L(s) = 1 | + (1.81 − 0.835i)2-s + (2.60 − 3.03i)4-s + 7.31·5-s + (0.0227 + 6.99i)7-s + (2.19 − 7.69i)8-s + (13.2 − 6.11i)10-s + 15.8i·11-s + 12.2·13-s + (5.89 + 12.7i)14-s + (−2.44 − 15.8i)16-s + 8.41i·17-s + 8.46·19-s + (19.0 − 22.2i)20-s + (13.2 + 28.8i)22-s − 45.5·23-s + ⋯ |
L(s) = 1 | + (0.908 − 0.417i)2-s + (0.650 − 0.759i)4-s + 1.46·5-s + (0.00324 + 0.999i)7-s + (0.273 − 0.961i)8-s + (1.32 − 0.611i)10-s + 1.44i·11-s + 0.946·13-s + (0.420 + 0.907i)14-s + (−0.152 − 0.988i)16-s + 0.494i·17-s + 0.445·19-s + (0.951 − 1.11i)20-s + (0.603 + 1.31i)22-s − 1.98·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 + 0.270i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.962 + 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.967583421\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.967583421\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.81 + 0.835i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.0227 - 6.99i)T \) |
good | 5 | \( 1 - 7.31T + 25T^{2} \) |
| 11 | \( 1 - 15.8iT - 121T^{2} \) |
| 13 | \( 1 - 12.2T + 169T^{2} \) |
| 17 | \( 1 - 8.41iT - 289T^{2} \) |
| 19 | \( 1 - 8.46T + 361T^{2} \) |
| 23 | \( 1 + 45.5T + 529T^{2} \) |
| 29 | \( 1 + 15.5iT - 841T^{2} \) |
| 31 | \( 1 + 41.0iT - 961T^{2} \) |
| 37 | \( 1 - 11.2iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 22.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 46.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 62.8iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 79.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 27.2T + 3.48e3T^{2} \) |
| 61 | \( 1 - 15.7T + 3.72e3T^{2} \) |
| 67 | \( 1 + 55.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 37.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + 105. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 92.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + 38.3T + 6.88e3T^{2} \) |
| 89 | \( 1 - 90.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 26.7iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63889116068405764131209901863, −9.805529955963968904060746132536, −9.364862982228517724195606629384, −7.911489447885922727496070072436, −6.42777871672381566351431874822, −5.96134281810306018709167993165, −5.10272244497047193617712896690, −3.88640905768510783125216588140, −2.29705103596120955504121597846, −1.80710105389544623695703006680,
1.42935788973214040645683825275, 2.96544037888835078609127435863, 3.97360851110628365041854786031, 5.32236871108868899429682025564, 6.03349377837621038398114945635, 6.72077748012489532660080841581, 7.933743060087390333275435386985, 8.832463738957732179100370479003, 10.05050681375577378417434421923, 10.80078718338484425521857668181