gp: [N,k,chi] = [525,4,Mod(274,525)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(525, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("525.274");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,-16,0,-24,0,0,-18,0,124]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 525 Z ) × \left(\mathbb{Z}/525\mathbb{Z}\right)^\times ( Z / 5 2 5 Z ) × .
n n n
127 127 1 2 7
176 176 1 7 6
451 451 4 5 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 525 , [ χ ] ) S_{4}^{\mathrm{new}}(525, [\chi]) S 4 n e w ( 5 2 5 , [ χ ] ) :
T 2 2 + 16 T_{2}^{2} + 16 T 2 2 + 1 6
T2^2 + 16
T 11 − 62 T_{11} - 62 T 1 1 − 6 2
T11 - 62
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 16 T^{2} + 16 T 2 + 1 6
T^2 + 16
3 3 3
T 2 + 9 T^{2} + 9 T 2 + 9
T^2 + 9
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 49 T^{2} + 49 T 2 + 4 9
T^2 + 49
11 11 1 1
( T − 62 ) 2 (T - 62)^{2} ( T − 6 2 ) 2
(T - 62)^2
13 13 1 3
T 2 + 3844 T^{2} + 3844 T 2 + 3 8 4 4
T^2 + 3844
17 17 1 7
T 2 + 7056 T^{2} + 7056 T 2 + 7 0 5 6
T^2 + 7056
19 19 1 9
( T + 100 ) 2 (T + 100)^{2} ( T + 1 0 0 ) 2
(T + 100)^2
23 23 2 3
T 2 + 1764 T^{2} + 1764 T 2 + 1 7 6 4
T^2 + 1764
29 29 2 9
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
31 31 3 1
( T + 48 ) 2 (T + 48)^{2} ( T + 4 8 ) 2
(T + 48)^2
37 37 3 7
T 2 + 60516 T^{2} + 60516 T 2 + 6 0 5 1 6
T^2 + 60516
41 41 4 1
( T + 248 ) 2 (T + 248)^{2} ( T + 2 4 8 ) 2
(T + 248)^2
43 43 4 3
T 2 + 4624 T^{2} + 4624 T 2 + 4 6 2 4
T^2 + 4624
47 47 4 7
T 2 + 104976 T^{2} + 104976 T 2 + 1 0 4 9 7 6
T^2 + 104976
53 53 5 3
T 2 + 66564 T^{2} + 66564 T 2 + 6 6 5 6 4
T^2 + 66564
59 59 5 9
( T + 120 ) 2 (T + 120)^{2} ( T + 1 2 0 ) 2
(T + 120)^2
61 61 6 1
( T − 622 ) 2 (T - 622)^{2} ( T − 6 2 2 ) 2
(T - 622)^2
67 67 6 7
T 2 + 817216 T^{2} + 817216 T 2 + 8 1 7 2 1 6
T^2 + 817216
71 71 7 1
( T + 678 ) 2 (T + 678)^{2} ( T + 6 7 8 ) 2
(T + 678)^2
73 73 7 3
T 2 + 412164 T^{2} + 412164 T 2 + 4 1 2 1 6 4
T^2 + 412164
79 79 7 9
( T + 740 ) 2 (T + 740)^{2} ( T + 7 4 0 ) 2
(T + 740)^2
83 83 8 3
T 2 + 219024 T^{2} + 219024 T 2 + 2 1 9 0 2 4
T^2 + 219024
89 89 8 9
( T + 200 ) 2 (T + 200)^{2} ( T + 2 0 0 ) 2
(T + 200)^2
97 97 9 7
T 2 + 1602756 T^{2} + 1602756 T 2 + 1 6 0 2 7 5 6
T^2 + 1602756
show more
show less