Properties

Label 504.3.l.h.181.8
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.8
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.44694 + 1.38071i) q^{2} +(0.187253 - 3.99561i) q^{4} +5.24467 q^{5} +(-6.31936 + 3.01094i) q^{7} +(5.24586 + 6.03995i) q^{8} +(-7.58871 + 7.24140i) q^{10} -3.67957i q^{11} -12.5108 q^{13} +(4.98647 - 13.0819i) q^{14} +(-15.9299 - 1.49638i) q^{16} +18.2226i q^{17} +4.94253 q^{19} +(0.982081 - 20.9557i) q^{20} +(5.08043 + 5.32410i) q^{22} -1.93648 q^{23} +2.50660 q^{25} +(18.1024 - 17.2739i) q^{26} +(10.8472 + 25.8135i) q^{28} +41.0446i q^{29} -22.7944i q^{31} +(25.1156 - 19.8294i) q^{32} +(-25.1602 - 26.3669i) q^{34} +(-33.1430 + 15.7914i) q^{35} +46.7736i q^{37} +(-7.15153 + 6.82422i) q^{38} +(27.5128 + 31.6775i) q^{40} +66.3075i q^{41} +41.9792i q^{43} +(-14.7021 - 0.689010i) q^{44} +(2.80196 - 2.67373i) q^{46} -53.3092i q^{47} +(30.8685 - 38.0544i) q^{49} +(-3.62689 + 3.46089i) q^{50} +(-2.34269 + 49.9885i) q^{52} +61.3279i q^{53} -19.2981i q^{55} +(-51.3364 - 22.3736i) q^{56} +(-56.6709 - 59.3889i) q^{58} -70.9445 q^{59} -82.0007 q^{61} +(31.4726 + 32.9821i) q^{62} +(-8.96188 + 63.3694i) q^{64} -65.6152 q^{65} +1.63710i q^{67} +(72.8104 + 3.41223i) q^{68} +(26.1524 - 68.6101i) q^{70} -10.0937 q^{71} -64.4337i q^{73} +(-64.5810 - 67.6784i) q^{74} +(0.925503 - 19.7484i) q^{76} +(11.0789 + 23.2525i) q^{77} -149.702 q^{79} +(-83.5470 - 7.84804i) q^{80} +(-91.5517 - 95.9427i) q^{82} -12.9895 q^{83} +95.5714i q^{85} +(-57.9614 - 60.7413i) q^{86} +(22.2244 - 19.3025i) q^{88} -130.681i q^{89} +(79.0604 - 37.6693i) q^{91} +(-0.362612 + 7.73743i) q^{92} +(73.6048 + 77.1351i) q^{94} +25.9219 q^{95} +103.630i q^{97} +(7.87741 + 97.6829i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.44694 + 1.38071i −0.723468 + 0.690357i
\(3\) 0 0
\(4\) 0.187253 3.99561i 0.0468133 0.998904i
\(5\) 5.24467 1.04893 0.524467 0.851431i \(-0.324264\pi\)
0.524467 + 0.851431i \(0.324264\pi\)
\(6\) 0 0
\(7\) −6.31936 + 3.01094i −0.902765 + 0.430134i
\(8\) 5.24586 + 6.03995i 0.655733 + 0.754993i
\(9\) 0 0
\(10\) −7.58871 + 7.24140i −0.758871 + 0.724140i
\(11\) 3.67957i 0.334506i −0.985914 0.167253i \(-0.946510\pi\)
0.985914 0.167253i \(-0.0534897\pi\)
\(12\) 0 0
\(13\) −12.5108 −0.962372 −0.481186 0.876619i \(-0.659794\pi\)
−0.481186 + 0.876619i \(0.659794\pi\)
\(14\) 4.98647 13.0819i 0.356176 0.934419i
\(15\) 0 0
\(16\) −15.9299 1.49638i −0.995617 0.0935239i
\(17\) 18.2226i 1.07192i 0.844245 + 0.535958i \(0.180049\pi\)
−0.844245 + 0.535958i \(0.819951\pi\)
\(18\) 0 0
\(19\) 4.94253 0.260133 0.130067 0.991505i \(-0.458481\pi\)
0.130067 + 0.991505i \(0.458481\pi\)
