pi\)
\(272\) 10.0095 23.7962i 0.606912 1.44286i
\(273\) 0 0
\(274\) 0.265815 + 8.47388i 0.0160585 + 0.511926i
\(275\) 17.1535 13.5827i 1.03440 0.819065i
\(276\) 0 0
\(277\) −11.2614 + 6.50177i −0.676632 + 0.390654i −0.798585 0.601882i \(-0.794418\pi\)
0.121953 + 0.992536i \(0.461084\pi\)
\(278\) −0.177400 0.286153i −0.0106397 0.0171623i
\(279\) 0 0
\(280\) −8.40475 0.797925i −0.502280 0.0476851i
\(281\) 0.936692 0.540799i 0.0558784 0.0322614i −0.471801 0.881705i \(-0.656396\pi\)
0.527679 + 0.849444i \(0.323062\pi\)
\(282\) 0 0
\(283\) −14.6158 + 25.3154i −0.868821 + 1.50484i −0.00561859 + 0.999984i \(0.501788\pi\)
−0.863202 + 0.504858i \(0.831545\pi\)
\(284\) −9.31540 14.0243i −0.552767 0.832189i
\(285\) 0 0
\(286\) 12.0289 22.4307i 0.711283 1.32635i
\(287\) 5.40284i 0.318920i
\(288\) 0 0
\(289\) 24.6531 1.45019
\(290\) 12.8583 + 10.4187i 0.755067 + 0.611805i
\(291\) 0 0
\(292\) 12.1310 8.05779i 0.709911 0.471547i
\(293\) −2.81552 + 4.87662i −0.164484 + 0.284895i −0.936472 0.350742i \(-0.885929\pi\)
0.771988 + 0.635637i \(0.219263\pi\)
\(294\) 0 0
\(295\) 5.79991 2.01822i 0.337684 0.117506i
\(296\) −9.13306 + 0.861741i −0.530848 + 0.0500877i
\(297\) 0 0
\(298\) 7.61387 + 12.2815i 0.441060 + 0.711447i
\(299\) −0.207814 0.359945i −0.0120182 0.0208162i
\(300\) 0 0
\(301\) 2.56784 4.44762i 0.148008 0.256357i
\(302\) −21.2983 + 0.668101i −1.22558 + 0.0384449i
\(303\) 0 0
\(304\) 21.5401 + 9.06044i 1.23541 + 0.519652i
\(305\) −0.876095 + 4.58683i −0.0501650 + 0.262641i
\(306\) 0 0
\(307\) 15.2931 0.872826 0.436413 0.899747i \(-0.356249\pi\)
0.436413 + 0.899747i \(0.356249\pi\)
\(308\) 11.6599 0.732233i 0.664384 0.0417229i
\(309\) 0 0
\(310\) −2.39358 + 15.0841i −0.135946 + 0.856717i
\(311\) −1.83417 + 3.17688i −0.104006 + 0.180144i −0.913332 0.407216i \(-0.866500\pi\)
0.809326 + 0.587360i \(0.199833\pi\)
\(312\) 0 0
\(313\) −21.3301 + 12.3149i −1.20565 + 0.696081i −0.961805 0.273734i \(-0.911741\pi\)
−0.243842 + 0.969815i \(0.578408\pi\)
\(314\) 2.38726 + 3.85075i 0.134721 + 0.217310i
\(315\) 0 0
\(316\) 5.35215 + 2.65759i 0.301082 + 0.149501i
\(317\) 5.32466 + 9.22258i 0.299063 + 0.517992i 0.975922 0.218121i \(-0.0699927\pi\)
−0.676859 + 0.736113i \(0.736659\pi\)
\(318\) 0 0
\(319\) −19.8331 11.4506i −1.11044 0.641113i
\(320\) −15.4868 8.95323i −0.865736 0.500501i
\(321\) 0 0
\(322\) 0.0901611 0.168126i 0.00502448 0.00936932i
\(323\) 37.7039i 2.09790i
\(324\) 0 0
\(325\) −7.57908 + 19.1165i −0.420412 + 1.06039i
\(326\) 13.2336 + 7.09679i 0.732943 + 0.393055i
\(327\) 0 0
\(328\) 4.76732 10.4080i 0.263231 0.574685i
\(329\) 4.01490 + 2.31800i 0.221349 + 0.127796i
\(330\) 0 0
\(331\) 3.04582 1.75851i 0.167414 0.0966563i −0.413952 0.910299i \(-0.635852\pi\)
0.581366 + 0.813642i \(0.302519\pi\)
\(332\) −24.0138 11.9240i −1.31793 0.654415i
\(333\) 0 0
\(334\) 9.38969 + 15.1460i 0.513781 + 0.828750i
\(335\) −0.913581 + 0.317903i −0.0499143 + 0.0173689i
\(336\) 0 0
\(337\) −20.3763 11.7643i −1.10997 0.640841i −0.171147 0.985245i \(-0.554747\pi\)
−0.938821 + 0.344405i \(0.888081\pi\)
\(338\) 0.173605 + 5.53431i 0.00944284 + 0.301027i
\(339\) 0 0
\(340\) 3.62745 28.6340i 0.196726 1.55290i
\(341\) 21.1346i 1.14450i
\(342\) 0 0
\(343\) 16.3097 0.880642
\(344\) 8.87111 6.30207i 0.478298 0.339785i
\(345\) 0 0
\(346\) 0.0761027 + 2.42607i 0.00409131 + 0.130426i
\(347\) −3.63147 2.09663i −0.194947 0.112553i 0.399349 0.916799i \(-0.369236\pi\)
−0.594297 + 0.804246i \(0.702569\pi\)
\(348\) 0 0
\(349\) 2.78198 + 4.81854i 0.148916 + 0.257930i 0.930827 0.365460i \(-0.119088\pi\)
−0.781911 + 0.623390i \(0.785755\pi\)
\(350\) −9.29074 + 1.66664i −0.496611 + 0.0890855i
\(351\) 0 0
\(352\) 23.1076 + 8.87779i 1.23164 + 0.473188i
\(353\) 5.51109 + 9.54549i 0.293326 + 0.508055i 0.974594 0.223979i \(-0.0719046\pi\)
−0.681268 + 0.732034i \(0.738571\pi\)
\(354\) 0 0
\(355\) −14.2464 12.3029i −0.756119 0.652973i
\(356\) 11.6181 7.71712i 0.615758 0.409006i
\(357\) 0 0
\(358\) 23.2599 + 12.4736i 1.22932 + 0.659248i
\(359\) 27.2920 1.44042 0.720209 0.693757i \(-0.244046\pi\)
0.720209 + 0.693757i \(0.244046\pi\)
\(360\) 0 0
\(361\) −15.1292 −0.796272
\(362\) −24.8367 13.3192i −1.30539 0.700039i
\(363\) 0 0
\(364\) −9.14639 + 6.07533i −0.479401 + 0.318434i
\(365\) 10.6420 12.3231i 0.557029 0.645019i
\(366\) 0 0
\(367\) −15.7443 27.2699i −0.821846 1.42348i −0.904306 0.426885i \(-0.859611\pi\)
