Newspace parameters
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.l (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.7330053238\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181.1 | −1.91858 | − | 0.564843i | 0 | 3.36191 | + | 2.16739i | −0.227906 | 0 | 2.25697 | + | 6.62617i | −5.22585 | − | 6.05727i | 0 | 0.437256 | + | 0.128731i | ||||||||
181.2 | −1.91858 | − | 0.564843i | 0 | 3.36191 | + | 2.16739i | 0.227906 | 0 | 2.25697 | − | 6.62617i | −5.22585 | − | 6.05727i | 0 | −0.437256 | − | 0.128731i | ||||||||
181.3 | −1.91858 | + | 0.564843i | 0 | 3.36191 | − | 2.16739i | −0.227906 | 0 | 2.25697 | − | 6.62617i | −5.22585 | + | 6.05727i | 0 | 0.437256 | − | 0.128731i | ||||||||
181.4 | −1.91858 | + | 0.564843i | 0 | 3.36191 | − | 2.16739i | 0.227906 | 0 | 2.25697 | + | 6.62617i | −5.22585 | + | 6.05727i | 0 | −0.437256 | + | 0.128731i | ||||||||
181.5 | −1.44694 | − | 1.38071i | 0 | 0.187253 | + | 3.99561i | −5.24467 | 0 | −6.31936 | + | 3.01094i | 5.24586 | − | 6.03995i | 0 | 7.58871 | + | 7.24140i | ||||||||
181.6 | −1.44694 | − | 1.38071i | 0 | 0.187253 | + | 3.99561i | 5.24467 | 0 | −6.31936 | − | 3.01094i | 5.24586 | − | 6.03995i | 0 | −7.58871 | − | 7.24140i | ||||||||
181.7 | −1.44694 | + | 1.38071i | 0 | 0.187253 | − | 3.99561i | −5.24467 | 0 | −6.31936 | − | 3.01094i | 5.24586 | + | 6.03995i | 0 | 7.58871 | − | 7.24140i | ||||||||
181.8 | −1.44694 | + | 1.38071i | 0 | 0.187253 | − | 3.99561i | 5.24467 | 0 | −6.31936 | + | 3.01094i | 5.24586 | + | 6.03995i | 0 | −7.58871 | + | 7.24140i | ||||||||
181.9 | −1.19641 | − | 1.60268i | 0 | −1.13719 | + | 3.83494i | −9.09019 | 0 | 3.83254 | − | 5.85761i | 7.50675 | − | 2.76563i | 0 | 10.8756 | + | 14.5687i | ||||||||
181.10 | −1.19641 | − | 1.60268i | 0 | −1.13719 | + | 3.83494i | 9.09019 | 0 | 3.83254 | + | 5.85761i | 7.50675 | − | 2.76563i | 0 | −10.8756 | − | 14.5687i | ||||||||
181.11 | −1.19641 | + | 1.60268i | 0 | −1.13719 | − | 3.83494i | −9.09019 | 0 | 3.83254 | + | 5.85761i | 7.50675 | + | 2.76563i | 0 | 10.8756 | − | 14.5687i | ||||||||
181.12 | −1.19641 | + | 1.60268i | 0 | −1.13719 | − | 3.83494i | 9.09019 | 0 | 3.83254 | − | 5.85761i | 7.50675 | + | 2.76563i | 0 | −10.8756 | + | 14.5687i | ||||||||
181.13 | −0.172794 | − | 1.99252i | 0 | −3.94028 | + | 0.688593i | −6.16756 | 0 | 6.35406 | + | 2.93700i | 2.05289 | + | 7.73212i | 0 | 1.06572 | + | 12.2890i | ||||||||
181.14 | −0.172794 | − | 1.99252i | 0 | −3.94028 | + | 0.688593i | 6.16756 | 0 | 6.35406 | − | 2.93700i | 2.05289 | + | 7.73212i | 0 | −1.06572 | − | 12.2890i | ||||||||
181.15 | −0.172794 | + | 1.99252i | 0 | −3.94028 | − | 0.688593i | −6.16756 | 0 | 6.35406 | − | 2.93700i | 2.05289 | − | 7.73212i | 0 | 1.06572 | − | 12.2890i | ||||||||
