gp: [N,k,chi] = [336,4,Mod(1,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,3,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 336 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(336)) S 4 n e w ( Γ 0 ( 3 3 6 ) ) :
T 5 + 4 T_{5} + 4 T 5 + 4
T5 + 4
T 11 + 62 T_{11} + 62 T 1 1 + 6 2
T11 + 62
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T + 4 T + 4 T + 4
T + 4
7 7 7
T − 7 T - 7 T − 7
T - 7
11 11 1 1
T + 62 T + 62 T + 6 2
T + 62
13 13 1 3
T + 62 T + 62 T + 6 2
T + 62
17 17 1 7
T − 84 T - 84 T − 8 4
T - 84
19 19 1 9
T + 100 T + 100 T + 1 0 0
T + 100
23 23 2 3
T − 42 T - 42 T − 4 2
T - 42
29 29 2 9
T + 10 T + 10 T + 1 0
T + 10
31 31 3 1
T − 48 T - 48 T − 4 8
T - 48
37 37 3 7
T + 246 T + 246 T + 2 4 6
T + 246
41 41 4 1
T + 248 T + 248 T + 2 4 8
T + 248
43 43 4 3
T + 68 T + 68 T + 6 8
T + 68
47 47 4 7
T + 324 T + 324 T + 3 2 4
T + 324
53 53 5 3
T − 258 T - 258 T − 2 5 8
T - 258
59 59 5 9
T + 120 T + 120 T + 1 2 0
T + 120
61 61 6 1
T − 622 T - 622 T − 6 2 2
T - 622
67 67 6 7
T + 904 T + 904 T + 9 0 4
T + 904
71 71 7 1
T − 678 T - 678 T − 6 7 8
T - 678
73 73 7 3
T + 642 T + 642 T + 6 4 2
T + 642
79 79 7 9
T + 740 T + 740 T + 7 4 0
T + 740
83 83 8 3
T + 468 T + 468 T + 4 6 8
T + 468
89 89 8 9
T − 200 T - 200 T − 2 0 0
T - 200
97 97 9 7
T + 1266 T + 1266 T + 1 2 6 6
T + 1266
show more
show less