0.0824597 0.996594i \(-0.473722\pi\)
\(368\) 0.322035 0.244322i 0.0167873 0.0127361i
\(369\) 0 0
\(370\) −9.57627 + 3.67279i −0.497846 + 0.190939i
\(371\) 1.85199 + 3.20774i 0.0961505 + 0.166538i
\(372\) 0 0
\(373\) 20.2988 + 11.7195i 1.05103 + 0.606812i 0.922937 0.384950i \(-0.125781\pi\)
0.128092 + 0.991762i \(0.459115\pi\)
\(374\) 1.25227 + 39.9210i 0.0647535 + 2.06426i
\(375\) 0 0
\(376\) 5.68893 + 8.00802i 0.293384 + 0.412982i
\(377\) 21.5240 1.10854
\(378\) 0 0
\(379\) 11.5529i 0.593434i −0.954965 0.296717i \(-0.904108\pi\)
0.954965 0.296717i \(-0.0958918\pi\)
\(380\) 25.9191 + 3.28353i 1.32962 + 0.168441i
\(381\) 0 0
\(382\) 0.959787 + 30.5969i 0.0491070 + 1.56547i
\(383\) −22.7016 13.1068i −1.16000 0.669725i −0.208695 0.977981i \(-0.566921\pi\)
−0.951304 + 0.308256i \(0.900255\pi\)
\(384\) 0 0
\(385\) 12.3363 4.29272i 0.628715 0.218777i
\(386\) 7.74920 + 12.4998i 0.394424 + 0.636222i
\(387\) 0 0
\(388\) 4.31492 + 2.14256i 0.219057 + 0.108772i
\(389\) 1.38545 0.799888i 0.0702449 0.0405559i −0.464466 0.885591i \(-0.653754\pi\)
0.534711 + 0.845035i \(0.320420\pi\)
\(390\) 0 0
\(391\) 0.564834 + 0.326107i 0.0285649 + 0.0164919i
\(392\) 13.4183 + 6.14619i 0.677729 + 0.310430i
\(393\) 0 0
\(394\) −10.1664 5.45190i −0.512174 0.274663i
\(395\) 6.56234 + 1.25342i 0.330187 + 0.0630665i
\(396\) 0 0
\(397\) 25.9373i 1.30176i −0.759182 0.650879i \(-0.774401\pi\)
0.759182 0.650879i \(-0.225599\pi\)
\(398\) −6.13669 + 11.4433i −0.307605 + 0.573601i
\(399\) 0 0
\(400\) −19.3682 4.98730i −0.968410 0.249365i
\(401\) 21.5383 + 12.4351i 1.07557 + 0.620980i 0.929698 0.368323i \(-0.120068\pi\)
0.145872 + 0.989304i \(0.453401\pi\)
\(402\) 0 0
\(403\) 9.93179 + 17.2024i 0.494738 + 0.856911i
\(404\) 8.12311 + 4.03351i 0.404140 + 0.200675i
\(405\) 0 0
\(406\) 5.20567 + 8.39696i 0.258353 + 0.416734i
\(407\) 12.2914 7.09646i 0.609264 0.351759i
\(408\) 0 0
\(409\) −10.6869 + 18.5102i −0.528433 + 0.915272i 0.471018 + 0.882124i \(0.343887\pi\)
−0.999450 + 0.0331484i \(0.989447\pi\)
\(410\) 2.00590 12.6409i 0.0990643 0.624291i
\(411\) 0 0
\(412\) 7.79025 0.489223i 0.383798 0.0241023i
\(413\) 3.66606 0.180395
\(414\) 0 0
\(415\) −29.4437 5.62381i −1.44533 0.276062i
\(416\) −22.9802 + 3.63295i −1.12670 + 0.178120i
\(417\) 0 0
\(418\) −36.1360 + 1.13354i −1.76747 + 0.0554434i
\(419\) −3.12824 + 5.41826i −0.152824 + 0.264700i −0.932265 0.361777i \(-0.882170\pi\)
0.779440 + 0.626476i \(0.215504\pi\)
\(420\) 0 0
\(421\) 15.3599 + 26.6041i 0.748596 + 1.29661i 0.948496 + 0.316790i \(0.102605\pi\)
−0.199900 + 0.979816i \(0.564062\pi\)
\(422\) 7.63286 + 12.3121i 0.371562 + 0.599344i
\(423\) 0 0
\(424\) 0.737236 + 7.81350i 0.0358033 + 0.379457i
\(425\) −4.69913 31.9256i −0.227941 1.54862i
\(426\) 0 0
\(427\) −1.39387 + 2.41425i −0.0674540 + 0.116834i
\(428\) 8.31035 5.52001i 0.401696 0.266820i
\(429\) 0 0
\(430\) 7.65918 9.45267i 0.369358 0.455848i
\(431\) −35.1049 −1.69094 −0.845472 0.534020i \(-0.820681\pi\)
−0.845472 + 0.534020i \(0.820681\pi\)
\(432\) 0 0
\(433\) 24.5043i 1.17760i −0.808279 0.588800i \(-0.799601\pi\)
0.808279 0.588800i \(-0.200399\pi\)
\(434\) −4.30895 + 8.03505i −0.206836 + 0.385695i
\(435\) 0 0
\(436\) −5.51823 8.30767i −0.264275 0.397865i
\(437\) −0.295188 + 0.511281i −0.0141208 + 0.0244579i
\(438\) 0 0
\(439\) 15.3741 8.87623i 0.733765 0.423639i −0.0860332 0.996292i \(-0.527419\pi\)
0.819798 + 0.572653i \(0.194086\pi\)
\(440\) 27.5523 + 2.61574i 1.31350 + 0.124701i
\(441\) 0 0
\(442\) −19.7794 31.9049i −0.940808 1.51756i
\(443\) 6.08715 3.51442i 0.289209 0.166975i −0.348376 0.937355i \(-0.613267\pi\)
0.637585 + 0.770380i \(0.279933\pi\)
\(444\) 0 0
\(445\) 10.1921 11.8021i 0.483151 0.559472i
\(446\) −1.03087 32.8630i −0.0488132 1.55611i
\(447\) 0 0
\(448\) −6.97513 8.08640i −0.329544 0.382047i
\(449\) 16.6756i 0.786971i −0.919331 0.393485i \(-0.871269\pi\)
0.919331 0.393485i \(-0.128731\pi\)
\(450\) 0 0
\(451\) 17.7115i 0.834002i
\(452\) 40.7426 2.55861i 1.91637 0.120347i
\(453\) 0 0
\(454\) −24.0510 + 0.754451i −1.12877 + 0.0354081i
\(455\) −8.02376 + 9.29123i −0.376160 + 0.435579i
\(456\) 0 0
\(457\) 25.7193 14.8490i 1.20310 0.694608i 0.241854 0.970313i \(-0.422244\pi\)
0.961242 + 0.275704i \(0.0889111\pi\)
\(458\) −1.80460 + 1.11876i −0.0843236 + 0.0522762i
\(459\) 0 0
\(460\) 0.273368 0.359889i 0.0127459 0.0167799i