\(20\) 0.982081 20.9557i 0.0491041 1.04778i
\(21\) 0 0
\(22\) 5.08043 + 5.32410i 0.230929 + 0.242005i
\(23\) −1.93648 −0.0841948 −0.0420974 0.999114i \(-0.513404\pi\)
−0.0420974 + 0.999114i \(0.513404\pi\)
\(24\) 0 0
\(25\) 2.50660 0.100264
\(26\) 18.1024 17.2739i 0.696246 0.664380i
\(27\) 0 0
\(28\) 10.8472 + 25.8135i 0.387401 + 0.921911i
\(29\) 41.0446i 1.41533i 0.706548 + 0.707665i \(0.250252\pi\)
−0.706548 + 0.707665i \(0.749748\pi\)
\(30\) 0 0
\(31\) 22.7944i 0.735303i −0.929964 0.367652i \(-0.880162\pi\)
0.929964 0.367652i \(-0.119838\pi\)
\(32\) 25.1156 19.8294i 0.784862 0.619670i
\(33\) 0 0
\(34\) −25.1602 26.3669i −0.740005 0.775497i
\(35\) −33.1430 + 15.7914i −0.946942 + 0.451182i
\(36\) 0 0
\(37\) 46.7736i 1.26415i 0.774907 + 0.632075i \(0.217797\pi\)
−0.774907 + 0.632075i \(0.782203\pi\)
\(38\) −7.15153 + 6.82422i −0.188198 + 0.179585i
\(39\) 0 0
\(40\) 27.5128 + 31.6775i 0.687821 + 0.791939i
\(41\) 66.3075i 1.61725i 0.588321 + 0.808627i \(0.299789\pi\)
−0.588321 + 0.808627i \(0.700211\pi\)
\(42\) 0 0
\(43\) 41.9792i 0.976261i 0.872771 + 0.488131i \(0.162321\pi\)
−0.872771 + 0.488131i \(0.837679\pi\)
\(44\) −14.7021 0.689010i −0.334139 0.0156593i
\(45\) 0 0
\(46\) 2.80196 2.67373i 0.0609123 0.0581245i
\(47\) 53.3092i 1.13424i −0.823636 0.567119i \(-0.808058\pi\)
0.823636 0.567119i \(-0.191942\pi\)
\(48\) 0 0
\(49\) 30.8685 38.0544i 0.629970 0.776620i
\(50\) −3.62689 + 3.46089i −0.0725377 + 0.0692179i
\(51\) 0 0
\(52\) −2.34269 + 49.9885i −0.0450518 + 0.961317i
\(53\) 61.3279i 1.15713i 0.815636 + 0.578565i \(0.196387\pi\)
−0.815636 + 0.578565i \(0.803613\pi\)
\(54\) 0 0
\(55\) 19.2981i 0.350875i
\(56\) −51.3364 22.3736i −0.916721 0.399529i
\(57\) 0 0
\(58\) −56.6709 59.3889i −0.977084 1.02395i
\(59\) −70.9445 −1.20245 −0.601225 0.799080i \(-0.705320\pi\)
−0.601225 + 0.799080i \(0.705320\pi\)
\(60\) 0 0
\(61\) −82.0007 −1.34427 −0.672137 0.740427i \(-0.734623\pi\)
−0.672137 + 0.740427i \(0.734623\pi\)
\(62\) 31.4726 + 32.9821i 0.507622 + 0.531969i
\(63\) 0 0
\(64\) −8.96188 + 63.3694i −0.140029 + 0.990147i
\(65\) −65.6152 −1.00947
\(66\) 0 0
\(67\) 1.63710i 0.0244344i 0.999925 + 0.0122172i \(0.00388895\pi\)
−0.999925 + 0.0122172i \(0.996111\pi\)
\(68\) 72.8104 + 3.41223i 1.07074 + 0.0501799i
\(69\) 0 0
\(70\) 26.1524 68.6101i 0.373605 0.980144i
\(71\) −10.0937 −0.142165 −0.0710823 0.997470i \(-0.522645\pi\)
−0.0710823 + 0.997470i \(0.522645\pi\)
\(72\) 0 0
\(73\) 64.4337i 0.882653i −0.897347 0.441326i \(-0.854508\pi\)
0.897347 0.441326i \(-0.145492\pi\)
\(74\) −64.5810 67.6784i −0.872716 0.914573i
\(75\) 0 0
