Properties

Label 147.4.e.c
Level 147147
Weight 44
Character orbit 147.e
Analytic conductor 8.6738.673
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,4,Mod(67,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 147=372 147 = 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 147.e (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,3,-8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.673280770848.67328077084
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q4ζ6q2+(3ζ6+3)q3+(8ζ68)q4+4ζ6q512q69ζ6q9+(16ζ6+16)q10+(62ζ662)q11+24ζ6q12++558q99+O(q100) q - 4 \zeta_{6} q^{2} + ( - 3 \zeta_{6} + 3) q^{3} + (8 \zeta_{6} - 8) q^{4} + 4 \zeta_{6} q^{5} - 12 q^{6} - 9 \zeta_{6} q^{9} + ( - 16 \zeta_{6} + 16) q^{10} + (62 \zeta_{6} - 62) q^{11} + 24 \zeta_{6} q^{12} + \cdots + 558 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q2+3q38q4+4q524q69q9+16q1062q11+24q12124q13+24q15+64q1684q1736q18100q1964q20+496q22+42q23++1116q99+O(q100) 2 q - 4 q^{2} + 3 q^{3} - 8 q^{4} + 4 q^{5} - 24 q^{6} - 9 q^{9} + 16 q^{10} - 62 q^{11} + 24 q^{12} - 124 q^{13} + 24 q^{15} + 64 q^{16} - 84 q^{17} - 36 q^{18} - 100 q^{19} - 64 q^{20} + 496 q^{22} + 42 q^{23}+ \cdots + 1116 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/147Z)×\left(\mathbb{Z}/147\mathbb{Z}\right)^\times.

nn 5050 5252
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−2.00000 3.46410i 1.50000 2.59808i −4.00000 + 6.92820i 2.00000 + 3.46410i −12.0000 0 0 −4.50000 7.79423i 8.00000 13.8564i
79.1 −2.00000 + 3.46410i 1.50000 + 2.59808i −4.00000 6.92820i 2.00000 3.46410i −12.0000 0 0 −4.50000 + 7.79423i 8.00000 + 13.8564i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.4.e.c 2
3.b odd 2 1 441.4.e.m 2
7.b odd 2 1 147.4.e.b 2
7.c even 3 1 21.4.a.b 1
7.c even 3 1 inner 147.4.e.c 2
7.d odd 6 1 147.4.a.g 1
7.d odd 6 1 147.4.e.b 2
21.c even 2 1 441.4.e.n 2
21.g even 6 1 441.4.a.b 1
21.g even 6 1 441.4.e.n 2
21.h odd 6 1 63.4.a.a 1
21.h odd 6 1 441.4.e.m 2
28.f even 6 1 2352.4.a.l 1
28.g odd 6 1 336.4.a.h 1
35.j even 6 1 525.4.a.b 1
35.l odd 12 2 525.4.d.b 2
56.k odd 6 1 1344.4.a.i 1
56.p even 6 1 1344.4.a.w 1
84.n even 6 1 1008.4.a.m 1
105.o odd 6 1 1575.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.b 1 7.c even 3 1
63.4.a.a 1 21.h odd 6 1
147.4.a.g 1 7.d odd 6 1
147.4.e.b 2 7.b odd 2 1
147.4.e.b 2 7.d odd 6 1
147.4.e.c 2 1.a even 1 1 trivial
147.4.e.c 2 7.c even 3 1 inner
336.4.a.h 1 28.g odd 6 1
441.4.a.b 1 21.g even 6 1
441.4.e.m 2 3.b odd 2 1
441.4.e.m 2 21.h odd 6 1
441.4.e.n 2 21.c even 2 1
441.4.e.n 2 21.g even 6 1
525.4.a.b 1 35.j even 6 1
525.4.d.b 2 35.l odd 12 2
1008.4.a.m 1 84.n even 6 1
1344.4.a.i 1 56.k odd 6 1
1344.4.a.w 1 56.p even 6 1
1575.4.a.k 1 105.o odd 6 1
2352.4.a.l 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(147,[χ])S_{4}^{\mathrm{new}}(147, [\chi]):

T22+4T2+16 T_{2}^{2} + 4T_{2} + 16 Copy content Toggle raw display
T524T5+16 T_{5}^{2} - 4T_{5} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
33 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
55 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+62T+3844 T^{2} + 62T + 3844 Copy content Toggle raw display
1313 (T+62)2 (T + 62)^{2} Copy content Toggle raw display
1717 T2+84T+7056 T^{2} + 84T + 7056 Copy content Toggle raw display
1919 T2+100T+10000 T^{2} + 100T + 10000 Copy content Toggle raw display
2323 T242T+1764 T^{2} - 42T + 1764 Copy content Toggle raw display
2929 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
3131 T248T+2304 T^{2} - 48T + 2304 Copy content Toggle raw display
3737 T2246T+60516 T^{2} - 246T + 60516 Copy content Toggle raw display
4141 (T+248)2 (T + 248)^{2} Copy content Toggle raw display
4343 (T68)2 (T - 68)^{2} Copy content Toggle raw display
4747 T2+324T+104976 T^{2} + 324T + 104976 Copy content Toggle raw display
5353 T2+258T+66564 T^{2} + 258T + 66564 Copy content Toggle raw display
5959 T2+120T+14400 T^{2} + 120T + 14400 Copy content Toggle raw display
6161 T2+622T+386884 T^{2} + 622T + 386884 Copy content Toggle raw display
6767 T2+904T+817216 T^{2} + 904T + 817216 Copy content Toggle raw display
7171 (T+678)2 (T + 678)^{2} Copy content Toggle raw display
7373 T2642T+412164 T^{2} - 642T + 412164 Copy content Toggle raw display
7979 T2+740T+547600 T^{2} + 740T + 547600 Copy content Toggle raw display
8383 (T468)2 (T - 468)^{2} Copy content Toggle raw display
8989 T2+200T+40000 T^{2} + 200T + 40000 Copy content Toggle raw display
9797 (T+1266)2 (T + 1266)^{2} Copy content Toggle raw display
show more
show less