Properties

Label 504.3
Level 504
Weight 3
Dimension 5810
Nonzero newspaces 30
Sturm bound 41472
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 30 \)
Sturm bound: \(41472\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(504))\).

Total New Old
Modular forms 14400 5990 8410
Cusp forms 13248 5810 7438
Eisenstein series 1152 180 972

Trace form

\( 5810 q - 10 q^{2} - 12 q^{3} - 22 q^{4} - 32 q^{6} - 40 q^{7} - 88 q^{8} - 60 q^{9} - 70 q^{10} - 74 q^{11} + 4 q^{12} + 32 q^{13} + 60 q^{14} - 60 q^{15} + 226 q^{16} - 56 q^{17} + 168 q^{18} - 142 q^{19}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(504))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
504.3.d \(\chi_{504}(449, \cdot)\) 504.3.d.a 4 1
504.3.d.b 8
504.3.e \(\chi_{504}(251, \cdot)\) 504.3.e.a 8 1
504.3.e.b 8
504.3.e.c 48
504.3.f \(\chi_{504}(433, \cdot)\) 504.3.f.a 4 1
504.3.f.b 8
504.3.f.c 8
504.3.g \(\chi_{504}(379, \cdot)\) 504.3.g.a 4 1
504.3.g.b 8
504.3.g.c 24
504.3.g.d 24
504.3.l \(\chi_{504}(181, \cdot)\) 504.3.l.a 2 1
504.3.l.b 2
504.3.l.c 2
504.3.l.d 4
504.3.l.e 4
504.3.l.f 8
504.3.l.g 24
504.3.l.h 32
504.3.m \(\chi_{504}(127, \cdot)\) None 0 1
504.3.n \(\chi_{504}(197, \cdot)\) 504.3.n.a 48 1
504.3.o \(\chi_{504}(503, \cdot)\) None 0 1
504.3.u \(\chi_{504}(59, \cdot)\) n/a 376 2
504.3.v \(\chi_{504}(65, \cdot)\) 504.3.v.a 96 2
504.3.ba \(\chi_{504}(67, \cdot)\) n/a 376 2
504.3.bb \(\chi_{504}(313, \cdot)\) 504.3.bb.a 96 2
504.3.bc \(\chi_{504}(143, \cdot)\) None 0 2
504.3.bd \(\chi_{504}(53, \cdot)\) n/a 128 2
504.3.bg \(\chi_{504}(29, \cdot)\) n/a 288 2
504.3.bh \(\chi_{504}(383, \cdot)\) None 0 2
504.3.bi \(\chi_{504}(149, \cdot)\) n/a 376 2
504.3.bj \(\chi_{504}(167, \cdot)\) None 0 2
504.3.bn \(\chi_{504}(13, \cdot)\) n/a 376 2
504.3.bo \(\chi_{504}(151, \cdot)\) None 0 2
504.3.bp \(\chi_{504}(229, \cdot)\) n/a 376 2
504.3.bq \(\chi_{504}(295, \cdot)\) None 0 2
504.3.bv \(\chi_{504}(415, \cdot)\) None 0 2
504.3.bw \(\chi_{504}(325, \cdot)\) n/a 156 2
504.3.bx \(\chi_{504}(163, \cdot)\) n/a 156 2
504.3.by \(\chi_{504}(73, \cdot)\) 504.3.by.a 8 2
504.3.by.b 8
504.3.by.c 8
504.3.by.d 16
504.3.cd \(\chi_{504}(97, \cdot)\) 504.3.cd.a 96 2
504.3.ce \(\chi_{504}(403, \cdot)\) n/a 376 2
504.3.cf \(\chi_{504}(241, \cdot)\) 504.3.cf.a 96 2
504.3.cg \(\chi_{504}(43, \cdot)\) n/a 288 2
504.3.cl \(\chi_{504}(113, \cdot)\) 504.3.cl.a 72 2
504.3.cm \(\chi_{504}(131, \cdot)\) n/a 376 2
504.3.cn \(\chi_{504}(137, \cdot)\) 504.3.cn.a 96 2
504.3.co \(\chi_{504}(83, \cdot)\) n/a 376 2
504.3.ct \(\chi_{504}(395, \cdot)\) n/a 128 2
504.3.cu \(\chi_{504}(233, \cdot)\) 504.3.cu.a 16 2
504.3.cu.b 16
504.3.cv \(\chi_{504}(79, \cdot)\) None 0 2
504.3.cw \(\chi_{504}(61, \cdot)\) n/a 376 2
504.3.da \(\chi_{504}(47, \cdot)\) None 0 2
504.3.db \(\chi_{504}(221, \cdot)\) n/a 376 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(504))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(504)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 2}\)