\(76\) 0.925503 19.7484i 0.0121777 0.259848i
\(77\) 11.0789 + 23.2525i 0.143882 + 0.301980i
\(78\) 0 0
\(79\) −149.702 −1.89496 −0.947479 0.319818i \(-0.896378\pi\)
−0.947479 + 0.319818i \(0.896378\pi\)
\(80\) −83.5470 7.84804i −1.04434 0.0981004i
\(81\) 0 0
\(82\) −91.5517 95.9427i −1.11648 1.17003i
\(83\) −12.9895 −0.156500 −0.0782498 0.996934i \(-0.524933\pi\)
−0.0782498 + 0.996934i \(0.524933\pi\)
\(84\) 0 0
\(85\) 95.5714i 1.12437i
\(86\) −57.9614 60.7413i −0.673969 0.706294i
\(87\) 0 0
\(88\) 22.2244 19.3025i 0.252550 0.219347i
\(89\) 130.681i 1.46832i −0.678976 0.734160i \(-0.737576\pi\)
0.678976 0.734160i \(-0.262424\pi\)
\(90\) 0 0
\(91\) 79.0604 37.6693i 0.868796 0.413949i
\(92\) −0.362612 + 7.73743i −0.00394143 + 0.0841025i
\(93\) 0 0
\(94\) 73.6048 + 77.1351i 0.783030 + 0.820586i
\(95\) 25.9219 0.272863
\(96\) 0 0
\(97\) 103.630i 1.06835i 0.845373 + 0.534176i \(0.179378\pi\)
−0.845373 + 0.534176i \(0.820622\pi\)
\(98\) 7.87741 + 97.6829i 0.0803818 + 0.996764i
\(99\) 0 0
\(100\) 0.469368 10.0154i 0.00469368 0.100154i
\(101\) 22.8199 0.225939 0.112970 0.993598i \(-0.463964\pi\)
0.112970 + 0.993598i \(0.463964\pi\)
\(102\) 0 0
\(103\) 158.219i 1.53611i 0.640386 + 0.768053i \(0.278774\pi\)
−0.640386 + 0.768053i \(0.721226\pi\)
\(104\) −65.6301 75.5648i −0.631059 0.726584i
\(105\) 0 0
\(106\) −84.6763 88.7376i −0.798833 0.837147i
\(107\) 123.746i 1.15650i 0.815859 + 0.578251i \(0.196265\pi\)
−0.815859 + 0.578251i \(0.803735\pi\)
\(108\) 0 0
\(109\) 39.5511i 0.362854i −0.983404 0.181427i \(-0.941928\pi\)
0.983404 0.181427i \(-0.0580716\pi\)
\(110\) 26.6452 + 27.9232i 0.242229 + 0.253847i
\(111\) 0 0
\(112\) 105.172 38.5077i 0.939036 0.343818i
\(113\) 53.1831 0.470647 0.235324 0.971917i \(-0.424385\pi\)
0.235324 + 0.971917i \(0.424385\pi\)
\(114\) 0 0
\(115\) −10.1562 −0.0883148
\(116\) 163.998 + 7.68572i 1.41378 + 0.0662562i
\(117\) 0 0
\(118\) 102.652 97.9541i 0.869934 0.830120i
\(119\) −54.8670 115.155i −0.461067 0.967688i
\(120\) 0 0
\(121\) 107.461 0.888106
\(122\) 118.650 113.220i 0.972539 0.928029i
\(123\) 0 0
\(124\) −91.0776 4.26832i −0.734497 0.0344219i
\(125\) −117.971 −0.943764
\(126\) 0 0
\(127\) −44.1953 −0.347994 −0.173997 0.984746i \(-0.555668\pi\)
−0.173997 + 0.984746i \(0.555668\pi\)
\(128\) −74.5278 104.065i −0.582249 0.813011i
\(129\) 0 0
\(130\) 94.9411 90.5959i 0.730316 0.696892i
\(131\) 192.217 1.46731 0.733654 0.679523i \(-0.237813\pi\)
0.733654 + 0.679523i \(0.237813\pi\)
\(132\) 0 0
\(133\) −31.2336 + 14.8816i −0.234839 + 0.111892i
\(134\) −2.26037 2.36879i −0.0168685 0.0176775i
\(135\) 0 0
\(136\) −110.063 + 95.5931i −0.809289 + 0.702890i
