Properties

Label 504.3.l.h.181.26
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.26
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.81702 - 0.835731i) q^{2} +(2.60311 - 3.03707i) q^{4} +7.31322 q^{5} +(0.0227120 + 6.99996i) q^{7} +(2.19172 - 7.69392i) q^{8} +(13.2882 - 6.11188i) q^{10} +15.8808i q^{11} +12.2995 q^{13} +(5.89135 + 12.7001i) q^{14} +(-2.44765 - 15.8117i) q^{16} +8.41229i q^{17} +8.46170 q^{19} +(19.0371 - 22.2108i) q^{20} +(13.2720 + 28.8557i) q^{22} -45.5755 q^{23} +28.4831 q^{25} +(22.3484 - 10.2790i) q^{26} +(21.3185 + 18.1527i) q^{28} -15.5738i q^{29} -41.0781i q^{31} +(-17.6617 - 26.6845i) q^{32} +(7.03040 + 15.2853i) q^{34} +(0.166098 + 51.1922i) q^{35} +11.2257i q^{37} +(15.3751 - 7.07170i) q^{38} +(16.0285 - 56.2673i) q^{40} -22.8018i q^{41} -46.2778i q^{43} +(48.2311 + 41.3394i) q^{44} +(-82.8114 + 38.0888i) q^{46} +62.8287i q^{47} +(-48.9990 + 0.317966i) q^{49} +(51.7543 - 23.8042i) q^{50} +(32.0169 - 37.3544i) q^{52} -79.7103i q^{53} +116.140i q^{55} +(53.9069 + 15.1672i) q^{56} +(-13.0155 - 28.2979i) q^{58} -27.2534 q^{59} +15.7029 q^{61} +(-34.3302 - 74.6396i) q^{62} +(-54.3927 - 33.7258i) q^{64} +89.9487 q^{65} -55.8440i q^{67} +(25.5487 + 21.8981i) q^{68} +(43.0847 + 92.8784i) q^{70} +37.3473 q^{71} -105.242i q^{73} +(9.38165 + 20.3973i) q^{74} +(22.0267 - 25.6988i) q^{76} +(-111.165 + 0.360684i) q^{77} +92.1093 q^{79} +(-17.9002 - 115.634i) q^{80} +(-19.0562 - 41.4313i) q^{82} -38.3882 q^{83} +61.5208i q^{85} +(-38.6758 - 84.0877i) q^{86} +(122.185 + 34.8062i) q^{88} +90.6203i q^{89} +(0.279345 + 86.0959i) q^{91} +(-118.638 + 138.416i) q^{92} +(52.5078 + 114.161i) q^{94} +61.8822 q^{95} +26.7589i q^{97} +(-88.7663 + 41.5277i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81702 0.835731i 0.908509 0.417865i
\(3\) 0 0
\(4\) 2.60311 3.03707i 0.650777 0.759269i
\(5\) 7.31322 1.46264 0.731322 0.682033i \(-0.238904\pi\)
0.731322 + 0.682033i \(0.238904\pi\)
\(6\) 0 0
\(7\) 0.0227120 + 6.99996i 0.00324457 + 0.999995i
\(8\) 2.19172 7.69392i 0.273965 0.961740i
\(9\) 0 0
\(10\) 13.2882 6.11188i 1.32882 0.611188i
\(11\) 15.8808i 1.44371i 0.692046 + 0.721853i \(0.256710\pi\)
−0.692046 + 0.721853i \(0.743290\pi\)
\(12\) 0 0
\(13\) 12.2995 0.946114 0.473057 0.881032i \(-0.343151\pi\)
0.473057 + 0.881032i \(0.343151\pi\)
\(14\) 5.89135 + 12.7001i 0.420811 + 0.907148i
\(15\) 0 0
\(16\) −2.44765 15.8117i −0.152978 0.988230i
\(17\) 8.41229i 0.494840i 0.968908 + 0.247420i \(0.0795828\pi\)
−0.968908 + 0.247420i \(0.920417\pi\)
\(18\) 0 0
\(19\) 8.46170 0.445353 0.222676 0.974892i \(-0.428521\pi\)
0.222676 + 0.974892i \(0.428521\pi\)
\(20\) 19.0371 22.2108i 0.951855 1.11054i
\(21\) 0 0
\(22\) 13.2720 + 28.8557i 0.603275 + 1.31162i
\(23\) −45.5755 −1.98154 −0.990771 0.135547i \(-0.956721\pi\)
−0.990771 + 0.135547i \(0.956721\pi\)
\(24\) 0 0
\(25\) 28.4831 1.13932
\(26\) 22.3484 10.2790i 0.859553 0.395348i
\(27\) 0 0
\(28\) 21.3185 + 18.1527i 0.761376 + 0.648310i
\(29\) 15.5738i 0.537028i −0.963276 0.268514i \(-0.913467\pi\)
0.963276 0.268514i \(-0.0865325\pi\)
\(30\) 0 0
\(31\) 41.0781i 1.32510i −0.749018 0.662549i \(-0.769475\pi\)
0.749018 0.662549i \(-0.230525\pi\)
\(32\) −17.6617 26.6845i −0.551929 0.833891i
\(33\) 0 0
\(34\) 7.03040 + 15.2853i 0.206777 + 0.449567i
\(35\) 0.166098 + 51.1922i 0.00474564 + 1.46264i
\(36\) 0 0
\(37\) 11.2257i 0.303397i 0.988427 + 0.151698i \(0.0484743\pi\)
−0.988427 + 0.151698i \(0.951526\pi\)
\(38\) 15.3751 7.07170i 0.404607 0.186097i
\(39\) 0 0
\(40\) 16.0285 56.2673i 0.400713 1.40668i
\(41\) 22.8018i 0.556141i −0.960561 0.278071i \(-0.910305\pi\)
0.960561 0.278071i \(-0.0896949\pi\)
\(42\) 0 0
\(43\) 46.2778i 1.07623i −0.842872 0.538114i \(-0.819137\pi\)
0.842872 0.538114i \(-0.180863\pi\)
\(44\) 48.2311 + 41.3394i 1.09616 + 0.939532i
\(45\) 0 0
\(46\) −82.8114 + 38.0888i −1.80025 + 0.828018i
\(47\) 62.8287i 1.33678i 0.743811 + 0.668390i \(0.233016\pi\)
−0.743811 + 0.668390i \(0.766984\pi\)
\(48\) 0 0
\(49\) −48.9990 + 0.317966i −0.999979 + 0.00648910i
\(50\) 51.7543 23.8042i 1.03509 0.476084i
\(51\) 0 0
\(52\) 32.0169 37.3544i 0.615709 0.718354i
\(53\) 79.7103i 1.50397i −0.659181 0.751984i \(-0.729097\pi\)
0.659181 0.751984i \(-0.270903\pi\)
\(54\) 0 0
\(55\) 116.140i 2.11163i
\(56\) 53.9069 + 15.1672i 0.962624 + 0.270843i
\(57\) 0 0
\(58\) −13.0155 28.2979i −0.224405 0.487895i
\(59\) −27.2534 −0.461923 −0.230961 0.972963i \(-0.574187\pi\)
−0.230961 + 0.972963i \(0.574187\pi\)
\(60\) 0 0
\(61\) 15.7029 0.257424 0.128712 0.991682i \(-0.458916\pi\)
0.128712 + 0.991682i \(0.458916\pi\)
\(62\) −34.3302 74.6396i −0.553713 1.20386i
\(63\) 0 0
\(64\) −54.3927 33.7258i −0.849886 0.526966i
\(65\) 89.9487 1.38383
\(66\) 0 0
\(67\) 55.8440i 0.833493i −0.909023 0.416746i \(-0.863170\pi\)
0.909023 0.416746i \(-0.136830\pi\)
\(68\) 25.5487 + 21.8981i 0.375717 + 0.322031i
\(69\) 0 0
\(70\) 43.0847 + 92.8784i 0.615496 + 1.32683i
\(71\) 37.3473 0.526018 0.263009 0.964793i \(-0.415285\pi\)
0.263009 + 0.964793i \(0.415285\pi\)
\(72\) 0 0
\(73\) 105.242i 1.44168i −0.693103 0.720839i \(-0.743757\pi\)
0.693103 0.720839i \(-0.256243\pi\)
\(74\) 9.38165 + 20.3973i 0.126779 + 0.275639i
\(75\) 0 0
\(76\) 22.0267 25.6988i 0.289825 0.338142i
\(77\) −111.165 + 0.360684i −1.44370 + 0.00468420i
\(78\) 0 0
\(79\) 92.1093 1.16594 0.582970 0.812494i \(-0.301890\pi\)
0.582970 + 0.812494i \(0.301890\pi\)
\(80\) −17.9002 115.634i −0.223752 1.44543i
\(81\) 0 0
\(82\) −19.0562 41.4313i −0.232392 0.505259i
\(83\) −38.3882 −0.462508 −0.231254 0.972893i \(-0.574283\pi\)
−0.231254 + 0.972893i \(0.574283\pi\)
\(84\) 0 0
