Properties

Label 21.4.a.b
Level $21$
Weight $4$
Character orbit 21.a
Self dual yes
Analytic conductor $1.239$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,4,Mod(1,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} - 3 q^{3} + 8 q^{4} - 4 q^{5} - 12 q^{6} - 7 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} - 3 q^{3} + 8 q^{4} - 4 q^{5} - 12 q^{6} - 7 q^{7} + 9 q^{9} - 16 q^{10} + 62 q^{11} - 24 q^{12} - 62 q^{13} - 28 q^{14} + 12 q^{15} - 64 q^{16} + 84 q^{17} + 36 q^{18} + 100 q^{19} - 32 q^{20} + 21 q^{21} + 248 q^{22} - 42 q^{23} - 109 q^{25} - 248 q^{26} - 27 q^{27} - 56 q^{28} - 10 q^{29} + 48 q^{30} - 48 q^{31} - 256 q^{32} - 186 q^{33} + 336 q^{34} + 28 q^{35} + 72 q^{36} - 246 q^{37} + 400 q^{38} + 186 q^{39} - 248 q^{41} + 84 q^{42} + 68 q^{43} + 496 q^{44} - 36 q^{45} - 168 q^{46} + 324 q^{47} + 192 q^{48} + 49 q^{49} - 436 q^{50} - 252 q^{51} - 496 q^{52} + 258 q^{53} - 108 q^{54} - 248 q^{55} - 300 q^{57} - 40 q^{58} + 120 q^{59} + 96 q^{60} + 622 q^{61} - 192 q^{62} - 63 q^{63} - 512 q^{64} + 248 q^{65} - 744 q^{66} + 904 q^{67} + 672 q^{68} + 126 q^{69} + 112 q^{70} - 678 q^{71} - 642 q^{73} - 984 q^{74} + 327 q^{75} + 800 q^{76} - 434 q^{77} + 744 q^{78} + 740 q^{79} + 256 q^{80} + 81 q^{81} - 992 q^{82} + 468 q^{83} + 168 q^{84} - 336 q^{85} + 272 q^{86} + 30 q^{87} + 200 q^{89} - 144 q^{90} + 434 q^{91} - 336 q^{92} + 144 q^{93} + 1296 q^{94} - 400 q^{95} + 768 q^{96} - 1266 q^{97} + 196 q^{98} + 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 −3.00000 8.00000 −4.00000 −12.0000 −7.00000 0 9.00000 −16.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 21.4.a.b 1
3.b odd 2 1 63.4.a.a 1
4.b odd 2 1 336.4.a.h 1
5.b even 2 1 525.4.a.b 1
5.c odd 4 2 525.4.d.b 2
7.b odd 2 1 147.4.a.g 1
7.c even 3 2 147.4.e.c 2
7.d odd 6 2 147.4.e.b 2
8.b even 2 1 1344.4.a.w 1
8.d odd 2 1 1344.4.a.i 1
12.b even 2 1 1008.4.a.m 1
15.d odd 2 1 1575.4.a.k 1
21.c even 2 1 441.4.a.b 1
21.g even 6 2 441.4.e.n 2
21.h odd 6 2 441.4.e.m 2
28.d even 2 1 2352.4.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 1.a even 1 1 trivial
63.4.a.a 1 3.b odd 2 1
147.4.a.g 1 7.b odd 2 1
147.4.e.b 2 7.d odd 6 2
147.4.e.c 2 7.c even 3 2
336.4.a.h 1 4.b odd 2 1
441.4.a.b 1 21.c even 2 1
441.4.e.m 2 21.h odd 6 2
441.4.e.n 2 21.g even 6 2
525.4.a.b 1 5.b even 2 1
525.4.d.b 2 5.c odd 4 2
1008.4.a.m 1 12.b even 2 1
1344.4.a.i 1 8.d odd 2 1
1344.4.a.w 1 8.b even 2 1
1575.4.a.k 1 15.d odd 2 1
2352.4.a.l 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(21))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 4 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T - 62 \) Copy content Toggle raw display
$13$ \( T + 62 \) Copy content Toggle raw display
$17$ \( T - 84 \) Copy content Toggle raw display
$19$ \( T - 100 \) Copy content Toggle raw display
$23$ \( T + 42 \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T + 48 \) Copy content Toggle raw display
$37$ \( T + 246 \) Copy content Toggle raw display
$41$ \( T + 248 \) Copy content Toggle raw display
$43$ \( T - 68 \) Copy content Toggle raw display
$47$ \( T - 324 \) Copy content Toggle raw display
$53$ \( T - 258 \) Copy content Toggle raw display
$59$ \( T - 120 \) Copy content Toggle raw display
$61$ \( T - 622 \) Copy content Toggle raw display
$67$ \( T - 904 \) Copy content Toggle raw display
$71$ \( T + 678 \) Copy content Toggle raw display
$73$ \( T + 642 \) Copy content Toggle raw display
$79$ \( T - 740 \) Copy content Toggle raw display
$83$ \( T - 468 \) Copy content Toggle raw display
$89$ \( T - 200 \) Copy content Toggle raw display
$97$ \( T + 1266 \) Copy content Toggle raw display
show more
show less