\(461\) −12.2647 + 7.08100i −0.571222 + 0.329795i −0.757637 0.652676i \(-0.773646\pi\)
0.186415 + 0.982471i \(0.440313\pi\)
\(462\) 0 0
\(463\) 2.85520 4.94535i 0.132692 0.229830i −0.792021 0.610494i \(-0.790971\pi\)
0.924714 + 0.380664i \(0.124304\pi\)
\(464\) 2.61891 + 20.7691i 0.121580 + 0.964184i
\(465\) 0 0
\(466\) −16.8854 9.05513i −0.782202 0.419471i
\(467\) 18.7968i 0.869813i 0.900476 + 0.434907i \(0.143219\pi\)
−0.900476 + 0.434907i \(0.856781\pi\)
\(468\) 0 0
\(469\) −0.577464 −0.0266648
\(470\) 8.53299 + 6.91399i 0.393598 + 0.318919i
\(471\) 0 0
\(472\) 7.06225 + 3.23482i 0.325067 + 0.148895i
\(473\) −8.41783 + 14.5801i −0.387052 + 0.670394i
\(474\) 0 0
\(475\) 28.8987 4.25359i 1.32596 0.195168i
\(476\) 7.66304 15.4327i 0.351235 0.707354i
\(477\) 0 0
\(478\) −17.6047 + 10.9140i −0.805219 + 0.499193i
\(479\) −15.2061 26.3377i −0.694783 1.20340i −0.970254 0.242090i \(-0.922167\pi\)
0.275471 0.961309i \(-0.411166\pi\)
\(480\) 0 0
\(481\) −6.66969 + 11.5522i −0.304112 + 0.526737i
\(482\) −1.08420 34.5630i −0.0493839 1.57430i
\(483\) 0 0
\(484\) −16.2665 + 1.02152i −0.739384 + 0.0464329i
\(485\) 5.29058 + 1.01051i 0.240233 + 0.0458851i
\(486\) 0 0
\(487\) −3.67889 −0.166706 −0.0833532 0.996520i \(-0.526563\pi\)
−0.0833532 + 0.996520i \(0.526563\pi\)
\(488\) −4.81540 + 3.42088i −0.217983 + 0.154856i
\(489\) 0 0
\(490\) 16.2971 + 2.58608i 0.736230 + 0.116827i
\(491\) 9.05671 15.6867i 0.408724 0.707930i −0.586023 0.810294i \(-0.699307\pi\)
0.994747 + 0.102364i \(0.0326406\pi\)
\(492\) 0 0
\(493\) −29.2509 + 16.8880i −1.31739 + 0.760597i
\(494\) 28.8800 17.9040i 1.29937 0.805541i
\(495\) 0 0
\(496\) −15.3906 + 11.6765i −0.691059 + 0.524292i
\(497\) −5.61859 9.73168i −0.252028 0.436525i
\(498\) 0 0
\(499\) 19.9488 + 11.5175i 0.893032 + 0.515592i 0.874933 0.484244i \(-0.160905\pi\)
0.0180991 + 0.999836i \(0.494239\pi\)
\(500\) −22.3562 + 0.450050i −0.999797 + 0.0201268i
\(501\) 0 0
\(502\) −16.4274 8.80951i −0.733191 0.393188i
\(503\) 31.1266i 1.38787i −0.720039 0.693934i \(-0.755876\pi\)
0.720039 0.693934i \(-0.244124\pi\)
\(504\) 0 0
\(505\) 9.95985 + 1.90235i 0.443208 + 0.0846537i
\(506\) −0.295564 + 0.551149i −0.0131394 + 0.0245016i
\(507\) 0 0
\(508\) −21.2281 31.9588i −0.941845 1.41794i
\(509\) 0.489681 + 0.282717i 0.0217047 + 0.0125312i 0.510813 0.859692i \(-0.329344\pi\)
−0.489108 + 0.872223i \(0.662678\pi\)
\(510\) 0 0
\(511\) 8.41787 4.86006i 0.372385 0.214996i
\(512\) −6.30162 21.7322i −0.278495 0.960438i
\(513\) 0 0
\(514\) −8.37793 + 5.19387i −0.369535 + 0.229092i
\(515\) 8.24217 2.86807i 0.363194 0.126382i
\(516\) 0 0
\(517\) −13.1616 7.59884i −0.578845 0.334196i
\(518\) −6.11985 + 0.191972i −0.268891 + 0.00843477i
\(519\) 0 0
\(520\) −23.6552 + 10.8186i −1.03735 + 0.474427i
\(521\) 4.80678i 0.210589i 0.994441 + 0.105294i \(0.0335785\pi\)
−0.994441 + 0.105294i \(0.966422\pi\)
\(522\) 0 0
\(523\) −19.6207 −0.857954 −0.428977 0.903315i \(-0.641126\pi\)
−0.428977 + 0.903315i \(0.641126\pi\)
\(524\) −33.5911 + 2.10950i −1.46744 + 0.0921540i
\(525\) 0 0
\(526\) 22.8196 0.715822i 0.994980 0.0312113i
\(527\) −26.9943 15.5852i −1.17589 0.678902i
\(528\) 0 0
\(529\) −11.4949 19.9097i −0.499778 0.865641i
\(530\) 3.14214 + 8.19268i 0.136486 + 0.355867i
\(531\) 0 0
\(532\) 13.9695 + 6.93650i 0.605653 + 0.300735i
\(533\) −8.32317 14.4162i −0.360517 0.624433i
\(534\) 0 0
\(535\) 7.29034 8.44195i 0.315189 0.364977i
\(536\) −1.11242 0.509538i −0.0480493 0.0220087i
\(537\) 0 0
\(538\) −14.5458 + 27.1240i −0.627112 + 1.16940i
\(539\) −22.8343 −0.983542
\(540\) 0 0
\(541\) 40.3065 1.73291 0.866457 0.499252i \(-0.166392\pi\)
0.866457 + 0.499252i \(0.166392\pi\)
\(542\) −20.1542 + 37.5823i −0.865699 + 1.61430i
\(543\) 0 0
\(544\) 28.3793 22.9677i 1.21675 0.984730i
\(545\) −8.43922 7.28798i −0.361497 0.312183i
\(546\) 0 0
\(547\) 1.44201 + 2.49763i 0.0616557 + 0.106791i 0.895206 0.445653i \(-0.147029\pi\)
−0.833550 + 0.552444i \(0.813695\pi\)
\(548\) −5.33231 + 10.7388i −0.227785 + 0.458737i
\(549\) 0 0
\(550\) 30.4567 5.46353i 1.29868 0.232966i
\(551\) −15.2868 26.4775i −0.651240 1.12798i
\(552\) 0 0
\(553\) 3.45405 + 1.99419i 0.146881 + 0.0848018i
\(554\) −18.3807 + 0.576582i −0.780923 + 0.0244966i
\(555\) 0 0
\(556\) −0.0298425 0.475204i −0.00126560 0.0201531i
\(557\) 17.0510 0.722475 0.361237 0.932474i \(-0.382354\pi\)
0.361237 + 0.932474i \(0.382354\pi\)