\(85\) 61.5208i 0.723775i
\(86\) −38.6758 84.0877i −0.449719 0.977764i
\(87\) 0 0
\(88\) 122.185 + 34.8062i 1.38847 + 0.395525i
\(89\) 90.6203i 1.01821i 0.860706 + 0.509103i \(0.170023\pi\)
−0.860706 + 0.509103i \(0.829977\pi\)
\(90\) 0 0
\(91\) 0.279345 + 86.0959i 0.00306973 + 0.946109i
\(92\) −118.638 + 138.416i −1.28954 + 1.50452i
\(93\) 0 0
\(94\) 52.5078 + 114.161i 0.558594 + 1.21448i
\(95\) 61.8822 0.651392
\(96\) 0 0
\(97\) 26.7589i 0.275865i 0.990442 + 0.137932i \(0.0440457\pi\)
−0.990442 + 0.137932i \(0.955954\pi\)
\(98\) −88.7663 + 41.5277i −0.905778 + 0.423752i
\(99\) 0 0
\(100\) 74.1446 86.5054i 0.741446 0.865054i
\(101\) 1.38519 0.0137148 0.00685738 0.999976i \(-0.497817\pi\)
0.00685738 + 0.999976i \(0.497817\pi\)
\(102\) 0 0
\(103\) 126.743i 1.23051i 0.788328 + 0.615255i \(0.210947\pi\)
−0.788328 + 0.615255i \(0.789053\pi\)
\(104\) 26.9570 94.6312i 0.259202 0.909915i
\(105\) 0 0
\(106\) −66.6164 144.835i −0.628456 1.36637i
\(107\) 2.01251i 0.0188085i −0.999956 0.00940423i \(-0.997006\pi\)
0.999956 0.00940423i \(-0.00299350\pi\)
\(108\) 0 0
\(109\) 4.45196i 0.0408436i 0.999791 + 0.0204218i \(0.00650092\pi\)
−0.999791 + 0.0204218i \(0.993499\pi\)
\(110\) 97.0614 + 211.028i 0.882376 + 1.91843i
\(111\) 0 0
\(112\) 110.626 17.4926i 0.987728 0.156184i
\(113\) −172.799 −1.52919 −0.764596 0.644510i \(-0.777061\pi\)
−0.764596 + 0.644510i \(0.777061\pi\)
\(114\) 0 0
\(115\) −333.303 −2.89829
\(116\) −47.2988 40.5403i −0.407748 0.349485i
\(117\) 0 0
\(118\) −49.5200 + 22.7765i −0.419661 + 0.193021i
\(119\) −58.8857 + 0.191060i −0.494838 + 0.00160554i
\(120\) 0 0
\(121\) −131.199 −1.08429
\(122\) 28.5324 13.1234i 0.233872 0.107569i
\(123\) 0 0
\(124\) −124.757 106.931i −1.00611 0.862344i
\(125\) 25.4728 0.203782
\(126\) 0 0
\(127\) −77.1696 −0.607635 −0.303818 0.952730i \(-0.598261\pi\)
−0.303818 + 0.952730i \(0.598261\pi\)
\(128\) −127.018 15.8227i −0.992330 0.123615i
\(129\) 0 0
\(130\) 163.438 75.1729i 1.25722 0.578253i
\(131\) −245.145 −1.87134 −0.935669 0.352879i \(-0.885203\pi\)
−0.935669 + 0.352879i \(0.885203\pi\)
\(132\) 0 0
\(133\) 0.192182 + 59.2316i 0.00144498 + 0.445350i
\(134\) −46.6705 101.470i −0.348288 0.757236i
\(135\) 0 0
\(136\) 64.7234 + 18.4374i 0.475908 + 0.135569i
\(137\) 72.7244 0.530835 0.265418 0.964134i \(-0.414490\pi\)
0.265418 + 0.964134i \(0.414490\pi\)
\(138\) 0 0
\(139\) 150.950 1.08597 0.542984 0.839743i \(-0.317294\pi\)
0.542984 + 0.839743i \(0.317294\pi\)
\(140\) 155.907 + 132.755i 1.11362 + 0.948247i
\(141\) 0 0
\(142\) 67.8607 31.2123i 0.477892 0.219805i
\(143\) 195.325i 1.36591i
\(144\) 0 0
\(145\) 113.895i 0.785480i
\(146\) −87.9543 191.227i −0.602427 1.30978i
\(147\) 0 0
\(148\) 34.0932 + 29.2217i 0.230360 + 0.197444i
\(149\) 249.152i 1.67216i 0.548607 + 0.836081i \(0.315158\pi\)
−0.548607 + 0.836081i \(0.684842\pi\)
\(150\) 0 0
\(151\) −108.996 −0.721828 −0.360914 0.932599i \(-0.617535\pi\)
−0.360914 + 0.932599i \(0.617535\pi\)
\(152\) 18.5457 65.1036i 0.122011 0.428313i
\(153\) 0 0
\(154\) −201.687 + 93.5592i −1.30966 + 0.607527i
\(155\) 300.413i 1.93815i
\(156\) 0 0
\(157\) 4.46627 0.0284476 0.0142238 0.999899i \(-0.495472\pi\)
0.0142238 + 0.999899i \(0.495472\pi\)
\(158\) 167.364 76.9786i 1.05927 0.487206i
\(159\) 0 0
\(160\) −129.164 195.150i −0.807275 1.21969i
\(161\) −1.03511 319.027i −0.00642925 1.98153i
\(162\) 0 0
\(163\) 60.6259i 0.371938i 0.982556 + 0.185969i \(0.0595424\pi\)
−0.982556 + 0.185969i \(0.940458\pi\)
\(164\) −69.2508 59.3556i −0.422261 0.361924i
\(165\) 0 0
\(166\) −69.7520 + 32.0822i −0.420193 + 0.193266i
\(167\) 234.030i 1.40138i 0.713466 + 0.700690i \(0.247124\pi\)
−0.713466 + 0.700690i \(0.752876\pi\)
\(168\) 0 0
\(169\) −17.7229 −0.104869
\(170\) 51.4149 + 111.784i 0.302440 + 0.657556i
\(171\) 0 0
\(172\) −140.549 120.466i −0.817147 0.700385i
\(173\) 146.553 0.847129 0.423564 0.905866i \(-0.360779\pi\)
0.423564 + 0.905866i \(0.360779\pi\)
\(174\) 0 0
\(175\) 0.646908 + 199.381i 0.00369662 + 1.13932i
\(176\) 251.102 38.8706i 1.42671 0.220855i
\(177\) 0 0
\(178\) 75.7342 + 164.659i 0.425473 + 0.925049i
\(179\) 4.20304i 0.0234807i −0.999931 0.0117403i \(-0.996263\pi\)
0.999931 0.0117403i \(-0.00373715\pi\)
\(180\) 0 0
\(181\) −142.881 −0.789396 −0.394698 0.918811i \(-0.629151\pi\)
−0.394698 + 0.918811i \(0.629151\pi\)
\(182\) 72.4605 + 156.204i 0.398135 + 0.858265i
\(183\) 0 0
\(184\) −99.8886 + 350.654i −0.542873 + 1.90573i
\(185\) 82.0958i 0.443761i
\(186\) 0 0
\(187\) −133.594 −0.714404
\(188\) 190.815 + 163.550i 1.01498 + 0.869946i
\(189\) 0 0
\(190\) 112.441 51.7169i 0.591795 0.272194i
\(191\) 215.929 1.13052 0.565258 0.824914i \(-0.308777\pi\)
0.565258 + 0.824914i \(0.308777\pi\)
\(192\) 0 0
\(193\) 178.327 0.923975 0.461987 0.886887i \(-0.347137\pi\)
0.461987 + 0.886887i \(0.347137\pi\)
\(194\) 22.3632 + 48.6214i 0.115274 + 0.250626i
\(195\) 0 0
\(196\) −126.584 + 149.641i −0.645837 + 0.763476i
\(197\) 8.37478i 0.0425116i −0.999774 0.0212558i \(-0.993234\pi\)
0.999774 0.0212558i \(-0.00676644\pi\)
\(198\) 0 0
\(199\) 57.4302i 0.288594i −0.989534 0.144297i \(-0.953908\pi\)
0.989534 0.144297i \(-0.0460921\pi\)
\(200\) 62.4270 219.147i 0.312135 1.09573i
\(201\) 0 0
\(202\) 2.51692 1.15765i 0.0124600 0.00573092i
\(203\) 109.016 0.353712i 0.537025 0.00174242i
\(204\) 0 0
\(205\) 166.754i 0.813436i
\(206\) 105.923 + 230.294i 0.514188 + 1.11793i
\(207\) 0 0
\(208\) −30.1048 194.475i −0.144735 0.934977i
\(209\) 134.378i 0.642958i
\(210\) 0 0
\(211\) 306.750i 1.45379i −0.686748 0.726895i \(-0.740963\pi\)
0.686748 0.726895i \(-0.259037\pi\)
\(212\) −242.086 207.495i −1.14192 0.978749i
