gp: [N,k,chi] = [336,4,Mod(1,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,3,0,-18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 336 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(336)) S 4 n e w ( Γ 0 ( 3 3 6 ) ) :
T 5 + 18 T_{5} + 18 T 5 + 1 8
T5 + 18
T 11 − 36 T_{11} - 36 T 1 1 − 3 6
T11 - 36
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T + 18 T + 18 T + 1 8
T + 18
7 7 7
T + 7 T + 7 T + 7
T + 7
11 11 1 1
T − 36 T - 36 T − 3 6
T - 36
13 13 1 3
T + 34 T + 34 T + 3 4
T + 34
17 17 1 7
T − 42 T - 42 T − 4 2
T - 42
19 19 1 9
T − 124 T - 124 T − 1 2 4
T - 124
23 23 2 3
T T T
T
29 29 2 9
T − 102 T - 102 T − 1 0 2
T - 102
31 31 3 1
T − 160 T - 160 T − 1 6 0
T - 160
37 37 3 7
T − 398 T - 398 T − 3 9 8
T - 398
41 41 4 1
T + 318 T + 318 T + 3 1 8
T + 318
43 43 4 3
T − 268 T - 268 T − 2 6 8
T - 268
47 47 4 7
T + 240 T + 240 T + 2 4 0
T + 240
53 53 5 3
T + 498 T + 498 T + 4 9 8
T + 498
59 59 5 9
T − 132 T - 132 T − 1 3 2
T - 132
61 61 6 1
T − 398 T - 398 T − 3 9 8
T - 398
67 67 6 7
T + 92 T + 92 T + 9 2
T + 92
71 71 7 1
T − 720 T - 720 T − 7 2 0
T - 720
73 73 7 3
T + 502 T + 502 T + 5 0 2
T + 502
79 79 7 9
T − 1024 T - 1024 T − 1 0 2 4
T - 1024
83 83 8 3
T − 204 T - 204 T − 2 0 4
T - 204
89 89 8 9
T − 354 T - 354 T − 3 5 4
T - 354
97 97 9 7
T + 286 T + 286 T + 2 8 6
T + 286
show more
show less