Properties

Label 336.4.a.h
Level 336336
Weight 44
Character orbit 336.a
Self dual yes
Analytic conductor 19.82519.825
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(1,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+3q34q5+7q7+9q962q1162q1312q15+84q17100q19+21q21+42q23109q25+27q2710q29+48q31186q3328q35+558q99+O(q100) q + 3 q^{3} - 4 q^{5} + 7 q^{7} + 9 q^{9} - 62 q^{11} - 62 q^{13} - 12 q^{15} + 84 q^{17} - 100 q^{19} + 21 q^{21} + 42 q^{23} - 109 q^{25} + 27 q^{27} - 10 q^{29} + 48 q^{31} - 186 q^{33} - 28 q^{35}+ \cdots - 558 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 3.00000 0 −4.00000 0 7.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.a.h 1
3.b odd 2 1 1008.4.a.m 1
4.b odd 2 1 21.4.a.b 1
7.b odd 2 1 2352.4.a.l 1
8.b even 2 1 1344.4.a.i 1
8.d odd 2 1 1344.4.a.w 1
12.b even 2 1 63.4.a.a 1
20.d odd 2 1 525.4.a.b 1
20.e even 4 2 525.4.d.b 2
28.d even 2 1 147.4.a.g 1
28.f even 6 2 147.4.e.b 2
28.g odd 6 2 147.4.e.c 2
60.h even 2 1 1575.4.a.k 1
84.h odd 2 1 441.4.a.b 1
84.j odd 6 2 441.4.e.n 2
84.n even 6 2 441.4.e.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 4.b odd 2 1
63.4.a.a 1 12.b even 2 1
147.4.a.g 1 28.d even 2 1
147.4.e.b 2 28.f even 6 2
147.4.e.c 2 28.g odd 6 2
336.4.a.h 1 1.a even 1 1 trivial
441.4.a.b 1 84.h odd 2 1
441.4.e.m 2 84.n even 6 2
441.4.e.n 2 84.j odd 6 2
525.4.a.b 1 20.d odd 2 1
525.4.d.b 2 20.e even 4 2
1008.4.a.m 1 3.b odd 2 1
1344.4.a.i 1 8.b even 2 1
1344.4.a.w 1 8.d odd 2 1
1575.4.a.k 1 60.h even 2 1
2352.4.a.l 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(336))S_{4}^{\mathrm{new}}(\Gamma_0(336)):

T5+4 T_{5} + 4 Copy content Toggle raw display
T11+62 T_{11} + 62 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T+4 T + 4 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T+62 T + 62 Copy content Toggle raw display
1313 T+62 T + 62 Copy content Toggle raw display
1717 T84 T - 84 Copy content Toggle raw display
1919 T+100 T + 100 Copy content Toggle raw display
2323 T42 T - 42 Copy content Toggle raw display
2929 T+10 T + 10 Copy content Toggle raw display
3131 T48 T - 48 Copy content Toggle raw display
3737 T+246 T + 246 Copy content Toggle raw display
4141 T+248 T + 248 Copy content Toggle raw display
4343 T+68 T + 68 Copy content Toggle raw display
4747 T+324 T + 324 Copy content Toggle raw display
5353 T258 T - 258 Copy content Toggle raw display
5959 T+120 T + 120 Copy content Toggle raw display
6161 T622 T - 622 Copy content Toggle raw display
6767 T+904 T + 904 Copy content Toggle raw display
7171 T678 T - 678 Copy content Toggle raw display
7373 T+642 T + 642 Copy content Toggle raw display
7979 T+740 T + 740 Copy content Toggle raw display
8383 T+468 T + 468 Copy content Toggle raw display
8989 T200 T - 200 Copy content Toggle raw display
9797 T+1266 T + 1266 Copy content Toggle raw display
show more
show less