\(213\) 0 0
\(214\) −1.68191 3.65676i −0.00785940 0.0170877i
\(215\) 338.440i 1.57414i
\(216\) 0 0
\(217\) 287.545 0.932964i 1.32509 0.00429937i
\(218\) 3.72064 + 8.08929i 0.0170671 + 0.0371068i
\(219\) 0 0
\(220\) 352.724 + 302.324i 1.60329 + 1.37420i
\(221\) 103.467i 0.468175i
\(222\) 0 0
\(223\) 320.455i 1.43702i 0.695517 + 0.718510i \(0.255176\pi\)
−0.695517 + 0.718510i \(0.744824\pi\)
\(224\) 186.390 124.237i 0.832096 0.554631i
\(225\) 0 0
\(226\) −313.978 + 144.413i −1.38928 + 0.638996i
\(227\) 235.456 1.03725 0.518626 0.855001i \(-0.326444\pi\)
0.518626 + 0.855001i \(0.326444\pi\)
\(228\) 0 0
\(229\) 303.138 1.32375 0.661874 0.749615i \(-0.269761\pi\)
0.661874 + 0.749615i \(0.269761\pi\)
\(230\) −605.618 + 278.552i −2.63312 + 1.21109i
\(231\) 0 0
\(232\) −119.824 34.1334i −0.516481 0.147127i
\(233\) −200.433 −0.860229 −0.430115 0.902774i \(-0.641527\pi\)
−0.430115 + 0.902774i \(0.641527\pi\)
\(234\) 0 0
\(235\) 459.480i 1.95523i
\(236\) −70.9437 + 82.7707i −0.300609 + 0.350723i
\(237\) 0 0
\(238\) −106.837 + 49.5597i −0.448894 + 0.208234i
\(239\) −172.580 −0.722090 −0.361045 0.932548i \(-0.617580\pi\)
−0.361045 + 0.932548i \(0.617580\pi\)
\(240\) 0 0
\(241\) 235.213i 0.975989i −0.872847 0.487995i \(-0.837729\pi\)
0.872847 0.487995i \(-0.162271\pi\)
\(242\) −238.391 + 109.647i −0.985087 + 0.453087i
\(243\) 0 0
\(244\) 40.8763 47.6909i 0.167526 0.195454i
\(245\) −358.340 + 2.32535i −1.46261 + 0.00949124i
\(246\) 0 0
\(247\) 104.074 0.421354
\(248\) −316.051 90.0316i −1.27440 0.363030i
\(249\) 0 0
\(250\) 46.2845 21.2884i 0.185138 0.0851535i
\(251\) 164.929 0.657087 0.328543 0.944489i \(-0.393442\pi\)
0.328543 + 0.944489i \(0.393442\pi\)
\(252\) 0 0
\(253\) 723.774i 2.86077i
\(254\) −140.219 + 64.4930i −0.552042 + 0.253910i
\(255\) 0 0
\(256\) −244.018 + 77.4028i −0.953195 + 0.302355i
\(257\) 344.374i 1.33998i −0.742371 0.669989i \(-0.766299\pi\)
0.742371 0.669989i \(-0.233701\pi\)
\(258\) 0 0
\(259\) −78.5794 + 0.254957i −0.303395 + 0.000984391i
\(260\) 234.146 273.181i 0.900563 1.05070i
\(261\) 0 0
\(262\) −445.433 + 204.875i −1.70013 + 0.781967i
\(263\) −317.186 −1.20603 −0.603016 0.797729i \(-0.706034\pi\)
−0.603016 + 0.797729i \(0.706034\pi\)
\(264\) 0 0
\(265\) 582.939i 2.19977i
\(266\) 49.8508 + 107.464i 0.187409 + 0.404001i
\(267\) 0 0
\(268\) −169.602 145.368i −0.632845 0.542418i
\(269\) 215.901 0.802604 0.401302 0.915946i \(-0.368558\pi\)
0.401302 + 0.915946i \(0.368558\pi\)
\(270\) 0 0
\(271\) 2.35354i 0.00868464i 0.999991 + 0.00434232i \(0.00138221\pi\)
−0.999991 + 0.00434232i \(0.998618\pi\)
\(272\) 133.012 20.5903i 0.489016 0.0756997i
\(273\) 0 0
\(274\) 132.142 60.7780i 0.482269 0.221818i
\(275\) 452.334i 1.64485i
\(276\) 0 0
\(277\) 216.483i 0.781528i 0.920491 + 0.390764i \(0.127789\pi\)
−0.920491 + 0.390764i \(0.872211\pi\)
\(278\) 274.278 126.153i 0.986612 0.453789i
\(279\) 0 0
\(280\) 394.233 + 110.921i 1.40797 + 0.396147i
\(281\) 264.456 0.941126 0.470563 0.882366i \(-0.344051\pi\)
0.470563 + 0.882366i \(0.344051\pi\)
\(282\) 0 0
\(283\) −114.488 −0.404550 −0.202275 0.979329i \(-0.564833\pi\)
−0.202275 + 0.979329i \(0.564833\pi\)
\(284\) 97.2191 113.427i 0.342321 0.399389i
\(285\) 0 0
\(286\) 163.239 + 354.909i 0.570767 + 1.24094i
\(287\) 159.612 0.517874i 0.556138 0.00180444i
\(288\) 0 0
\(289\) 218.233 0.755133
\(290\) −95.1852 206.949i −0.328225 0.713616i
\(291\) 0 0
\(292\) −319.629 273.957i −1.09462 0.938211i
\(293\) 257.014 0.877182 0.438591 0.898687i \(-0.355478\pi\)
0.438591 + 0.898687i \(0.355478\pi\)
\(294\) 0 0
\(295\) −199.310 −0.675628
\(296\) 86.3695 + 24.6035i 0.291789 + 0.0831201i
\(297\) 0 0
\(298\) 208.224 + 452.714i 0.698738 + 1.51917i
\(299\) −560.554 −1.87476
\(300\) 0 0
\(301\) 323.943 1.05106i 1.07622 0.00349190i
\(302\) −198.048 + 91.0913i −0.655787 + 0.301627i
\(303\) 0 0
\(304\) −20.7113 133.794i −0.0681292 0.440111i
\(305\) 114.839 0.376520
\(306\) 0 0
\(307\) 378.989 1.23449 0.617246 0.786770i \(-0.288248\pi\)
0.617246 + 0.786770i \(0.288248\pi\)
\(308\) −288.279 + 338.555i −0.935970 + 1.09920i
\(309\) 0 0
\(310\) −251.064 545.855i −0.809884 1.76082i
\(311\) 230.962i 0.742642i 0.928504 + 0.371321i \(0.121095\pi\)
−0.928504 + 0.371321i \(0.878905\pi\)
\(312\) 0 0
\(313\) 328.672i 1.05007i 0.851080 + 0.525035i \(0.175948\pi\)
−0.851080 + 0.525035i \(0.824052\pi\)
\(314\) 8.11530 3.73260i 0.0258449 0.0118873i
\(315\) 0 0
\(316\) 239.771 279.743i 0.758767 0.885262i
\(317\) 153.186i 0.483237i −0.970371 0.241618i \(-0.922322\pi\)
0.970371 0.241618i \(-0.0776782\pi\)
\(318\) 0 0
\(319\) 247.324 0.775311
\(320\) −397.786 246.644i −1.24308 0.770763i
\(321\) 0 0
\(322\) −268.501 578.812i −0.833854 1.79755i
\(323\) 71.1822i 0.220378i
\(324\) 0 0
\(325\) 350.327 1.07793
\(326\) 50.6669 + 110.158i 0.155420 + 0.337909i
\(327\) 0 0
\(328\) −175.435 49.9751i −0.534863 0.152363i
\(329\) −439.798 + 1.42696i −1.33677 + 0.00433727i
\(330\) 0 0
\(331\) 395.271i 1.19417i 0.802177 + 0.597087i \(0.203675\pi\)
−0.802177 + 0.597087i \(0.796325\pi\)
\(332\) −99.9286 + 116.588i −0.300990 + 0.351168i
\(333\) 0 0
\(334\) 195.586 + 425.238i 0.585588 + 1.27317i
\(335\) 408.399i 1.21910i
\(336\) 0 0
\(337\) −155.326 −0.460908 −0.230454 0.973083i \(-0.574021\pi\)
−0.230454 + 0.973083i \(0.574021\pi\)
\(338\) −32.2028 + 14.8115i −0.0952745 + 0.0438211i
\(339\) 0 0
\(340\) 186.843 + 160.145i 0.549540 + 0.471016i
\(341\) 652.351 1.91305
\(342\) 0 0
\(343\) −3.33861 342.984i −0.00973357 0.999953i
\(344\) −356.058 101.428i −1.03505 0.294849i
\(345\) 0 0
\(346\) 266.290 122.479i 0.769624 0.353986i
