gp: [N,k,chi] = [147,4,Mod(67,147)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(147, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("147.67");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,-4,3,-8,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 147 Z ) × \left(\mathbb{Z}/147\mathbb{Z}\right)^\times ( Z / 1 4 7 Z ) × .
n n n
50 50 5 0
52 52 5 2
χ ( n ) \chi(n) χ ( n )
1 1 1
− ζ 6 -\zeta_{6} − ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 147 , [ χ ] ) S_{4}^{\mathrm{new}}(147, [\chi]) S 4 n e w ( 1 4 7 , [ χ ] ) :
T 2 2 + 4 T 2 + 16 T_{2}^{2} + 4T_{2} + 16 T 2 2 + 4 T 2 + 1 6
T2^2 + 4*T2 + 16
T 5 2 − 4 T 5 + 16 T_{5}^{2} - 4T_{5} + 16 T 5 2 − 4 T 5 + 1 6
T5^2 - 4*T5 + 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + 4 T + 16 T^{2} + 4T + 16 T 2 + 4 T + 1 6
T^2 + 4*T + 16
3 3 3
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
5 5 5
T 2 − 4 T + 16 T^{2} - 4T + 16 T 2 − 4 T + 1 6
T^2 - 4*T + 16
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 + 62 T + 3844 T^{2} + 62T + 3844 T 2 + 6 2 T + 3 8 4 4
T^2 + 62*T + 3844
13 13 1 3
( T + 62 ) 2 (T + 62)^{2} ( T + 6 2 ) 2
(T + 62)^2
17 17 1 7
T 2 + 84 T + 7056 T^{2} + 84T + 7056 T 2 + 8 4 T + 7 0 5 6
T^2 + 84*T + 7056
19 19 1 9
T 2 + 100 T + 10000 T^{2} + 100T + 10000 T 2 + 1 0 0 T + 1 0 0 0 0
T^2 + 100*T + 10000
23 23 2 3
T 2 − 42 T + 1764 T^{2} - 42T + 1764 T 2 − 4 2 T + 1 7 6 4
T^2 - 42*T + 1764
29 29 2 9
( T + 10 ) 2 (T + 10)^{2} ( T + 1 0 ) 2
(T + 10)^2
31 31 3 1
T 2 − 48 T + 2304 T^{2} - 48T + 2304 T 2 − 4 8 T + 2 3 0 4
T^2 - 48*T + 2304
37 37 3 7
T 2 − 246 T + 60516 T^{2} - 246T + 60516 T 2 − 2 4 6 T + 6 0 5 1 6
T^2 - 246*T + 60516
41 41 4 1
( T + 248 ) 2 (T + 248)^{2} ( T + 2 4 8 ) 2
(T + 248)^2
43 43 4 3
( T − 68 ) 2 (T - 68)^{2} ( T − 6 8 ) 2
(T - 68)^2
47 47 4 7
T 2 + 324 T + 104976 T^{2} + 324T + 104976 T 2 + 3 2 4 T + 1 0 4 9 7 6
T^2 + 324*T + 104976
53 53 5 3
T 2 + 258 T + 66564 T^{2} + 258T + 66564 T 2 + 2 5 8 T + 6 6 5 6 4
T^2 + 258*T + 66564
59 59 5 9
T 2 + 120 T + 14400 T^{2} + 120T + 14400 T 2 + 1 2 0 T + 1 4 4 0 0
T^2 + 120*T + 14400
61 61 6 1
T 2 + 622 T + 386884 T^{2} + 622T + 386884 T 2 + 6 2 2 T + 3 8 6 8 8 4
T^2 + 622*T + 386884
67 67 6 7
T 2 + 904 T + 817216 T^{2} + 904T + 817216 T 2 + 9 0 4 T + 8 1 7 2 1 6
T^2 + 904*T + 817216
71 71 7 1
( T + 678 ) 2 (T + 678)^{2} ( T + 6 7 8 ) 2
(T + 678)^2
73 73 7 3
T 2 − 642 T + 412164 T^{2} - 642T + 412164 T 2 − 6 4 2 T + 4 1 2 1 6 4
T^2 - 642*T + 412164
79 79 7 9
T 2 + 740 T + 547600 T^{2} + 740T + 547600 T 2 + 7 4 0 T + 5 4 7 6 0 0
T^2 + 740*T + 547600
83 83 8 3
( T − 468 ) 2 (T - 468)^{2} ( T − 4 6 8 ) 2
(T - 468)^2
89 89 8 9
T 2 + 200 T + 40000 T^{2} + 200T + 40000 T 2 + 2 0 0 T + 4 0 0 0 0
T^2 + 200*T + 40000
97 97 9 7
( T + 1266 ) 2 (T + 1266)^{2} ( T + 1 2 6 6 ) 2
(T + 1266)^2
show more
show less