\(558\) 0 0
\(559\) 15.8232i 0.669249i
\(560\) −9.94165 6.61186i −0.420111 0.279402i
\(561\) 0 0
\(562\) 1.52886 0.0479585i 0.0644910 0.00202301i
\(563\) 19.0842 + 11.0182i 0.804302 + 0.464364i 0.844973 0.534809i \(-0.179616\pi\)
−0.0406715 + 0.999173i \(0.512950\pi\)
\(564\) 0 0
\(565\) 43.1061 14.9999i 1.81349 0.631049i
\(566\) −35.1357 + 21.7822i −1.47686 + 0.915576i
\(567\) 0 0
\(568\) −2.23663 23.7047i −0.0938470 0.994627i
\(569\) 24.1641 13.9512i 1.01301 0.584864i 0.100941 0.994892i \(-0.467815\pi\)
0.912073 + 0.410029i \(0.134481\pi\)
\(570\) 0 0
\(571\) −11.2510 6.49576i −0.470839 0.271839i 0.245752 0.969333i \(-0.420965\pi\)
−0.716591 + 0.697494i \(0.754298\pi\)
\(572\) 29.9835 19.9160i 1.25367 0.832731i
\(573\) 0 0
\(574\) 3.61104 6.73364i 0.150722 0.281057i
\(575\) 0.186227 0.469715i 0.00776621 0.0195885i
\(576\) 0 0
\(577\) 34.6251i 1.44146i 0.693216 + 0.720730i \(0.256193\pi\)
−0.693216 + 0.720730i \(0.743807\pi\)
\(578\) 30.7255 + 16.4772i 1.27801 + 0.685359i
\(579\) 0 0
\(580\) 9.06209 + 21.5789i 0.376283 + 0.896015i
\(581\) −15.4975 8.94748i −0.642944 0.371204i
\(582\) 0 0
\(583\) −6.07116 10.5156i −0.251442 0.435510i
\(584\) 20.5045 1.93468i 0.848482 0.0800577i
\(585\) 0 0
\(586\) −6.76835 + 4.19601i −0.279598 + 0.173336i
\(587\) −9.41209 + 5.43407i −0.388479 + 0.224288i −0.681501 0.731817i \(-0.738672\pi\)
0.293022 + 0.956106i \(0.405339\pi\)
\(588\) 0 0
\(589\) 14.1075 24.4350i 0.581291 1.00683i
\(590\) 8.57740 + 1.36109i 0.353126 + 0.0560350i
\(591\) 0 0
\(592\) −11.9586 5.03017i −0.491496 0.206739i
\(593\) −4.49540 −0.184604 −0.0923019 0.995731i \(-0.529422\pi\)
−0.0923019 + 0.995731i \(0.529422\pi\)
\(594\) 0 0
\(595\) 3.61418 18.9222i 0.148167 0.775734i
\(596\) 1.28082 + 20.3954i 0.0524643 + 0.835427i
\(597\) 0 0
\(598\) −0.0184291 0.587499i −0.000753623 0.0240246i
\(599\) 3.45192 5.97890i 0.141042 0.244291i −0.786847 0.617148i \(-0.788288\pi\)
0.927889 + 0.372856i \(0.121621\pi\)
\(600\) 0 0
\(601\) −15.7058 27.2032i −0.640653 1.10964i −0.985287 0.170906i \(-0.945331\pi\)
0.344635 0.938737i \(-0.388003\pi\)
\(602\) 6.17294 3.82689i 0.251590 0.155973i
\(603\) 0 0
\(604\) −26.9909 13.4022i −1.09824 0.545330i
\(605\) −17.2101 + 5.98868i −0.699689 + 0.243474i
\(606\) 0 0
\(607\) −9.81362 + 16.9977i −0.398322 + 0.689915i −0.993519 0.113665i \(-0.963741\pi\)
0.595197 + 0.803580i \(0.297074\pi\)
\(608\) 20.7901 + 25.6887i 0.843148 + 1.04181i
\(609\) 0 0
\(610\) −4.15754 + 5.13108i −0.168334 + 0.207751i
\(611\) 14.2837 0.577857
\(612\) 0 0
\(613\) 28.8088i 1.16358i −0.813340 0.581788i \(-0.802353\pi\)
0.813340 0.581788i \(-0.197647\pi\)
\(614\) 19.0600 + 10.2213i 0.769200 + 0.412499i
\(615\) 0 0
\(616\) 15.0213 + 6.88040i 0.605224 + 0.277219i
\(617\) 8.02269 13.8957i 0.322981 0.559420i −0.658120 0.752913i \(-0.728648\pi\)
0.981102 + 0.193493i \(0.0619815\pi\)
\(618\) 0 0
\(619\) −2.13387 + 1.23199i −0.0857674 + 0.0495178i −0.542270 0.840204i \(-0.682435\pi\)
0.456503 + 0.889722i \(0.349102\pi\)
\(620\) −13.0647 + 17.1997i −0.524692 + 0.690756i
\(621\) 0 0
\(622\) −4.40924 + 2.73350i −0.176795 + 0.109603i
\(623\) 8.06198 4.65458i 0.322996 0.186482i
\(624\) 0 0
\(625\) −23.9397 + 7.20343i −0.957589 + 0.288137i
\(626\) −34.8148 + 1.09210i −1.39148 + 0.0436490i
\(627\) 0 0
\(628\) 0.401588 + 6.39478i 0.0160251 + 0.255179i
\(629\) 20.9324i 0.834631i
\(630\) 0 0
\(631\) 44.4737i 1.77047i −0.465144 0.885235i \(-0.653997\pi\)
0.465144 0.885235i \(-0.346003\pi\)
\(632\) 4.89422 + 6.88935i 0.194682 + 0.274044i
\(633\) 0 0
\(634\) 0.472194 + 15.0530i 0.0187532 + 0.597831i
\(635\) −32.4649 28.0362i −1.28833 1.11258i
\(636\) 0 0
\(637\) 18.5858 10.7305i 0.736397 0.425159i
\(638\) −17.0651 27.5267i −0.675614 1.08979i
\(639\) 0 0
\(640\) −13.3174 21.5092i −0.526415 0.850227i
\(641\) 14.1935 8.19465i 0.560611 0.323669i −0.192779 0.981242i \(-0.561750\pi\)
0.753391 + 0.657573i \(0.228417\pi\)
\(642\) 0 0
\(643\) −17.5507 + 30.3987i −0.692133 + 1.19881i 0.279005 + 0.960290i \(0.409995\pi\)
−0.971138 + 0.238520i \(0.923338\pi\)
\(644\) 0.224738 0.149278i 0.00885591 0.00588239i
\(645\) 0 0
\(646\) −25.1998 + 46.9909i −0.991472 + 1.84883i
\(647\) 19.0579i 0.749243i 0.927178 + 0.374621i \(0.122227\pi\)
−0.927178 + 0.374621i \(0.877773\pi\)
\(648\) 0 0
\(649\) −12.0180 −0.471747
\(650\) −22.2226 + 18.7596i −0.871641 + 0.735810i