\(347\) 309.937i 0.893191i −0.894736 0.446596i \(-0.852636\pi\)
0.894736 0.446596i \(-0.147364\pi\)
\(348\) 0 0
\(349\) −533.429 −1.52845 −0.764226 0.644949i \(-0.776879\pi\)
−0.764226 + 0.644949i \(0.776879\pi\)
\(350\) 167.804 + 361.738i 0.479440 + 1.03354i
\(351\) 0 0
\(352\) 423.771 280.482i 1.20389 0.796823i
\(353\) 317.324i 0.898934i −0.893297 0.449467i \(-0.851614\pi\)
0.893297 0.449467i \(-0.148386\pi\)
\(354\) 0 0
\(355\) 273.129 0.769377
\(356\) 275.221 + 235.895i 0.773092 + 0.662625i
\(357\) 0 0
\(358\) −3.51261 7.63700i −0.00981176 0.0213324i
\(359\) 228.679 0.636988 0.318494 0.947925i \(-0.396823\pi\)
0.318494 + 0.947925i \(0.396823\pi\)
\(360\) 0 0
\(361\) −289.400 −0.801661
\(362\) −259.617 + 119.410i −0.717174 + 0.329861i
\(363\) 0 0
\(364\) 262.207 + 223.269i 0.720348 + 0.613375i
\(365\) 769.661i 2.10866i
\(366\) 0 0
\(367\) 127.971i 0.348694i −0.984684 0.174347i \(-0.944219\pi\)
0.984684 0.174347i \(-0.0557814\pi\)
\(368\) 111.553 + 720.624i 0.303132 + 1.95822i
\(369\) 0 0
\(370\) 68.6100 + 149.170i 0.185432 + 0.403161i
\(371\) 557.970 1.81038i 1.50396 0.00487973i
\(372\) 0 0
\(373\) 622.385i 1.66859i 0.551317 + 0.834296i \(0.314126\pi\)
−0.551317 + 0.834296i \(0.685874\pi\)
\(374\) −242.742 + 111.648i −0.649043 + 0.298525i
\(375\) 0 0
\(376\) 483.399 + 137.703i 1.28563 + 0.366231i
\(377\) 191.550i 0.508089i
\(378\) 0 0
\(379\) 211.256i 0.557405i −0.960377 0.278702i \(-0.910096\pi\)
0.960377 0.278702i \(-0.0899043\pi\)
\(380\) 161.086 187.941i 0.423911 0.494581i
\(381\) 0 0
\(382\) 392.346 180.458i 1.02708 0.472403i
\(383\) 310.998i 0.812006i −0.913872 0.406003i \(-0.866922\pi\)
0.913872 0.406003i \(-0.133078\pi\)
\(384\) 0 0
\(385\) −812.972 + 2.63776i −2.11162 + 0.00685132i
\(386\) 324.024 149.033i 0.839439 0.386097i
\(387\) 0 0
\(388\) 81.2687 + 69.6563i 0.209455 + 0.179526i
\(389\) 557.569i 1.43334i 0.697412 + 0.716670i \(0.254335\pi\)
−0.697412 + 0.716670i \(0.745665\pi\)
\(390\) 0 0
\(391\) 383.394i 0.980547i
\(392\) −104.946 + 377.691i −0.267718 + 0.963497i
\(393\) 0 0
\(394\) −6.99906 15.2171i −0.0177641 0.0386221i
\(395\) 673.615 1.70535
\(396\) 0 0
\(397\) 343.293 0.864718 0.432359 0.901702i \(-0.357681\pi\)
0.432359 + 0.901702i \(0.357681\pi\)
\(398\) −47.9962 104.352i −0.120593 0.262190i
\(399\) 0 0
\(400\) −69.7167 450.366i −0.174292 1.12591i
\(401\) 544.592 1.35809 0.679043 0.734099i \(-0.262395\pi\)
0.679043 + 0.734099i \(0.262395\pi\)
\(402\) 0 0
\(403\) 505.239i 1.25369i
\(404\) 3.60580 4.20693i 0.00892525 0.0104132i
\(405\) 0 0
\(406\) 197.789 91.7508i 0.487164 0.225987i
\(407\) −178.273 −0.438016
\(408\) 0 0
\(409\) 419.631i 1.02599i 0.858391 + 0.512997i \(0.171465\pi\)
−0.858391 + 0.512997i \(0.828535\pi\)
\(410\) −139.362 302.996i −0.339907 0.739014i
\(411\) 0 0
\(412\) 384.927 + 329.925i 0.934288 + 0.800788i
\(413\) −0.618979 190.773i −0.00149874 0.461920i
\(414\) 0 0
\(415\) −280.741 −0.676484
\(416\) −217.230 328.206i −0.522187 0.788956i
\(417\) 0 0
\(418\) 112.304 + 244.168i 0.268670 + 0.584134i
\(419\) −435.089 −1.03840 −0.519199 0.854653i \(-0.673770\pi\)
−0.519199 + 0.854653i \(0.673770\pi\)
\(420\) 0 0
\(421\) 219.731i 0.521927i 0.965349 + 0.260963i \(0.0840402\pi\)
−0.965349 + 0.260963i \(0.915960\pi\)
\(422\) −256.360 557.370i −0.607489 1.32078i
\(423\) 0 0
\(424\) −613.285 174.703i −1.44643 0.412035i
\(425\) 239.608i 0.563784i
\(426\) 0 0
\(427\) 0.356644 + 109.920i 0.000835231 + 0.257423i
\(428\) −6.11213 5.23877i −0.0142807 0.0122401i
\(429\) 0 0
\(430\) −282.845 614.951i −0.657778 1.43012i
\(431\) 297.775 0.690894 0.345447 0.938438i \(-0.387727\pi\)
0.345447 + 0.938438i \(0.387727\pi\)
\(432\) 0 0
\(433\) 425.481i 0.982635i −0.870980 0.491318i \(-0.836515\pi\)
0.870980 0.491318i \(-0.163485\pi\)
\(434\) 521.694 242.005i 1.20206 0.557616i
\(435\) 0 0
\(436\) 13.5209 + 11.5889i 0.0310113 + 0.0265801i
\(437\) −385.646 −0.882485
\(438\) 0 0
\(439\) 376.609i 0.857878i 0.903333 + 0.428939i \(0.141113\pi\)
−0.903333 + 0.428939i \(0.858887\pi\)
\(440\) 893.568 + 254.545i 2.03084 + 0.578512i
\(441\) 0 0
\(442\) 86.4703 + 188.001i 0.195634 + 0.425341i
\(443\) 8.28153i 0.0186942i −0.999956 0.00934710i \(-0.997025\pi\)
0.999956 0.00934710i \(-0.00297532\pi\)
\(444\) 0 0
\(445\) 662.726i 1.48927i
\(446\) 267.814 + 582.273i 0.600481 + 1.30555i
\(447\) 0 0
\(448\) 234.844 381.513i 0.524206 0.851592i
\(449\) −438.457 −0.976520 −0.488260 0.872698i \(-0.662368\pi\)
−0.488260 + 0.872698i \(0.662368\pi\)
\(450\) 0 0
\(451\) 362.110 0.802905
\(452\) −449.814 + 524.802i −0.995163 + 1.16107i
\(453\) 0 0
\(454\) 427.828 196.778i 0.942353 0.433432i
\(455\) 2.04291 + 629.638i 0.00448992 + 1.38382i
\(456\) 0 0
\(457\) −75.2427 −0.164645 −0.0823224 0.996606i \(-0.526234\pi\)
−0.0823224 + 0.996606i \(0.526234\pi\)
\(458\) 550.808 253.342i 1.20264 0.553148i
\(459\) 0 0
\(460\) −867.624 + 1012.27i −1.88614 + 2.20058i
\(461\) 258.818 0.561428 0.280714 0.959791i \(-0.409429\pi\)
0.280714 + 0.959791i \(0.409429\pi\)
\(462\) 0 0
\(463\) −70.5104 −0.152290 −0.0761452 0.997097i \(-0.524261\pi\)
−0.0761452 + 0.997097i \(0.524261\pi\)
\(464\) −246.248 + 38.1192i −0.530707 + 0.0821535i
\(465\) 0 0
\(466\) −364.191 + 167.508i −0.781526 + 0.359460i
\(467\) 547.216 1.17177 0.585885 0.810394i \(-0.300747\pi\)
0.585885 + 0.810394i \(0.300747\pi\)
\(468\) 0 0
\(469\) 390.906 1.26833i 0.833488 0.00270432i
\(470\) 384.001 + 834.883i 0.817024 + 1.77635i
\(471\) 0 0
\(472\) −59.7319 + 209.686i −0.126551 + 0.444249i
\(473\) 734.928 1.55376
\(474\) 0 0
\(475\) 241.016 0.507401
\(476\) −152.706 + 179.338i −0.320810 + 0.376760i
\(477\) 0 0
