Newspace parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(1.23904011012\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−3.00000 | −3.00000 | 1.00000 | −18.0000 | 9.00000 | 7.00000 | 21.0000 | 9.00000 | 54.0000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(7\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 21.4.a.a | ✓ | 1 |
3.b | odd | 2 | 1 | 63.4.a.c | 1 | ||
4.b | odd | 2 | 1 | 336.4.a.f | 1 | ||
5.b | even | 2 | 1 | 525.4.a.g | 1 | ||
5.c | odd | 4 | 2 | 525.4.d.c | 2 | ||
7.b | odd | 2 | 1 | 147.4.a.c | 1 | ||
7.c | even | 3 | 2 | 147.4.e.i | 2 | ||
7.d | odd | 6 | 2 | 147.4.e.g | 2 | ||
8.b | even | 2 | 1 | 1344.4.a.ba | 1 | ||
8.d | odd | 2 | 1 | 1344.4.a.n | 1 | ||
12.b | even | 2 | 1 | 1008.4.a.v | 1 | ||
15.d | odd | 2 | 1 | 1575.4.a.b | 1 | ||
21.c | even | 2 | 1 | 441.4.a.j | 1 | ||
21.g | even | 6 | 2 | 441.4.e.d | 2 | ||
21.h | odd | 6 | 2 | 441.4.e.b | 2 | ||
28.d | even | 2 | 1 | 2352.4.a.r | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
21.4.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
63.4.a.c | 1 | 3.b | odd | 2 | 1 | ||
147.4.a.c | 1 | 7.b | odd | 2 | 1 | ||
147.4.e.g | 2 | 7.d | odd | 6 | 2 | ||
147.4.e.i | 2 | 7.c | even | 3 | 2 | ||
336.4.a.f | 1 | 4.b | odd | 2 | 1 | ||
441.4.a.j | 1 | 21.c | even | 2 | 1 | ||
441.4.e.b | 2 | 21.h | odd | 6 | 2 | ||
441.4.e.d | 2 | 21.g | even | 6 | 2 | ||
525.4.a.g | 1 | 5.b | even | 2 | 1 | ||
525.4.d.c | 2 | 5.c | odd | 4 | 2 | ||
1008.4.a.v | 1 | 12.b | even | 2 | 1 | ||
1344.4.a.n | 1 | 8.d | odd | 2 | 1 | ||
1344.4.a.ba | 1 | 8.b | even | 2 | 1 | ||
1575.4.a.b | 1 | 15.d | odd | 2 | 1 | ||
2352.4.a.r | 1 | 28.d | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} + 3 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(21))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 3 \)
$3$
\( T + 3 \)
$5$
\( T + 18 \)
$7$
\( T - 7 \)
$11$
\( T + 36 \)
$13$
\( T + 34 \)
$17$
\( T - 42 \)
$19$
\( T + 124 \)
$23$
\( T \)
$29$
\( T - 102 \)
$31$
\( T + 160 \)
$37$
\( T - 398 \)
$41$
\( T + 318 \)
$43$
\( T + 268 \)
$47$
\( T - 240 \)
$53$
\( T + 498 \)
$59$
\( T + 132 \)
$61$
\( T - 398 \)
$67$
\( T - 92 \)
$71$
\( T + 720 \)
$73$
\( T + 502 \)
$79$
\( T + 1024 \)
$83$
\( T + 204 \)
$89$
\( T - 354 \)
$97$
\( T + 286 \)
show more
show less