\(651\) 0 0
\(652\) 11.7500 + 17.6896i 0.460167 + 0.692780i
\(653\) −21.0708 + 36.4956i −0.824563 + 1.42818i 0.0776903 + 0.996978i \(0.475245\pi\)
−0.902253 + 0.431207i \(0.858088\pi\)
\(654\) 0 0
\(655\) −35.5398 + 12.3670i −1.38865 + 0.483217i
\(656\) 12.8978 9.78533i 0.503576 0.382053i
\(657\) 0 0
\(658\) 3.45456 + 5.57236i 0.134673 + 0.217233i
\(659\) −10.0696 17.4410i −0.392256 0.679407i 0.600491 0.799631i \(-0.294972\pi\)
−0.992747 + 0.120225i \(0.961638\pi\)
\(660\) 0 0
\(661\) 3.54725 6.14402i 0.137972 0.238975i −0.788757 0.614705i \(-0.789275\pi\)
0.926729 + 0.375731i \(0.122608\pi\)
\(662\) 4.97136 0.155946i 0.193218 0.00606100i
\(663\) 0 0
\(664\) −21.9592 30.9109i −0.852183 1.19958i
\(665\) 17.1281 + 3.27151i 0.664201 + 0.126864i
\(666\) 0 0
\(667\) −0.528872 −0.0204780
\(668\) 1.57955 + 25.1523i 0.0611145 + 0.973171i
\(669\) 0 0
\(670\) −1.35108 0.214393i −0.0521968 0.00828274i
\(671\) 4.56935 7.91434i 0.176398 0.305530i
\(672\) 0 0
\(673\) −19.8408 + 11.4551i −0.764806 + 0.441561i −0.831018 0.556245i \(-0.812242\pi\)
0.0662129 + 0.997806i \(0.478908\pi\)
\(674\) −17.5325 28.2807i −0.675327 1.08933i
\(675\) 0 0
\(676\) −3.48254 + 7.01351i −0.133944 + 0.269750i
\(677\) −11.6227 20.1311i −0.446696 0.773699i 0.551473 0.834193i \(-0.314066\pi\)
−0.998169 + 0.0604934i \(0.980733\pi\)
\(678\) 0 0
\(679\) 2.78467 + 1.60773i 0.106866 + 0.0616989i
\(680\) 23.6587 33.2625i 0.907271 1.27556i
\(681\) 0 0
\(682\) 14.1255 26.3403i 0.540894 1.00862i
\(683\) 30.3578i 1.16161i 0.814043 + 0.580804i \(0.197262\pi\)
−0.814043 + 0.580804i \(0.802738\pi\)
\(684\) 0 0
\(685\) −2.51492 + 13.1669i −0.0960900 + 0.503083i
\(686\) 20.3270 + 10.9007i 0.776089 + 0.416193i
\(687\) 0 0
\(688\) 15.2682 1.92526i 0.582096 0.0734000i
\(689\) 9.88316 + 5.70604i 0.376518 + 0.217383i
\(690\) 0 0
\(691\) 10.6015 6.12077i 0.403299 0.232845i −0.284607 0.958644i \(-0.591863\pi\)
0.687907 + 0.725799i \(0.258530\pi\)
\(692\) −1.52664 + 3.07450i −0.0580340 + 0.116875i
\(693\) 0 0
\(694\) −3.12464 5.04018i −0.118610 0.191323i
\(695\) −0.174952 0.502771i −0.00663629 0.0190712i
\(696\) 0 0
\(697\) 22.6222 + 13.0609i 0.856875 + 0.494717i
\(698\) 0.246708 + 7.86477i 0.00933804 + 0.297686i
\(699\) 0 0
\(700\) −12.6931 4.13240i −0.479754 0.156190i
\(701\) 0.0365464i 0.00138034i −1.00000 0.000690169i \(-0.999780\pi\)
1.00000 0.000690169i \(-0.000219688\pi\)
\(702\) 0 0
\(703\) 18.9478 0.714630
\(704\) 22.8657 + 26.5087i 0.861785 + 0.999083i
\(705\) 0 0
\(706\) 0.488727 + 15.5801i 0.0183935 + 0.586363i
\(707\) 5.24231 + 3.02665i 0.197157 + 0.113829i
\(708\) 0 0
\(709\) 13.6359 + 23.6181i 0.512109 + 0.886998i 0.999901 + 0.0140387i \(0.00446880\pi\)
−0.487793 + 0.872959i \(0.662198\pi\)
\(710\) −9.53265 24.8550i −0.357754 0.932792i
\(711\) 0 0
\(712\) 19.6376 1.85289i 0.735950 0.0694398i
\(713\) −0.244036 0.422683i −0.00913923 0.0158296i
\(714\) 0 0
\(715\) 26.3033 30.4583i 0.983689 1.13908i
\(716\) 20.6523 + 31.0919i 0.771812 + 1.16196i
\(717\) 0 0
\(718\) 34.0144 + 18.2409i 1.26941 + 0.680743i
\(719\) 7.73269 0.288381 0.144190 0.989550i \(-0.453942\pi\)
0.144190 + 0.989550i \(0.453942\pi\)
\(720\) 0 0
\(721\) 5.20978 0.194022
\(722\) −18.8557 10.1117i −0.701735 0.376319i
\(723\) 0 0
\(724\) −22.0523 33.1997i −0.819568 1.23386i
\(725\) 16.2440 + 20.5145i 0.603287 + 0.761890i
\(726\) 0 0
\(727\) 8.24957 + 14.2887i 0.305960 + 0.529938i 0.977475 0.211053i \(-0.0676894\pi\)
−0.671515 + 0.740991i \(0.734356\pi\)
\(728\) −15.4598 + 1.45869i −0.572977 + 0.0540627i
\(729\) 0 0
\(730\) 21.4995 8.24571i 0.795733 0.305188i
\(731\) 12.4150 + 21.5035i 0.459187 + 0.795335i
\(732\) 0 0
\(733\) −37.1399 21.4427i −1.37179 0.792006i −0.380641 0.924723i \(-0.624297\pi\)
−0.991154 + 0.132717i \(0.957630\pi\)
\(734\) −1.39622 44.5097i −0.0515353 1.64288i
\(735\) 0 0
\(736\) 0.564652 0.0892658i 0.0208133 0.00329038i
\(737\) 1.89303 0.0697307
\(738\) 0 0
\(739\) 3.04457i 0.111996i −0.998431 0.0559981i \(-0.982166\pi\)
0.998431 0.0559981i \(-0.0178341\pi\)
\(740\) −14.3898 1.82294i −0.528978 0.0670128i
\(741\) 0 0
\(742\) 0.164236 + 5.23564i 0.00602928 + 0.192207i
\(743\) 35.0211 + 20.2194i 1.28480 + 0.741779i 0.977722 0.209905i \(-0.0673155\pi\)
0.307078 + 0.951684i \(0.400649\pi\)
\(744\) 0 0
\(745\) 7.50879 + 21.5785i 0.275101 + 0.790576i
\(746\) 17.4658 + 28.1730i 0.639467 + 1.03149i
\(747\) 0 0