\(478\) −313.580 + 144.230i −0.656025 + 0.301736i
\(479\) 256.765i 0.536043i −0.963413 0.268021i \(-0.913630\pi\)
0.963413 0.268021i \(-0.0863698\pi\)
\(480\) 0 0
\(481\) 138.070i 0.287048i
\(482\) −196.575 427.387i −0.407832 0.886695i
\(483\) 0 0
\(484\) −341.525 + 398.461i −0.705631 + 0.823267i
\(485\) 195.693i 0.403492i
\(486\) 0 0
\(487\) −226.766 −0.465638 −0.232819 0.972520i \(-0.574795\pi\)
−0.232819 + 0.972520i \(0.574795\pi\)
\(488\) 34.4163 120.817i 0.0705253 0.247575i
\(489\) 0 0
\(490\) −649.167 + 303.701i −1.32483 + 0.619798i
\(491\) 265.821i 0.541386i −0.962666 0.270693i \(-0.912747\pi\)
0.962666 0.270693i \(-0.0872529\pi\)
\(492\) 0 0
\(493\) 131.011 0.265743
\(494\) 189.105 86.9782i 0.382804 0.176069i
\(495\) 0 0
\(496\) −649.513 + 100.545i −1.30950 + 0.202711i
\(497\) 0.848231 + 261.430i 0.00170670 + 0.526016i
\(498\) 0 0
\(499\) 701.805i 1.40642i −0.710980 0.703212i \(-0.751749\pi\)
0.710980 0.703212i \(-0.248251\pi\)
\(500\) 66.3084 77.3627i 0.132617 0.154725i
\(501\) 0 0
\(502\) 299.679 137.836i 0.596969 0.274574i
\(503\) 297.395i 0.591243i −0.955305 0.295622i \(-0.904473\pi\)
0.955305 0.295622i \(-0.0955267\pi\)
\(504\) 0 0
\(505\) 10.1302 0.0200598
\(506\) −604.880 1315.11i −1.19541 2.59903i
\(507\) 0 0
\(508\) −200.881 + 234.370i −0.395435 + 0.461358i
\(509\) −470.194 −0.923760 −0.461880 0.886942i \(-0.652825\pi\)
−0.461880 + 0.886942i \(0.652825\pi\)
\(510\) 0 0
\(511\) 736.693 2.39026i 1.44167 0.00467762i
\(512\) −378.697 + 344.576i −0.739643 + 0.672999i
\(513\) 0 0
\(514\) −287.804 625.734i −0.559930 1.21738i
\(515\) 926.896i 1.79980i
\(516\) 0 0
\(517\) −997.768 −1.92992
\(518\) −142.567 + 66.1344i −0.275226 + 0.127673i
\(519\) 0 0
\(520\) 197.142 692.058i 0.379120 1.33088i
\(521\) 357.911i 0.686970i 0.939158 + 0.343485i \(0.111607\pi\)
−0.939158 + 0.343485i \(0.888393\pi\)
\(522\) 0 0
\(523\) −356.189 −0.681049 −0.340524 0.940236i \(-0.610605\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(524\) −638.140 + 744.524i −1.21782 + 1.42085i
\(525\) 0 0
\(526\) −576.333 + 265.082i −1.09569 + 0.503959i
\(527\) 345.560 0.655712
\(528\) 0 0
\(529\) 1548.12 2.92651
\(530\) −487.180 1059.21i −0.919207 1.99851i
\(531\) 0 0
\(532\) 180.391 + 153.603i 0.339081 + 0.288727i
\(533\) 280.450i 0.526173i
\(534\) 0 0
\(535\) 14.7179i 0.0275101i
\(536\) −429.659 122.394i −0.801603 0.228348i
\(537\) 0 0
\(538\) 392.295 180.435i 0.729173 0.335380i
\(539\) −5.04955 778.142i −0.00936836 1.44368i
\(540\) 0 0
\(541\) 473.636i 0.875483i −0.899101 0.437742i \(-0.855778\pi\)
0.899101 0.437742i \(-0.144222\pi\)
\(542\) 1.96692 + 4.27642i 0.00362901 + 0.00789007i
\(543\) 0 0
\(544\) 224.478 148.575i 0.412643 0.273117i
\(545\) 32.5581i 0.0597397i
\(546\) 0 0
\(547\) 437.249i 0.799359i −0.916655 0.399679i \(-0.869121\pi\)
0.916655 0.399679i \(-0.130879\pi\)
\(548\) 189.310 220.870i 0.345456 0.403047i
\(549\) 0 0
\(550\) 378.029 + 821.899i 0.687326 + 1.49436i
\(551\) 131.781i 0.239167i
\(552\) 0 0
\(553\) 2.09198 + 644.762i 0.00378297 + 1.16593i
\(554\) 180.922 + 393.354i 0.326573 + 0.710025i
\(555\) 0 0
\(556\) 392.938 458.445i 0.706724 0.824542i
\(557\) 498.479i 0.894936i 0.894300 + 0.447468i \(0.147674\pi\)
−0.894300 + 0.447468i \(0.852326\pi\)
\(558\) 0 0
\(559\) 569.193i 1.01823i
\(560\) 809.028 127.927i 1.44469 0.228441i
\(561\) 0 0
\(562\) 480.522 221.014i 0.855022 0.393264i
\(563\) −665.619 −1.18227 −0.591136 0.806572i \(-0.701320\pi\)
−0.591136 + 0.806572i \(0.701320\pi\)
\(564\) 0 0
\(565\) −1263.71 −2.23666
\(566\) −208.026 + 95.6807i −0.367537 + 0.169047i
\(567\) 0 0
\(568\) 81.8548 287.347i 0.144111 0.505893i
\(569\) −310.711 −0.546065 −0.273033 0.962005i \(-0.588027\pi\)
−0.273033 + 0.962005i \(0.588027\pi\)
\(570\) 0 0
\(571\) 170.411i 0.298443i −0.988804 0.149222i \(-0.952323\pi\)
0.988804 0.149222i \(-0.0476768\pi\)
\(572\) 593.217 + 508.453i 1.03709 + 0.888904i
\(573\) 0 0
\(574\) 289.585 134.333i 0.504503 0.234030i
\(575\) −1298.13 −2.25762
\(576\) 0 0
\(577\) 499.500i 0.865685i 0.901470 + 0.432842i \(0.142489\pi\)
−0.901470 + 0.432842i \(0.857511\pi\)
\(578\) 396.534 182.384i 0.686045 0.315544i
\(579\) 0 0
\(580\) −345.906 296.480i −0.596390 0.511172i
\(581\) −0.871871 268.716i −0.00150064 0.462506i
\(582\) 0 0
\(583\) 1265.86 2.17129
\(584\) −809.727 230.662i −1.38652 0.394969i
\(585\) 0 0
\(586\) 466.999 214.795i 0.796927 0.366544i
\(587\) −716.411 −1.22046 −0.610231 0.792224i \(-0.708923\pi\)
−0.610231 + 0.792224i \(0.708923\pi\)
\(588\) 0 0
\(589\) 347.590i 0.590136i
\(590\) −362.150 + 166.570i −0.613814 + 0.282321i
\(591\) 0 0
\(592\) 177.497 27.4765i 0.299826 0.0464131i
\(593\) 668.608i 1.12750i 0.825945 + 0.563750i \(0.190642\pi\)
−0.825945 + 0.563750i \(0.809358\pi\)
\(594\) 0 0
\(595\) −430.644 + 1.39726i −0.723771 + 0.00234834i
\(596\) 756.693 + 648.570i 1.26962 + 1.08820i
\(597\) 0 0
\(598\) −1018.54 + 468.472i −1.70324 + 0.783399i
\(599\) 67.1144 0.112044 0.0560220 0.998430i \(-0.482158\pi\)
0.0560220 + 0.998430i \(0.482158\pi\)
\(600\) 0 0
\(601\) 1070.97i 1.78198i 0.454026 + 0.890988i \(0.349987\pi\)
−0.454026 + 0.890988i \(0.650013\pi\)
\(602\) 587.732 272.639i 0.976299 0.452889i
\(603\) 0 0
\(604\) −283.729 + 331.029i −0.469749 + 0.548062i
\(605\) −959.487 −1.58593
\(606\) 0 0
\(607\) 877.198i 1.44514i −0.691300 0.722568i \(-0.742961\pi\)
0.691300 0.722568i \(-0.257039\pi\)
\(608\) −149.448 225.796i −0.245803 0.371376i
\(609\) 0 0
\(610\) 208.664 95.9742i 0.342072 0.157335i
\(611\) 772.760i 1.26475i
\(612\) 0 0
\(613\) 230.762i 0.376446i 0.982126 + 0.188223i \(0.0602728\pi\)
−0.982126 + 0.188223i \(0.939727\pi\)