\(137\) 265.473 1.93776 0.968879 0.247535i \(-0.0796206\pi\)
0.968879 + 0.247535i \(0.0796206\pi\)
\(138\) 0 0
\(139\) −15.5158 −0.111624 −0.0558122 0.998441i \(-0.517775\pi\)
−0.0558122 + 0.998441i \(0.517775\pi\)
\(140\) 56.8901 + 135.383i 0.406358 + 0.967025i
\(141\) 0 0
\(142\) 14.6049 13.9365i 0.102852 0.0981444i
\(143\) 46.0345i 0.321919i
\(144\) 0 0
\(145\) 215.265i 1.48459i
\(146\) 88.9645 + 93.2315i 0.609346 + 0.638572i
\(147\) 0 0
\(148\) 186.889 + 8.75850i 1.26276 + 0.0591790i
\(149\) 156.124i 1.04782i 0.851775 + 0.523908i \(0.175526\pi\)
−0.851775 + 0.523908i \(0.824474\pi\)
\(150\) 0 0
\(151\) 83.2527 0.551342 0.275671 0.961252i \(-0.411100\pi\)
0.275671 + 0.961252i \(0.411100\pi\)
\(152\) 25.9278 + 29.8526i 0.170578 + 0.196399i
\(153\) 0 0
\(154\) −48.1356 18.3480i −0.312569 0.119143i
\(155\) 119.549i 0.771285i
\(156\) 0 0
\(157\) −165.066 −1.05138 −0.525689 0.850677i \(-0.676192\pi\)
−0.525689 + 0.850677i \(0.676192\pi\)
\(158\) 216.609 206.695i 1.37094 1.30820i
\(159\) 0 0
\(160\) 131.723 103.999i 0.823269 0.649993i
\(161\) 12.2373 5.83062i 0.0760081 0.0362150i
\(162\) 0 0
\(163\) 207.397i 1.27238i −0.771534 0.636188i \(-0.780510\pi\)
0.771534 0.636188i \(-0.219490\pi\)
\(164\) 264.939 + 12.4163i 1.61548 + 0.0757090i
\(165\) 0 0
\(166\) 18.7949 17.9348i 0.113223 0.108041i
\(167\) 170.091i 1.01851i 0.860617 + 0.509253i \(0.170078\pi\)
−0.860617 + 0.509253i \(0.829922\pi\)
\(168\) 0 0
\(169\) −12.4791 −0.0738406
\(170\) −131.957 138.286i −0.776217 0.813446i
\(171\) 0 0
\(172\) 167.733 + 7.86074i 0.975191 + 0.0457020i
\(173\) −244.457 −1.41304 −0.706522 0.707691i \(-0.749737\pi\)
−0.706522 + 0.707691i \(0.749737\pi\)
\(174\) 0 0
\(175\) −15.8401 + 7.54720i −0.0905147 + 0.0431269i
\(176\) −5.50604 + 58.6150i −0.0312843 + 0.333040i
\(177\) 0 0
\(178\) 180.433 + 189.086i 1.01367 + 1.06228i
\(179\) 51.4534i 0.287449i 0.989618 + 0.143725i \(0.0459079\pi\)
−0.989618 + 0.143725i \(0.954092\pi\)
\(180\) 0 0
\(181\) 281.237 1.55380 0.776898 0.629626i \(-0.216792\pi\)
0.776898 + 0.629626i \(0.216792\pi\)
\(182\) −62.3848 + 163.665i −0.342774 + 0.899258i
\(183\) 0 0
\(184\) −10.1585 11.6962i −0.0552093 0.0635665i
\(185\) 245.312i 1.32601i
\(186\) 0 0
\(187\) 67.0512 0.358562
\(188\) −213.003 9.98231i −1.13299 0.0530974i
\(189\) 0 0
\(190\) −37.5074 + 35.7908i −0.197407 + 0.188373i
\(191\) −126.618 −0.662921 −0.331460 0.943469i \(-0.607541\pi\)
−0.331460 + 0.943469i \(0.607541\pi\)
\(192\) 0 0
\(193\) 328.592 1.70255 0.851275 0.524719i \(-0.175830\pi\)
0.851275 + 0.524719i \(0.175830\pi\)
\(194\) −143.084 149.946i −0.737545 0.772919i
\(195\) 0 0