\(748\) −25.1208 + 50.5910i −0.918509 + 1.84979i
\(749\) 5.76668 3.32940i 0.210710 0.121653i
\(750\) 0 0
\(751\) 12.0862 + 6.97795i 0.441030 + 0.254629i 0.704034 0.710166i \(-0.251380\pi\)
−0.263004 + 0.964795i \(0.584713\pi\)
\(752\) 1.73795 + 13.7827i 0.0633765 + 0.502605i
\(753\) 0 0
\(754\) 26.8257 + 14.3858i 0.976934 + 0.523900i
\(755\) −33.0939 6.32101i −1.20441 0.230045i
\(756\) 0 0
\(757\) 31.7859i 1.15528i 0.816293 + 0.577639i \(0.196026\pi\)
−0.816293 + 0.577639i \(0.803974\pi\)
\(758\) 7.72151 14.3986i 0.280458 0.522979i
\(759\) 0 0
\(760\) 30.1088 + 21.4156i 1.09216 + 0.776825i
\(761\) 21.6921 + 12.5240i 0.786339 + 0.453993i 0.838672 0.544637i \(-0.183332\pi\)
−0.0523332 + 0.998630i \(0.516666\pi\)
\(762\) 0 0
\(763\) −3.32832 5.76482i −0.120493 0.208700i
\(764\) −19.2535 + 38.7748i −0.696568 + 1.40282i
\(765\) 0 0
\(766\) −19.5333 31.5080i −0.705766 1.13843i
\(767\) 9.78196 5.64762i 0.353206 0.203924i
\(768\) 0 0
\(769\) −1.59810 + 2.76799i −0.0576290 + 0.0998164i −0.893401 0.449261i \(-0.851687\pi\)
0.835772 + 0.549077i \(0.185021\pi\)
\(770\) 18.2440 + 2.89500i 0.657466 + 0.104329i
\(771\) 0 0
\(772\) 1.30358 + 20.7579i 0.0469170 + 0.747093i
\(773\) 26.8609 0.966121 0.483060 0.875587i \(-0.339525\pi\)
0.483060 + 0.875587i \(0.339525\pi\)
\(774\) 0 0
\(775\) −8.90011 + 22.4485i −0.319701 + 0.806372i
\(776\) 3.94574 + 5.55422i 0.141644 + 0.199385i
\(777\) 0 0
\(778\) 2.26131 0.0709346i 0.0810720 0.00254313i
\(779\) −11.8226 + 20.4773i −0.423588 + 0.733676i
\(780\) 0 0
\(781\) 18.4187 + 31.9022i 0.659074 + 1.14155i
\(782\) 0.486003 + 0.783943i 0.0173794 + 0.0280337i
\(783\) 0 0
\(784\) 12.6156 + 16.6284i 0.450557 + 0.593870i
\(785\) 2.35431 + 6.76575i 0.0840289 + 0.241480i
\(786\) 0 0
\(787\) 16.8518 29.1883i 0.600703 1.04045i −0.392011 0.919960i \(-0.628221\pi\)
0.992715 0.120488i \(-0.0384461\pi\)
\(788\) −9.02663 13.5896i −0.321560 0.484108i
\(789\) 0 0
\(790\) 7.34099 + 5.94816i 0.261181 + 0.211626i
\(791\) 27.2469 0.968787
\(792\) 0 0
\(793\) 8.58910i 0.305008i
\(794\) 17.3355 32.3260i 0.615212 1.14721i
\(795\) 0 0
\(796\) −15.2965 + 10.1604i −0.542169 + 0.360127i
\(797\) −14.4698 + 25.0624i −0.512546 + 0.887755i 0.487348 + 0.873208i \(0.337964\pi\)
−0.999894 + 0.0145477i \(0.995369\pi\)
\(798\) 0 0
\(799\) −19.4113 + 11.2071i −0.686724 + 0.396480i
\(800\) −20.8055 19.1606i −0.735586 0.677431i
\(801\) 0 0
\(802\) 18.5323 + 29.8934i 0.654398 + 1.05557i
\(803\) −27.5953 + 15.9322i −0.973817 + 0.562233i
\(804\) 0 0
\(805\) 0.197153 0.228297i 0.00694875 0.00804640i
\(806\) 0.880759 + 28.0775i 0.0310234 + 0.988989i
\(807\) 0 0
\(808\) 7.42810 + 10.4562i 0.261320 + 0.367847i
\(809\) 14.9996i 0.527358i −0.964610 0.263679i \(-0.915064\pi\)
0.964610 0.263679i \(-0.0849360\pi\)
\(810\) 0 0
\(811\) 17.4677i 0.613376i −0.951810 0.306688i \(-0.900779\pi\)
0.951810 0.306688i \(-0.0992207\pi\)
\(812\) 0.875705 + 13.9445i 0.0307312 + 0.489356i
\(813\) 0 0
\(814\) 20.0620 0.629319i 0.703171 0.0220576i
\(815\) 17.9698 + 15.5184i 0.629454 + 0.543587i
\(816\) 0 0
\(817\) −19.4647 + 11.2379i −0.680984 + 0.393166i
\(818\) −25.6907 + 15.9269i −0.898254 + 0.556870i
\(819\) 0 0
\(820\) 10.9487 14.4139i 0.382344 0.503355i
\(821\) −15.8290 + 9.13886i −0.552435 + 0.318948i −0.750103 0.661320i \(-0.769996\pi\)
0.197669 + 0.980269i \(0.436663\pi\)
\(822\) 0 0
\(823\) 14.6369 25.3518i 0.510210 0.883710i −0.489720 0.871880i \(-0.662901\pi\)
0.999930 0.0118300i \(-0.00376570\pi\)
\(824\) 10.0361 + 4.59696i 0.349623 + 0.160143i
\(825\) 0 0
\(826\) 4.56905 + 2.45024i 0.158978 + 0.0852548i
\(827\) 24.5270i 0.852886i −0.904514 0.426443i \(-0.859767\pi\)
0.904514 0.426443i \(-0.140233\pi\)
\(828\) 0 0
\(829\) −42.2094 −1.46599 −0.732996 0.680233i \(-0.761879\pi\)
−0.732996 + 0.680233i \(0.761879\pi\)
\(830\) −32.9373 26.6880i −1.14327 0.926353i
\(831\) 0 0
\(832\) −31.0687 10.8313i −1.07711 0.375506i
\(833\) −16.8386 + 29.1653i −0.583422 + 1.01052i
\(834\) 0 0
\(835\) 9.26010 + 26.6114i 0.320459 + 0.920925i
\(836\) −45.7944 22.7391i −1.58383 0.786448i
\(837\) 0 0
\(838\) −7.52011 + 4.66207i −0.259778 + 0.161048i
\(839\) 18.2179 + 31.5544i 0.628953 + 1.08938i 0.987762 + 0.155967i \(0.0498494\pi\)
−0.358810 + 0.933411i \(0.616817\pi\)
\(840\) 0 0
\(841\) −0.805742 + 1.39559i −0.0277842 + 0.0481237i
\(842\) 1.36213 + 43.4230i 0.0469420 + 1.49646i
\(843\) 0 0