\(614\) 688.630 316.733i 1.12155 0.515852i
\(615\) 0 0
\(616\) −240.867 + 856.084i −0.391018 + 1.38975i
\(617\) −134.978 −0.218765 −0.109382 0.994000i \(-0.534887\pi\)
−0.109382 + 0.994000i \(0.534887\pi\)
\(618\) 0 0
\(619\) −665.757 −1.07554 −0.537769 0.843093i \(-0.680733\pi\)
−0.537769 + 0.843093i \(0.680733\pi\)
\(620\) −912.376 782.007i −1.47157 1.26130i
\(621\) 0 0
\(622\) 193.022 + 419.662i 0.310324 + 0.674697i
\(623\) −634.339 + 2.05817i −1.01820 + 0.00330364i
\(624\) 0 0
\(625\) −525.790 −0.841264
\(626\) 274.681 + 597.203i 0.438788 + 0.953999i
\(627\) 0 0
\(628\) 11.6262 13.5644i 0.0185130 0.0215994i
\(629\) −94.4336 −0.150133
\(630\) 0 0
\(631\) −73.9832 −0.117248 −0.0586238 0.998280i \(-0.518671\pi\)
−0.0586238 + 0.998280i \(0.518671\pi\)
\(632\) 201.878 708.681i 0.319427 1.12133i
\(633\) 0 0
\(634\) −128.022 278.342i −0.201928 0.439025i
\(635\) −564.358 −0.888753
\(636\) 0 0
\(637\) −602.662 + 3.91081i −0.946094 + 0.00613943i
\(638\) 449.392 206.696i 0.704377 0.323975i
\(639\) 0 0
\(640\) −928.912 115.715i −1.45142 0.180805i
\(641\) −1069.94 −1.66917 −0.834587 0.550877i \(-0.814293\pi\)
−0.834587 + 0.550877i \(0.814293\pi\)
\(642\) 0 0
\(643\) −389.931 −0.606424 −0.303212 0.952923i \(-0.598059\pi\)
−0.303212 + 0.952923i \(0.598059\pi\)
\(644\) −971.602 827.317i −1.50870 1.28465i
\(645\) 0 0
\(646\) 59.4891 + 129.339i 0.0920885 + 0.200216i
\(647\) 547.457i 0.846147i −0.906095 0.423073i \(-0.860951\pi\)
0.906095 0.423073i \(-0.139049\pi\)
\(648\) 0 0
\(649\) 432.806i 0.666881i
\(650\) 636.551 292.779i 0.979310 0.450430i
\(651\) 0 0
\(652\) 184.125 + 157.816i 0.282401 + 0.242049i
\(653\) 296.513i 0.454078i 0.973886 + 0.227039i \(0.0729046\pi\)
−0.973886 + 0.227039i \(0.927095\pi\)
\(654\) 0 0
\(655\) −1792.80 −2.73710
\(656\) −360.535 + 55.8108i −0.549595 + 0.0850774i
\(657\) 0 0
\(658\) −797.929 + 370.146i −1.21266 + 0.562531i
\(659\) 104.860i 0.159120i −0.996830 0.0795599i \(-0.974648\pi\)
0.996830 0.0795599i \(-0.0253515\pi\)
\(660\) 0 0
\(661\) 484.516 0.733005 0.366503 0.930417i \(-0.380555\pi\)
0.366503 + 0.930417i \(0.380555\pi\)
\(662\) 330.340 + 718.215i 0.499004 + 1.08492i
\(663\) 0 0
\(664\) −84.1361 + 295.355i −0.126711 + 0.444812i
\(665\) 1.40547 + 433.173i 0.00211348 + 0.651388i
\(666\) 0 0
\(667\) 709.784i 1.06414i
\(668\) 710.768 + 609.207i 1.06402 + 0.911986i
\(669\) 0 0
\(670\) −341.312 742.069i −0.509420 1.10757i
\(671\) 249.374i 0.371646i
\(672\) 0 0
\(673\) −270.376 −0.401747 −0.200874 0.979617i \(-0.564378\pi\)
−0.200874 + 0.979617i \(0.564378\pi\)
\(674\) −282.230 + 129.811i −0.418740 + 0.192598i
\(675\) 0 0
\(676\) −46.1346 + 53.8257i −0.0682464 + 0.0796238i
\(677\) −522.418 −0.771666 −0.385833 0.922569i \(-0.626086\pi\)
−0.385833 + 0.922569i \(0.626086\pi\)
\(678\) 0 0
\(679\) −187.311 + 0.607747i −0.275863 + 0.000895062i
\(680\) 473.336 + 134.836i 0.696083 + 0.198289i
\(681\) 0 0
\(682\) 1185.33 545.190i 1.73803 0.799399i
\(683\) 244.752i 0.358348i 0.983817 + 0.179174i \(0.0573425\pi\)
−0.983817 + 0.179174i \(0.942658\pi\)
\(684\) 0 0
\(685\) 531.850 0.776423
\(686\) −292.708 620.417i −0.426689 0.904399i
\(687\) 0 0
\(688\) −731.730 + 113.272i −1.06356 + 0.164639i
\(689\) 980.396i 1.42293i
\(690\) 0 0
\(691\) 852.260 1.23337 0.616686 0.787209i \(-0.288475\pi\)
0.616686 + 0.787209i \(0.288475\pi\)
\(692\) 381.494 445.093i 0.551292 0.643198i
\(693\) 0 0
\(694\) −259.024 563.162i −0.373234 0.811472i
\(695\) 1103.93 1.58838
\(696\) 0 0
\(697\) 191.815 0.275201
\(698\) −969.251 + 445.803i −1.38861 + 0.638687i
\(699\) 0 0
\(700\) 607.218 + 517.045i 0.867455 + 0.738636i
\(701\) 146.007i 0.208284i 0.994562 + 0.104142i \(0.0332097\pi\)
−0.994562 + 0.104142i \(0.966790\pi\)
\(702\) 0 0
\(703\) 94.9883i 0.135119i
\(704\) 535.592 863.799i 0.760784 1.22699i
\(705\) 0 0
\(706\) −265.197 576.583i −0.375633 0.816690i
\(707\) 0.0314604 + 9.69628i 4.44984e−5 + 0.0137147i
\(708\) 0 0
\(709\) 1086.30i 1.53216i −0.642745 0.766080i \(-0.722204\pi\)
0.642745 0.766080i \(-0.277796\pi\)
\(710\) 496.280 228.262i 0.698986 0.321496i
\(711\) 0 0
\(712\) 697.225 + 198.614i 0.979249 + 0.278953i
\(713\) 1872.15i 2.62574i
\(714\) 0 0
\(715\) 1428.46i 1.99784i
\(716\) −12.7649 10.9410i −0.0178281 0.0152807i
\(717\) 0 0
\(718\) 415.513 191.114i 0.578709 0.266175i
\(719\) 1358.50i 1.88943i 0.327898 + 0.944713i \(0.393660\pi\)
−0.327898 + 0.944713i \(0.606340\pi\)
\(720\) 0 0
\(721\) −887.193 + 2.87857i −1.23050 + 0.00399247i
\(722\) −525.844 + 241.860i −0.728316 + 0.334986i
\(723\) 0 0
\(724\) −371.934 + 433.940i −0.513721 + 0.599364i
\(725\) 443.591i 0.611849i
\(726\) 0 0
\(727\) 1020.19i 1.40329i 0.712527 + 0.701645i \(0.247551\pi\)
−0.712527 + 0.701645i \(0.752449\pi\)
\(728\) 663.027 + 186.549i 0.910751 + 0.256248i
\(729\) 0 0
\(730\) −643.229 1398.49i −0.881135 1.91574i
\(731\) 389.302 0.532561
\(732\) 0 0
\(733\) −1151.72 −1.57125 −0.785624 0.618704i \(-0.787658\pi\)
−0.785624 + 0.618704i \(0.787658\pi\)
\(734\) −106.949 232.525i −0.145707 0.316792i
\(735\) 0 0
\(736\) 804.941 + 1216.16i 1.09367 + 1.65239i
\(737\) 886.846 1.20332
\(738\) 0 0
\(739\) 308.708i 0.417738i 0.977944 + 0.208869i \(0.0669782\pi\)
−0.977944 + 0.208869i \(0.933022\pi\)
\(740\) 249.331 + 213.704i 0.336934 + 0.288790i
\(741\) 0 0
\(742\) 1012.33 469.602i 1.36432 0.632886i
\(743\) 733.205 0.986817 0.493408 0.869798i \(-0.335751\pi\)
0.493408 + 0.869798i \(0.335751\pi\)
\(744\) 0 0
\(745\) 1822.10i 2.44577i
\(746\) 520.146 + 1130.88i 0.697247 + 1.51593i
\(747\) 0 0
\(748\) −347.759 + 405.734i −0.464918 + 0.542425i
\(749\) 14.0875 0.0457080i 0.0188084 6.10253e-5i
\(750\) 0 0
