Properties

Label 525.4.a.g
Level $525$
Weight $4$
Character orbit 525.a
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,4,Mod(1,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,3,3,1,0,9,-7,-21,9,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + 3 q^{3} + q^{4} + 9 q^{6} - 7 q^{7} - 21 q^{8} + 9 q^{9} - 36 q^{11} + 3 q^{12} + 34 q^{13} - 21 q^{14} - 71 q^{16} - 42 q^{17} + 27 q^{18} - 124 q^{19} - 21 q^{21} - 108 q^{22} - 63 q^{24}+ \cdots - 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 3.00000 1.00000 0 9.00000 −7.00000 −21.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.a.g 1
3.b odd 2 1 1575.4.a.b 1
5.b even 2 1 21.4.a.a 1
5.c odd 4 2 525.4.d.c 2
15.d odd 2 1 63.4.a.c 1
20.d odd 2 1 336.4.a.f 1
35.c odd 2 1 147.4.a.c 1
35.i odd 6 2 147.4.e.g 2
35.j even 6 2 147.4.e.i 2
40.e odd 2 1 1344.4.a.n 1
40.f even 2 1 1344.4.a.ba 1
60.h even 2 1 1008.4.a.v 1
105.g even 2 1 441.4.a.j 1
105.o odd 6 2 441.4.e.b 2
105.p even 6 2 441.4.e.d 2
140.c even 2 1 2352.4.a.r 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.a 1 5.b even 2 1
63.4.a.c 1 15.d odd 2 1
147.4.a.c 1 35.c odd 2 1
147.4.e.g 2 35.i odd 6 2
147.4.e.i 2 35.j even 6 2
336.4.a.f 1 20.d odd 2 1
441.4.a.j 1 105.g even 2 1
441.4.e.b 2 105.o odd 6 2
441.4.e.d 2 105.p even 6 2
525.4.a.g 1 1.a even 1 1 trivial
525.4.d.c 2 5.c odd 4 2
1008.4.a.v 1 60.h even 2 1
1344.4.a.n 1 40.e odd 2 1
1344.4.a.ba 1 40.f even 2 1
1575.4.a.b 1 3.b odd 2 1
2352.4.a.r 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(525))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{11} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 36 \) Copy content Toggle raw display
$13$ \( T - 34 \) Copy content Toggle raw display
$17$ \( T + 42 \) Copy content Toggle raw display
$19$ \( T + 124 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 102 \) Copy content Toggle raw display
$31$ \( T + 160 \) Copy content Toggle raw display
$37$ \( T + 398 \) Copy content Toggle raw display
$41$ \( T + 318 \) Copy content Toggle raw display
$43$ \( T - 268 \) Copy content Toggle raw display
$47$ \( T + 240 \) Copy content Toggle raw display
$53$ \( T - 498 \) Copy content Toggle raw display
$59$ \( T + 132 \) Copy content Toggle raw display
$61$ \( T - 398 \) Copy content Toggle raw display
$67$ \( T + 92 \) Copy content Toggle raw display
$71$ \( T + 720 \) Copy content Toggle raw display
$73$ \( T - 502 \) Copy content Toggle raw display
$79$ \( T + 1024 \) Copy content Toggle raw display
$83$ \( T - 204 \) Copy content Toggle raw display
$89$ \( T - 354 \) Copy content Toggle raw display
$97$ \( T - 286 \) Copy content Toggle raw display
show more
show less