\(844\) 1.28401 + 20.4462i 0.0441975 + 0.703788i
\(845\) −1.64250 + 8.59936i −0.0565036 + 0.295827i
\(846\) 0 0
\(847\) −10.8783 −0.373783
\(848\) −4.30340 + 10.2308i −0.147779 + 0.351327i
\(849\) 0 0
\(850\) 15.4812 42.9300i 0.531001 1.47249i
\(851\) 0.163882 0.283852i 0.00561781 0.00973033i
\(852\) 0 0
\(853\) −27.1128 + 15.6536i −0.928324 + 0.535968i −0.886281 0.463148i \(-0.846720\pi\)
−0.0420430 + 0.999116i \(0.513387\pi\)
\(854\) −3.35078 + 2.07731i −0.114661 + 0.0710839i
\(855\) 0 0
\(856\) 14.0466 1.32536i 0.480104 0.0452998i
\(857\) −4.60165 7.97029i −0.157189 0.272260i 0.776665 0.629914i \(-0.216910\pi\)
−0.933854 + 0.357654i \(0.883577\pi\)
\(858\) 0 0
\(859\) 4.62482 + 2.67014i 0.157797 + 0.0911040i 0.576819 0.816872i \(-0.304294\pi\)
−0.419022 + 0.907976i \(0.637627\pi\)
\(860\) 15.8635 6.66190i 0.540941 0.227169i
\(861\) 0 0
\(862\) −43.7517 23.4627i −1.49019 0.799142i
\(863\) 19.0360i 0.647992i −0.946058 0.323996i \(-0.894974\pi\)
0.946058 0.323996i \(-0.105026\pi\)
\(864\) 0 0
\(865\) −0.720019 + 3.76969i −0.0244814 + 0.128173i
\(866\) 16.3776 30.5400i 0.556535 1.03779i
\(867\) 0 0
\(868\) −10.7406 + 7.13426i −0.364560 + 0.242152i
\(869\) −11.3230 6.53733i −0.384106 0.221764i
\(870\) 0 0
\(871\) −1.54082 + 0.889593i −0.0522087 + 0.0301427i
\(872\) −1.32493 14.0421i −0.0448678 0.475526i
\(873\) 0 0
\(874\) −0.709616 + 0.439924i −0.0240031 + 0.0148807i
\(875\) −14.9109 0.635422i −0.504081 0.0214812i
\(876\) 0 0
\(877\) 21.1121 + 12.1891i 0.712904 + 0.411595i 0.812135 0.583469i \(-0.198305\pi\)
−0.0992316 + 0.995064i \(0.531638\pi\)
\(878\) 25.0934 0.787150i 0.846862 0.0265650i
\(879\) 0 0
\(880\) 32.5905 + 21.6749i 1.09863 + 0.730659i
\(881\) 42.8577i 1.44391i 0.691939 + 0.721956i \(0.256757\pi\)
−0.691939 + 0.721956i \(0.743243\pi\)
\(882\) 0 0
\(883\) 28.8663 0.971427 0.485713 0.874118i \(-0.338560\pi\)
0.485713 + 0.874118i \(0.338560\pi\)
\(884\) −3.32732 52.9833i −0.111910 1.78202i
\(885\) 0 0
\(886\) 9.93539 0.311661i 0.333786 0.0104705i
\(887\) 13.1498 + 7.59206i 0.441528 + 0.254917i 0.704246 0.709956i \(-0.251285\pi\)
−0.262717 + 0.964873i \(0.584619\pi\)
\(888\) 0 0
\(889\) −12.8037 22.1767i −0.429424 0.743784i
\(890\) 20.5906 7.89710i 0.690197 0.264711i
\(891\) 0 0
\(892\) 20.6795 41.6465i 0.692400 1.39443i
\(893\) −10.1446 17.5709i −0.339475 0.587989i
\(894\) 0 0
\(895\) 31.5843 + 27.2757i 1.05575 + 0.911726i
\(896\) −3.28858 14.7401i −0.109864 0.492432i
\(897\) 0 0
\(898\) 11.1453 20.7830i 0.371923 0.693539i
\(899\) 25.2757 0.842990
\(900\) 0 0
\(901\) −17.9081 −0.596605
\(902\) −11.8376 + 22.0741i −0.394150 + 0.734986i
\(903\) 0 0
\(904\) 52.4881 + 24.0419i 1.74573 + 0.799621i
\(905\) −33.7254 29.1247i −1.12107 0.968139i
\(906\) 0 0
\(907\) −13.5599 23.4865i −0.450250 0.779856i 0.548151 0.836379i \(-0.315332\pi\)
−0.998401 + 0.0565230i \(0.981999\pi\)
\(908\) −30.4793 15.1344i −1.01149 0.502254i
\(909\) 0 0
\(910\) −16.2100 + 6.21702i −0.537356 + 0.206092i
\(911\) 3.77888 + 6.54521i 0.125200 + 0.216852i 0.921811 0.387640i \(-0.126709\pi\)
−0.796611 + 0.604492i \(0.793376\pi\)
\(912\) 0 0
\(913\) 50.8036 + 29.3315i 1.68135 + 0.970729i
\(914\) 41.9787 1.31682i 1.38853 0.0435566i
\(915\) 0 0
\(916\) −2.99683 + 0.188199i −0.0990182 + 0.00621828i
\(917\) −22.4643 −0.741836
\(918\) 0 0
\(919\) 33.7674i 1.11388i 0.830552 + 0.556942i \(0.188025\pi\)
−0.830552 + 0.556942i \(0.811975\pi\)
\(920\) 0.581237 0.265826i 0.0191628 0.00876402i
\(921\) 0 0
\(922\) −20.0183 + 0.627948i −0.659266 + 0.0206804i
\(923\) −29.9836 17.3110i −0.986923 0.569800i
\(924\) 0 0
\(925\) −16.0440 + 2.36151i −0.527522 + 0.0776459i
\(926\) 6.86375 4.25516i 0.225557 0.139833i
\(927\) 0 0
\(928\) −10.6173 + 27.6352i −0.348529 + 0.907171i
\(929\) −43.7091 + 25.2355i −1.43405 + 0.827949i −0.997427 0.0716964i \(-0.977159\pi\)
−0.436622 + 0.899645i \(0.643825\pi\)
\(930\) 0 0
\(931\) −26.4001 15.2421i −0.865227 0.499539i
\(932\) −14.9924 22.5711i −0.491094 0.739339i
\(933\) 0 0
\(934\) −12.5630 + 23.4267i −0.411075 + 0.766546i
\(935\) −11.8479 + 62.0303i −0.387469 + 2.02861i
\(936\) 0 0
\(937\) 43.7549i 1.42941i −0.699425 0.714706i \(-0.746561\pi\)
0.699425 0.714706i \(-0.253439\pi\)
\(938\) −0.719701 0.385953i −0.0234991 0.0126018i
\(939\) 0 0
\(940\) 6.01375 + 14.3201i 0.196147 + 0.467070i
\(941\) 12.5420 + 7.24115i 0.408859 + 0.236055i 0.690299 0.723524i \(-0.257479\pi\)