\(751\) 1018.66 1.35640 0.678199 0.734878i \(-0.262761\pi\)
0.678199 + 0.734878i \(0.262761\pi\)
\(752\) 993.426 153.783i 1.32105 0.204498i
\(753\) 0 0
\(754\) −160.084 348.049i −0.212313 0.461604i
\(755\) −797.112 −1.05578
\(756\) 0 0
\(757\) 508.650i 0.671929i 0.941875 + 0.335965i \(0.109062\pi\)
−0.941875 + 0.335965i \(0.890938\pi\)
\(758\) −176.553 383.857i −0.232920 0.506407i
\(759\) 0 0
\(760\) 135.628 476.117i 0.178458 0.626469i
\(761\) 51.1261i 0.0671827i −0.999436 0.0335914i \(-0.989306\pi\)
0.999436 0.0335914i \(-0.0106945\pi\)
\(762\) 0 0
\(763\) −31.1635 + 0.101113i −0.0408434 + 0.000132520i
\(764\) 562.085 655.791i 0.735714 0.858365i
\(765\) 0 0
\(766\) −259.911 565.089i −0.339309 0.737714i
\(767\) −335.203 −0.437031
\(768\) 0 0
\(769\) 155.922i 0.202759i −0.994848 0.101380i \(-0.967674\pi\)
0.994848 0.101380i \(-0.0323256\pi\)
\(770\) −1474.98 + 684.219i −1.91556 + 0.888596i
\(771\) 0 0
\(772\) 464.205 541.593i 0.601302 0.701545i
\(773\) −546.448 −0.706918 −0.353459 0.935450i \(-0.614995\pi\)
−0.353459 + 0.935450i \(0.614995\pi\)
\(774\) 0 0
\(775\) 1170.03i 1.50972i
\(776\) 205.881 + 58.6479i 0.265310 + 0.0755772i
\(777\) 0 0
\(778\) 465.978 + 1013.11i 0.598943 + 1.30220i
\(779\) 192.942i 0.247679i
\(780\) 0 0
\(781\) 593.104i 0.759416i
\(782\) −320.414 696.633i −0.409736 0.890836i
\(783\) 0 0
\(784\) 124.960 + 773.977i 0.159388 + 0.987216i
\(785\) 32.6628 0.0416087
\(786\) 0 0
\(787\) 313.116 0.397860 0.198930 0.980014i \(-0.436253\pi\)
0.198930 + 0.980014i \(0.436253\pi\)
\(788\) −25.4348 21.8005i −0.0322777 0.0276656i
\(789\) 0 0
\(790\) 1223.97 562.961i 1.54933 0.712609i
\(791\) −3.92460 1209.58i −0.00496156 1.52918i
\(792\) 0 0
\(793\) 193.137 0.243553
\(794\) 623.770 286.900i 0.785604 0.361336i
\(795\) 0 0
\(796\) −174.420 149.497i −0.219120 0.187810i
\(797\) 305.648 0.383499 0.191749 0.981444i \(-0.438584\pi\)
0.191749 + 0.981444i \(0.438584\pi\)
\(798\) 0 0
\(799\) −528.533 −0.661493
\(800\) −503.061 760.058i −0.628826 0.950073i
\(801\) 0 0
\(802\) 989.534 455.132i 1.23383 0.567497i
\(803\) 1671.33 2.08136
\(804\) 0 0
\(805\) −7.56997 2333.11i −0.00940369 2.89827i
\(806\) −422.243 918.028i −0.523875 1.13899i
\(807\) 0 0
\(808\) 3.03595 10.6575i 0.00375736 0.0131900i
\(809\) 922.426 1.14020 0.570102 0.821574i \(-0.306903\pi\)
0.570102 + 0.821574i \(0.306903\pi\)
\(810\) 0 0
\(811\) 1571.20 1.93736 0.968680 0.248311i \(-0.0798753\pi\)
0.968680 + 0.248311i \(0.0798753\pi\)
\(812\) 282.706 332.011i 0.348161 0.408880i
\(813\) 0 0
\(814\) −323.924 + 148.988i −0.397942 + 0.183032i
\(815\) 443.370i 0.544013i
\(816\) 0 0
\(817\) 391.589i 0.479301i
\(818\) 350.699 + 762.478i 0.428727 + 0.932124i
\(819\) 0 0
\(820\) −506.446 434.080i −0.617617 0.529366i
\(821\) 550.756i 0.670836i −0.942069 0.335418i \(-0.891122\pi\)
0.942069 0.335418i \(-0.108878\pi\)
\(822\) 0 0
\(823\) −816.633 −0.992263 −0.496132 0.868247i \(-0.665247\pi\)
−0.496132 + 0.868247i \(0.665247\pi\)
\(824\) 975.147 + 277.784i 1.18343 + 0.337117i
\(825\) 0 0
\(826\) −160.560 346.121i −0.194382 0.419032i
\(827\) 1141.58i 1.38039i −0.723623 0.690195i \(-0.757525\pi\)
0.723623 0.690195i \(-0.242475\pi\)
\(828\) 0 0
\(829\) −272.762 −0.329025 −0.164513 0.986375i \(-0.552605\pi\)
−0.164513 + 0.986375i \(0.552605\pi\)
\(830\) −510.111 + 234.624i −0.614592 + 0.282679i
\(831\) 0 0
\(832\) −669.002 414.810i −0.804089 0.498570i
\(833\) −2.67482 412.193i −0.00321107 0.494830i
\(834\) 0 0
\(835\) 1711.51i 2.04972i
\(836\) 408.117 + 349.801i 0.488178 + 0.418423i
\(837\) 0 0
\(838\) −790.564 + 363.617i −0.943394 + 0.433910i
\(839\) 1021.76i 1.21783i −0.793237 0.608913i \(-0.791606\pi\)
0.793237 0.608913i \(-0.208394\pi\)
\(840\) 0 0
\(841\) 598.457 0.711601
\(842\) 183.636 + 399.256i 0.218095 + 0.474175i
\(843\) 0 0
\(844\) −931.622 798.503i −1.10382 0.946094i
\(845\) −129.611 −0.153386
\(846\) 0 0
\(847\) −2.97979 918.388i −0.00351805 1.08428i
\(848\) −1260.35 + 195.103i −1.48627 + 0.230074i
\(849\) 0 0
\(850\) 200.248 + 435.372i 0.235586 + 0.512203i
\(851\) 511.616i 0.601194i
\(852\) 0 0
\(853\) 487.521 0.571537 0.285769 0.958299i \(-0.407751\pi\)
0.285769 + 0.958299i \(0.407751\pi\)
\(854\) 92.5113 + 199.428i 0.108327 + 0.233522i
\(855\) 0 0
\(856\) −15.4841 4.41085i −0.0180888 0.00515286i
\(857\) 1253.85i 1.46307i 0.681806 + 0.731533i \(0.261195\pi\)
−0.681806 + 0.731533i \(0.738805\pi\)
\(858\) 0 0
\(859\) −550.565 −0.640937 −0.320469 0.947259i \(-0.603840\pi\)
−0.320469 + 0.947259i \(0.603840\pi\)
\(860\) −1027.87 880.996i −1.19519 1.02441i
\(861\) 0 0
\(862\) 541.063 248.860i 0.627684 0.288701i
\(863\) 878.436 1.01789 0.508943 0.860800i \(-0.330036\pi\)
0.508943 + 0.860800i \(0.330036\pi\)
\(864\) 0 0
\(865\) 1071.78 1.23905
\(866\) −355.588 773.107i −0.410609 0.892733i
\(867\) 0 0
\(868\) 745.677 875.724i 0.859075 1.00890i
\(869\) 1462.77i 1.68328i
\(870\) 0 0
\(871\) 686.852i 0.788579i
\(872\) 34.2530 + 9.75744i 0.0392810 + 0.0111897i
\(873\) 0 0
\(874\) −700.725 + 322.296i −0.801745 + 0.368760i
\(875\) 0.578537 + 178.308i 0.000661185 + 0.203781i
\(876\) 0 0
\(877\) 1006.35i 1.14749i 0.819033 + 0.573746i \(0.194510\pi\)
−0.819033 + 0.573746i \(0.805490\pi\)
\(878\) 314.743 + 684.305i 0.358478 + 0.779390i
\(879\) 0 0
\(880\) 1836.36 284.269i 2.08677 0.323033i
\(881\) 1531.22i 1.73805i −0.494766 0.869026i \(-0.664746\pi\)
0.494766 0.869026i \(-0.335254\pi\)
\(882\) 0 0
\(883\) 1607.37i 1.82035i −0.414225 0.910174i \(-0.635947\pi\)
0.414225 0.910174i \(-0.364053\pi\)
\(884\) 314.236 + 269.335i 0.355471 + 0.304678i
\(885\) 0 0
\(886\) −6.92113 15.0477i −0.00781165 0.0169838i
