L(s) = 1 | + (−1.44 + 1.38i)2-s + (0.187 − 3.99i)4-s + 5.24·5-s + (−6.31 + 3.01i)7-s + (5.24 + 6.03i)8-s + (−7.58 + 7.24i)10-s − 3.67i·11-s − 12.5·13-s + (4.98 − 13.0i)14-s + (−15.9 − 1.49i)16-s + 18.2i·17-s + 4.94·19-s + (0.982 − 20.9i)20-s + (5.08 + 5.32i)22-s − 1.93·23-s + ⋯ |
L(s) = 1 | + (−0.723 + 0.690i)2-s + (0.0468 − 0.998i)4-s + 1.04·5-s + (−0.902 + 0.430i)7-s + (0.655 + 0.754i)8-s + (−0.758 + 0.724i)10-s − 0.334i·11-s − 0.962·13-s + (0.356 − 0.934i)14-s + (−0.995 − 0.0935i)16-s + 1.07i·17-s + 0.260·19-s + (0.0491 − 1.04i)20-s + (0.230 + 0.242i)22-s − 0.0841·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.399i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.916 - 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.7013916638\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7013916638\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.44 - 1.38i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (6.31 - 3.01i)T \) |
good | 5 | \( 1 - 5.24T + 25T^{2} \) |
| 11 | \( 1 + 3.67iT - 121T^{2} \) |
| 13 | \( 1 + 12.5T + 169T^{2} \) |
| 17 | \( 1 - 18.2iT - 289T^{2} \) |
| 19 | \( 1 - 4.94T + 361T^{2} \) |
| 23 | \( 1 + 1.93T + 529T^{2} \) |
| 29 | \( 1 - 41.0iT - 841T^{2} \) |
| 31 | \( 1 + 22.7iT - 961T^{2} \) |
| 37 | \( 1 - 46.7iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 66.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 41.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 53.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 61.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 70.9T + 3.48e3T^{2} \) |
| 61 | \( 1 + 82.0T + 3.72e3T^{2} \) |
| 67 | \( 1 - 1.63iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 10.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + 64.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 149.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 12.9T + 6.88e3T^{2} \) |
| 89 | \( 1 + 130. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 103. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66832198193618573285379584261, −9.926892508086211449344735276068, −9.403827244754181873309476077822, −8.535605333715912743304753488304, −7.46018323519720050381909095031, −6.34376147409233302367051459485, −5.91932316128503660656854494337, −4.81542476577998182041184790314, −2.91493058438235314973149254813, −1.58885800442044509504418990054,
0.34014581711342266368909695966, 2.02812251570958769917504292898, 2.98525349104474560162958694265, 4.33354346249538887750053523058, 5.69072131282967998557241869373, 6.93734990088724504572378318717, 7.53344747007927108955340054497, 8.955892649719856317132212632725, 9.691736083100640932462008910819, 10.01245130656498831237333661273