181.16 | −0.172794 | + | 1.99252i | 0 | −3.94028 | − | 0.688593i | 6.16756 | 0 | 6.35406 | + | 2.93700i | 2.05289 | − | 7.73212i | 0 | −1.06572 | + | 12.2890i | ||||||||
181.17 | 0.606108 | − | 1.90595i | 0 | −3.26527 | − | 2.31042i | −5.53884 | 0 | −5.95316 | − | 3.68238i | −6.38264 | + | 4.82306i | 0 | −3.35714 | + | 10.5567i | ||||||||
181.18 | 0.606108 | − | 1.90595i | 0 | −3.26527 | − | 2.31042i | 5.53884 | 0 | −5.95316 | + | 3.68238i | −6.38264 | + | 4.82306i | 0 | 3.35714 | − | 10.5567i | ||||||||
181.19 | 0.606108 | + | 1.90595i | 0 | −3.26527 | + | 2.31042i | −5.53884 | 0 | −5.95316 | + | 3.68238i | −6.38264 | − | 4.82306i | 0 | −3.35714 | − | 10.5567i | ||||||||
181.20 | 0.606108 | + | 1.90595i | 0 | −3.26527 | + | 2.31042i | 5.53884 | 0 | −5.95316 | − | 3.68238i | −6.38264 | − | 4.82306i | 0 | 3.35714 | + | 10.5567i | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
56.h | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.3.l.h | 32 | |
3.b | odd | 2 | 1 | 168.3.l.a | ✓ | 32 | |
4.b | odd | 2 | 1 | 2016.3.l.h | 32 | ||
7.b | odd | 2 | 1 | inner | 504.3.l.h | 32 | |
8.b | even | 2 | 1 | inner | 504.3.l.h | 32 | |
8.d | odd | 2 | 1 | 2016.3.l.h | 32 | ||
12.b | even | 2 | 1 | 672.3.l.a | 32 | ||
21.c | even | 2 | 1 | 168.3.l.a | ✓ | 32 | |
24.f | even | 2 | 1 | 672.3.l.a | 32 | ||
24.h | odd | 2 | 1 | 168.3.l.a | ✓ | 32 | |
28.d | even | 2 | 1 | 2016.3.l.h | 32 | ||
56.e | even | 2 | 1 | 2016.3.l.h | 32 | ||
56.h | odd | 2 | 1 | inner | 504.3.l.h | 32 | |
84.h | odd | 2 | 1 | 672.3.l.a | 32 | ||
168.e | odd | 2 | 1 | 672.3.l.a | 32 | ||
168.i | even | 2 | 1 | 168.3.l.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.3.l.a | ✓ | 32 | 3.b | odd | 2 | 1 | |
168.3.l.a | ✓ | 32 | 21.c | even | 2 | 1 | |
168.3.l.a | ✓ | 32 | 24.h | odd | 2 | 1 | |
168.3.l.a | ✓ | 32 | 168.i | even | 2 | 1 | |
504.3.l.h | 32 | 1.a | even | 1 | 1 | trivial | |
504.3.l.h | 32 | 7.b | odd | 2 | 1 | inner | |
504.3.l.h | 32 | 8.b | even | 2 | 1 | inner | |
504.3.l.h | 32 | 56.h | odd | 2 | 1 | inner | |
672.3.l.a | 32 | 12.b | even | 2 | 1 | ||
672.3.l.a | 32 | 24.f | even | 2 | 1 | ||
672.3.l.a | 32 | 84.h | odd | 2 | 1 | ||
672.3.l.a | 32 | 168.e | odd | 2 | 1 | ||
2016.3.l.h | 32 | 4.b | odd | 2 | 1 | ||
2016.3.l.h | 32 | 8.d | odd | 2 | 1 | ||
2016.3.l.h | 32 | 28.d | even | 2 | 1 | ||
2016.3.l.h | 32 | 56.e | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(504, [\chi])\):
\( T_{5}^{16} - 240 T_{5}^{14} + 22368 T_{5}^{12} - 1034336 T_{5}^{10} + 24858624 T_{5}^{8} + \cdots + 99680256 \)
|
\( T_{11}^{16} + 1144 T_{11}^{14} + 534672 T_{11}^{12} + 130731744 T_{11}^{10} + 17758113408 T_{11}^{8} + \cdots + 47\!\cdots\!00 \)
|