\(887\) 1334.50i 1.50451i 0.658873 + 0.752254i \(0.271033\pi\)
−0.658873 + 0.752254i \(0.728967\pi\)
\(888\) 0 0
\(889\) −1.75267 540.185i −0.00197151 0.607632i
\(890\) 553.860 + 1204.18i 0.622315 + 1.35302i
\(891\) 0 0
\(892\) 973.247 + 834.180i 1.09108 + 0.935180i
\(893\) 531.637i 0.595338i
\(894\) 0 0
\(895\) 30.7377i 0.0343438i
\(896\) 107.874 889.483i 0.120395 0.992726i
\(897\) 0 0
\(898\) −796.685 + 366.432i −0.887177 + 0.408054i
\(899\) −639.742 −0.711615
\(900\) 0 0
\(901\) 670.546 0.744224
\(902\) 657.961 302.627i 0.729446 0.335506i
\(903\) 0 0
\(904\) −378.726 + 1329.50i −0.418945 + 1.47068i
\(905\) −1044.92 −1.15461
\(906\) 0 0
\(907\) 111.912i 0.123387i −0.998095 0.0616937i \(-0.980350\pi\)
0.998095 0.0616937i \(-0.0196502\pi\)
\(908\) 612.918 715.098i 0.675020 0.787553i
\(909\) 0 0
\(910\) 529.919 + 1142.36i 0.582329 + 1.25534i
\(911\) 743.108 0.815705 0.407853 0.913048i \(-0.366278\pi\)
0.407853 + 0.913048i \(0.366278\pi\)
\(912\) 0 0
\(913\) 609.634i 0.667726i
\(914\) −136.717 + 62.8826i −0.149581 + 0.0687994i
\(915\) 0 0
\(916\) 789.102 920.654i 0.861465 1.00508i
\(917\) −5.56773 1716.01i −0.00607168 1.87133i
\(918\) 0 0
\(919\) 728.424 0.792627 0.396313 0.918115i \(-0.370289\pi\)
0.396313 + 0.918115i \(0.370289\pi\)
\(920\) −730.507 + 2564.41i −0.794029 + 2.78740i
\(921\) 0 0
\(922\) 470.277 216.302i 0.510062 0.234601i
\(923\) 459.352 0.497673
\(924\) 0 0
\(925\) 319.742i 0.345667i
\(926\) −128.119 + 58.9277i −0.138357 + 0.0636368i
\(927\) 0 0
\(928\) −415.580 + 275.060i −0.447823 + 0.296401i
\(929\) 118.370i 0.127416i −0.997969 0.0637081i \(-0.979707\pi\)
0.997969 0.0637081i \(-0.0202927\pi\)
\(930\) 0 0
\(931\) −414.614 + 2.69053i −0.445343 + 0.00288994i
\(932\) −521.750 + 608.731i −0.559818 + 0.653145i
\(933\) 0 0
\(934\) 994.302 457.325i 1.06456 0.489642i
\(935\) −976.999 −1.04492
\(936\) 0 0
\(937\) 1452.60i 1.55026i 0.631800 + 0.775132i \(0.282316\pi\)
−0.631800 + 0.775132i \(0.717684\pi\)
\(938\) 709.223 328.997i 0.756102 0.350743i
\(939\) 0 0
\(940\) 1395.47 + 1196.08i 1.48455 + 1.27242i
\(941\) 953.864 1.01367 0.506835 0.862043i \(-0.330815\pi\)
0.506835 + 0.862043i \(0.330815\pi\)
\(942\) 0 0
\(943\) 1039.20i 1.10202i
\(944\) 66.7068 + 430.922i 0.0706640 + 0.456486i
\(945\) 0 0
\(946\) 1335.38 614.202i 1.41160 0.649262i
\(947\) 360.912i 0.381111i −0.981676 0.190556i \(-0.938971\pi\)
0.981676 0.190556i \(-0.0610289\pi\)
\(948\) 0 0
\(949\) 1294.43i 1.36399i
\(950\) 437.930 201.424i 0.460978 0.212025i
\(951\) 0 0
\(952\) −127.591 + 453.480i −0.134024 + 0.476345i
\(953\) −356.487 −0.374069 −0.187034 0.982353i \(-0.559888\pi\)
−0.187034 + 0.982353i \(0.559888\pi\)
\(954\) 0 0
\(955\) 1579.13 1.65354
\(956\) −449.243 + 524.137i −0.469920 + 0.548260i
\(957\) 0 0
\(958\) −214.586 466.546i −0.223994 0.487000i
\(959\) 1.65172 + 509.068i 0.00172233 + 0.530833i
\(960\) 0 0
\(961\) −726.406 −0.755886
\(962\) 115.389 + 250.876i 0.119947 + 0.260786i
\(963\) 0 0
\(964\) −714.361 612.286i −0.741038 0.635152i
\(965\) 1304.14 1.35145
\(966\) 0 0
\(967\) −1231.14 −1.27315 −0.636577 0.771213i \(-0.719650\pi\)
−0.636577 + 0.771213i \(0.719650\pi\)
\(968\) −287.551 + 1009.43i −0.297057 + 1.04280i
\(969\) 0 0
\(970\) 163.547 + 355.578i 0.168605 + 0.366576i
\(971\) 1439.10 1.48208 0.741040 0.671461i \(-0.234333\pi\)
0.741040 + 0.671461i \(0.234333\pi\)
\(972\) 0 0
\(973\) 3.42836 + 1056.64i 0.00352350 + 1.08596i
\(974\) −412.037 + 189.515i −0.423036 + 0.194574i
\(975\) 0 0
\(976\) −38.4352 248.289i −0.0393803 0.254394i
\(977\) 862.621 0.882928 0.441464 0.897279i \(-0.354459\pi\)
0.441464 + 0.897279i \(0.354459\pi\)
\(978\) 0 0
\(979\) −1439.12 −1.46999
\(980\) −925.736 + 1094.36i −0.944628 + 1.11669i
\(981\) 0 0
\(982\) −222.155 483.001i −0.226227 0.491854i
\(983\) 221.577i 0.225409i −0.993629 0.112705i \(-0.964049\pi\)
0.993629 0.112705i \(-0.0359514\pi\)
\(984\) 0 0
\(985\) 61.2466i 0.0621793i
\(986\) 238.050 109.490i 0.241430 0.111045i
\(987\) 0 0
\(988\) 270.917 316.082i 0.274208 0.319921i
\(989\) 2109.13i 2.13259i
\(990\) 0 0
\(991\) 503.835 0.508411 0.254205 0.967150i \(-0.418186\pi\)
0.254205 + 0.967150i \(0.418186\pi\)
\(992\) −1096.15 + 725.509i −1.10499 + 0.731360i
\(993\) 0 0
\(994\) 220.026 + 474.314i 0.221354 + 0.477177i
\(995\) 419.999i 0.422110i
\(996\) 0 0
\(997\) 453.120 0.454483 0.227242 0.973838i \(-0.427029\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(998\) −586.520 1275.19i −0.587696 1.27775i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.26 32
3.2 odd 2 168.3.l.a.13.7 yes 32
4.3 odd 2 2016.3.l.h.433.30 32
7.6 odd 2 inner 504.3.l.h.181.25 32
8.3 odd 2 2016.3.l.h.433.3 32
8.5 even 2 inner 504.3.l.h.181.27 32
12.11 even 2 672.3.l.a.433.32 32
21.20 even 2 168.3.l.a.13.8 yes 32
24.5 odd 2 168.3.l.a.13.6 yes 32
24.11 even 2 672.3.l.a.433.1 32
28.27 even 2 2016.3.l.h.433.4 32
56.13 odd 2 inner 504.3.l.h.181.28 32
56.27 even 2 2016.3.l.h.433.29 32
84.83 odd 2 672.3.l.a.433.16 32
168.83 odd 2 672.3.l.a.433.17 32
168.125 even 2 168.3.l.a.13.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.5 32 168.125 even 2
168.3.l.a.13.6 yes 32 24.5 odd 2
168.3.l.a.13.7 yes 32 3.2 odd 2
168.3.l.a.13.8 yes 32 21.20 even 2
504.3.l.h.181.25 32 7.6 odd 2 inner
504.3.l.h.181.26 32 1.1 even 1 trivial
504.3.l.h.181.27 32 8.5 even 2 inner
504.3.l.h.181.28 32 56.13 odd 2 inner
672.3.l.a.433.1 32 24.11 even 2
672.3.l.a.433.16 32 84.83 odd 2
672.3.l.a.433.17 32 168.83 odd 2
672.3.l.a.433.32 32 12.11 even 2
2016.3.l.h.433.3 32 8.3 odd 2
2016.3.l.h.433.4 32 28.27 even 2
2016.3.l.h.433.29 32 56.27 even 2
2016.3.l.h.433.30 32 4.3 odd 2