Defining parameters
Level: | \( N \) | \(=\) | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 525.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(525))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 56 | 196 |
Cusp forms | 228 | 56 | 172 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(34\) | \(6\) | \(28\) | \(31\) | \(6\) | \(25\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(31\) | \(8\) | \(23\) | \(28\) | \(8\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(30\) | \(7\) | \(23\) | \(27\) | \(7\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(31\) | \(7\) | \(24\) | \(28\) | \(7\) | \(21\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(29\) | \(5\) | \(24\) | \(26\) | \(5\) | \(21\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(32\) | \(9\) | \(23\) | \(29\) | \(9\) | \(20\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(33\) | \(9\) | \(24\) | \(30\) | \(9\) | \(21\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(32\) | \(5\) | \(27\) | \(29\) | \(5\) | \(24\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(130\) | \(31\) | \(99\) | \(118\) | \(31\) | \(87\) | \(12\) | \(0\) | \(12\) | |||||
Minus space | \(-\) | \(122\) | \(25\) | \(97\) | \(110\) | \(25\) | \(85\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(525))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(525))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(525)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)