−0.281441 + 0.959579i \(0.590812\pi\)
\(942\) 0 0
\(943\) 0.204510 + 0.354222i 0.00665977 + 0.0115351i
\(944\) 6.63975 + 8.75173i 0.216106 + 0.284844i
\(945\) 0 0
\(946\) −20.2360 + 12.5452i −0.657929 + 0.407881i
\(947\) 32.3885 18.6995i 1.05249 0.607653i 0.129141 0.991626i \(-0.458778\pi\)
0.923344 + 0.383973i \(0.125445\pi\)
\(948\) 0 0
\(949\) 14.9740 25.9357i 0.486077 0.841910i
\(950\) 38.8598 + 14.0134i 1.26078 + 0.454655i
\(951\) 0 0
\(952\) 19.8651 14.1122i 0.643832 0.457381i
\(953\) 22.8733 0.740937 0.370469 0.928845i \(-0.379197\pi\)
0.370469 + 0.928845i \(0.379197\pi\)
\(954\) 0 0
\(955\) −9.08068 + 47.5423i −0.293844 + 1.53843i
\(956\) −29.2354 + 1.83596i −0.945539 + 0.0593793i
\(957\) 0 0
\(958\) −1.34848 42.9881i −0.0435676 1.38888i
\(959\) −4.00123 + 6.93034i −0.129207 + 0.223792i
\(960\) 0 0
\(961\) −3.83710 6.64606i −0.123777 0.214389i
\(962\) −16.0336 + 9.93996i −0.516943 + 0.320477i
\(963\) 0 0
\(964\) 21.7492 43.8009i 0.700496 1.41073i
\(965\) 7.64225 + 21.9621i 0.246013 + 0.706984i
\(966\) 0 0
\(967\) −29.1950 + 50.5672i −0.938848 + 1.62613i −0.171223 + 0.985232i \(0.554772\pi\)
−0.767625 + 0.640899i \(0.778562\pi\)
\(968\) −20.9558 9.59870i −0.673546 0.308514i
\(969\) 0 0
\(970\) 5.91833 + 4.79543i 0.190026 + 0.153972i
\(971\) 35.2792 1.13216 0.566082 0.824349i \(-0.308459\pi\)
0.566082 + 0.824349i \(0.308459\pi\)
\(972\) 0 0
\(973\) 0.317795i 0.0101881i
\(974\) −4.58505 2.45882i −0.146914 0.0787856i
\(975\) 0 0
\(976\) −8.28787 + 1.04507i −0.265288 + 0.0334518i
\(977\) −4.78940 + 8.29548i −0.153226 + 0.265396i −0.932412 0.361398i \(-0.882300\pi\)
0.779185 + 0.626794i \(0.215633\pi\)
\(978\) 0 0
\(979\) −26.4286 + 15.2586i −0.844662 + 0.487666i
\(980\) 18.5829 + 14.1154i 0.593609 + 0.450900i
\(981\) 0 0
\(982\) 21.7718 13.4974i 0.694767 0.430719i
\(983\) 27.2657 15.7419i 0.869641 0.502088i 0.00241215 0.999997i \(-0.499232\pi\)
0.867229 + 0.497910i \(0.165899\pi\)
\(984\) 0 0
\(985\) −13.8048 11.9216i −0.439856 0.379853i
\(986\) −47.7430 + 1.49764i −1.52045 + 0.0476946i
\(987\) 0 0
\(988\) 47.9598 3.01185i 1.52581 0.0958196i
\(989\) 0.388795i 0.0123629i
\(990\) 0 0
\(991\) 30.7819i 0.977818i −0.872335 0.488909i \(-0.837395\pi\)
0.872335 0.488909i \(-0.162605\pi\)
\(992\) −26.9857 + 4.26616i −0.856795 + 0.135451i
\(993\) 0 0
\(994\) −0.498260 15.8839i −0.0158039 0.503808i
\(995\) −13.4190 + 15.5387i −0.425410 + 0.492610i
\(996\) 0 0
\(997\) 29.1919 16.8539i 0.924516 0.533770i 0.0394432 0.999222i \(-0.487442\pi\)
0.885073 + 0.465452i \(0.154108\pi\)
\(998\) 17.1647 + 27.6873i 0.543338 + 0.876428i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.20 48
3.2 odd 2 180.2.n.d.59.5 48
4.3 odd 2 inner 540.2.n.d.179.12 48
5.4 even 2 inner 540.2.n.d.179.5 48
9.2 odd 6 inner 540.2.n.d.359.13 48
9.7 even 3 180.2.n.d.119.12 yes 48
12.11 even 2 180.2.n.d.59.13 yes 48
15.2 even 4 900.2.r.g.851.17 48
15.8 even 4 900.2.r.g.851.8 48
15.14 odd 2 180.2.n.d.59.20 yes 48
20.19 odd 2 inner 540.2.n.d.179.13 48
36.7 odd 6 180.2.n.d.119.20 yes 48
36.11 even 6 inner 540.2.n.d.359.5 48
45.7 odd 12 900.2.r.g.551.24 48
45.29 odd 6 inner 540.2.n.d.359.12 48
45.34 even 6 180.2.n.d.119.13 yes 48
45.43 odd 12 900.2.r.g.551.1 48
60.23 odd 4 900.2.r.g.851.1 48
60.47 odd 4 900.2.r.g.851.24 48
60.59 even 2 180.2.n.d.59.12 yes 48
180.7 even 12 900.2.r.g.551.17 48
180.43 even 12 900.2.r.g.551.8 48
180.79 odd 6 180.2.n.d.119.5 yes 48
180.119 even 6 inner 540.2.n.d.359.20 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.5 48 3.2 odd 2
180.2.n.d.59.12 yes 48 60.59 even 2
180.2.n.d.59.13 yes 48 12.11 even 2
180.2.n.d.59.20 yes 48 15.14 odd 2
180.2.n.d.119.5 yes 48 180.79 odd 6
180.2.n.d.119.12 yes 48 9.7 even 3
180.2.n.d.119.13 yes 48 45.34 even 6
180.2.n.d.119.20 yes 48 36.7 odd 6
540.2.n.d.179.5 48 5.4 even 2 inner
540.2.n.d.179.12 48 4.3 odd 2 inner
540.2.n.d.179.13 48 20.19 odd 2 inner
540.2.n.d.179.20 48 1.1 even 1 trivial
540.2.n.d.359.5 48 36.11 even 6 inner
540.2.n.d.359.12 48 45.29 odd 6 inner
540.2.n.d.359.13 48 9.2 odd 6 inner
540.2.n.d.359.20 48 180.119 even 6 inner
900.2.r.g.551.1 48 45.43 odd 12
900.2.r.g.551.8 48 180.43 even 12
900.2.r.g.551.17 48 180.7 even 12
900.2.r.g.551.24 48 45.7 odd 12
900.2.r.g.851.1 48 60.23 odd 4
900.2.r.g.851.8 48 15.8 even 4
900.2.r.g.851.17 48 15.2 even 4
900.2.r.g.851.24 48 60.47 odd 4