Properties

Label 525.4.d.b
Level 525525
Weight 44
Character orbit 525.d
Analytic conductor 30.97630.976
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,4,Mod(274,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.274"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 525.d (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-16,0,-24,0,0,-18,0,124] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.976002753030.9760027530
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4iq2+3iq38q412q67iq79q9+62q1124iq12+62iq13+28q1464q16+84iq1736iq18100q19+21q21+248iq22+558q99+O(q100) q + 4 i q^{2} + 3 i q^{3} - 8 q^{4} - 12 q^{6} - 7 i q^{7} - 9 q^{9} + 62 q^{11} - 24 i q^{12} + 62 i q^{13} + 28 q^{14} - 64 q^{16} + 84 i q^{17} - 36 i q^{18} - 100 q^{19} + 21 q^{21} + 248 i q^{22} + \cdots - 558 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q16q424q618q9+124q11+56q14128q16200q19+42q21496q26+20q2996q31672q34+144q36372q39496q41992q44+1116q99+O(q100) 2 q - 16 q^{4} - 24 q^{6} - 18 q^{9} + 124 q^{11} + 56 q^{14} - 128 q^{16} - 200 q^{19} + 42 q^{21} - 496 q^{26} + 20 q^{29} - 96 q^{31} - 672 q^{34} + 144 q^{36} - 372 q^{39} - 496 q^{41} - 992 q^{44}+ \cdots - 1116 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/525Z)×\left(\mathbb{Z}/525\mathbb{Z}\right)^\times.

nn 127127 176176 451451
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
274.1
1.00000i
1.00000i
4.00000i 3.00000i −8.00000 0 −12.0000 7.00000i 0 −9.00000 0
274.2 4.00000i 3.00000i −8.00000 0 −12.0000 7.00000i 0 −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.d.b 2
5.b even 2 1 inner 525.4.d.b 2
5.c odd 4 1 21.4.a.b 1
5.c odd 4 1 525.4.a.b 1
15.e even 4 1 63.4.a.a 1
15.e even 4 1 1575.4.a.k 1
20.e even 4 1 336.4.a.h 1
35.f even 4 1 147.4.a.g 1
35.k even 12 2 147.4.e.b 2
35.l odd 12 2 147.4.e.c 2
40.i odd 4 1 1344.4.a.w 1
40.k even 4 1 1344.4.a.i 1
60.l odd 4 1 1008.4.a.m 1
105.k odd 4 1 441.4.a.b 1
105.w odd 12 2 441.4.e.n 2
105.x even 12 2 441.4.e.m 2
140.j odd 4 1 2352.4.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 5.c odd 4 1
63.4.a.a 1 15.e even 4 1
147.4.a.g 1 35.f even 4 1
147.4.e.b 2 35.k even 12 2
147.4.e.c 2 35.l odd 12 2
336.4.a.h 1 20.e even 4 1
441.4.a.b 1 105.k odd 4 1
441.4.e.m 2 105.x even 12 2
441.4.e.n 2 105.w odd 12 2
525.4.a.b 1 5.c odd 4 1
525.4.d.b 2 1.a even 1 1 trivial
525.4.d.b 2 5.b even 2 1 inner
1008.4.a.m 1 60.l odd 4 1
1344.4.a.i 1 40.k even 4 1
1344.4.a.w 1 40.i odd 4 1
1575.4.a.k 1 15.e even 4 1
2352.4.a.l 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(525,[χ])S_{4}^{\mathrm{new}}(525, [\chi]):

T22+16 T_{2}^{2} + 16 Copy content Toggle raw display
T1162 T_{11} - 62 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+16 T^{2} + 16 Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+49 T^{2} + 49 Copy content Toggle raw display
1111 (T62)2 (T - 62)^{2} Copy content Toggle raw display
1313 T2+3844 T^{2} + 3844 Copy content Toggle raw display
1717 T2+7056 T^{2} + 7056 Copy content Toggle raw display
1919 (T+100)2 (T + 100)^{2} Copy content Toggle raw display
2323 T2+1764 T^{2} + 1764 Copy content Toggle raw display
2929 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3131 (T+48)2 (T + 48)^{2} Copy content Toggle raw display
3737 T2+60516 T^{2} + 60516 Copy content Toggle raw display
4141 (T+248)2 (T + 248)^{2} Copy content Toggle raw display
4343 T2+4624 T^{2} + 4624 Copy content Toggle raw display
4747 T2+104976 T^{2} + 104976 Copy content Toggle raw display
5353 T2+66564 T^{2} + 66564 Copy content Toggle raw display
5959 (T+120)2 (T + 120)^{2} Copy content Toggle raw display
6161 (T622)2 (T - 622)^{2} Copy content Toggle raw display
6767 T2+817216 T^{2} + 817216 Copy content Toggle raw display
7171 (T+678)2 (T + 678)^{2} Copy content Toggle raw display
7373 T2+412164 T^{2} + 412164 Copy content Toggle raw display
7979 (T+740)2 (T + 740)^{2} Copy content Toggle raw display
8383 T2+219024 T^{2} + 219024 Copy content Toggle raw display
8989 (T+200)2 (T + 200)^{2} Copy content Toggle raw display
9797 T2+1602756 T^{2} + 1602756 Copy content Toggle raw display
show more
show less