\(196\) −146.270 130.465i −0.746277 0.665635i
\(197\) 26.1931i 0.132960i 0.997788 + 0.0664799i \(0.0211768\pi\)
−0.997788 + 0.0664799i \(0.978823\pi\)
\(198\) 0 0
\(199\) 341.606i 1.71661i −0.513137 0.858307i \(-0.671517\pi\)
0.513137 0.858307i \(-0.328483\pi\)
\(200\) 13.1493 + 15.1397i 0.0657463 + 0.0756985i
\(201\) 0 0
\(202\) −33.0189 + 31.5077i −0.163460 + 0.155979i
\(203\) −123.583 259.375i −0.608782 1.27771i
\(204\) 0 0
\(205\) 347.761i 1.69639i
\(206\) −218.455 228.933i −1.06046 1.11132i
\(207\) 0 0
\(208\) 199.296 + 18.7210i 0.958154 + 0.0900047i
\(209\) 18.1864i 0.0870161i
\(210\) 0 0
\(211\) 89.5480i 0.424398i −0.977226 0.212199i \(-0.931938\pi\)
0.977226 0.212199i \(-0.0680625\pi\)
\(212\) 245.043 + 11.4838i 1.15586 + 0.0541690i
\(213\) 0 0
\(214\) −170.858 179.052i −0.798400 0.836693i
\(215\) 220.167i 1.02403i
\(216\) 0 0
\(217\) 68.6325 + 144.046i 0.316279 + 0.663806i
\(218\) 54.6087 + 57.2279i 0.250499 + 0.262513i
\(219\) 0 0
\(220\) −77.1079 3.61363i −0.350490 0.0164256i
\(221\) 227.980i 1.03158i
\(222\) 0 0
\(223\) 391.913i 1.75746i −0.477323 0.878728i \(-0.658393\pi\)
0.477323 0.878728i \(-0.341607\pi\)
\(224\) −99.0092 + 200.931i −0.442005 + 0.897012i
\(225\) 0 0
\(226\) −76.9526 + 73.4307i −0.340498 + 0.324915i
\(227\) 306.142 1.34864 0.674322 0.738437i \(-0.264436\pi\)
0.674322 + 0.738437i \(0.264436\pi\)
\(228\) 0 0
\(229\) 53.4932 0.233595 0.116797 0.993156i \(-0.462737\pi\)
0.116797 + 0.993156i \(0.462737\pi\)
\(230\) 14.6954 14.0228i 0.0638930 0.0609688i
\(231\) 0 0
\(232\) −247.907 + 215.314i −1.06856 + 0.928078i
\(233\) 28.7104 0.123221 0.0616103 0.998100i \(-0.480376\pi\)
0.0616103 + 0.998100i \(0.480376\pi\)
\(234\) 0 0
\(235\) 279.589i 1.18974i
\(236\) −13.2846 + 283.467i −0.0562906 + 1.20113i
\(237\) 0 0
\(238\) 238.385 + 90.8662i 1.00162 + 0.381791i
\(239\) −214.671 −0.898207 −0.449103 0.893480i \(-0.648256\pi\)
−0.449103 + 0.893480i \(0.648256\pi\)
\(240\) 0 0
\(241\) 355.937i 1.47692i −0.674298 0.738459i \(-0.735554\pi\)
0.674298 0.738459i \(-0.264446\pi\)
\(242\) −155.489 + 148.373i −0.642516 + 0.613110i
\(243\) 0 0
\(244\) −15.3549 + 327.643i −0.0629298 + 1.34280i
\(245\) 161.895 199.583i 0.660797 0.814623i
\(246\) 0 0
\(247\) −61.8351 −0.250345
\(248\) 137.677 119.576i 0.555149 0.482162i
\(249\) 0 0
\(250\) 170.696 162.884i 0.682784 0.651535i
\(251\) 86.5294 0.344739 0.172369 0.985032i \(-0.444858\pi\)
0.172369 + 0.985032i \(0.444858\pi\)
\(252\) 0 0
\(253\) 7.12541i 0.0281637i
\(254\) 63.9478 61.0211i 0.251763 0.240240i
\(255\) 0 0
\(256\) 251.522 + 47.6744i 0.982507 + 0.186228i
\(257\) 289.039i 1.12466i −0.826911 0.562332i \(-0.809904\pi\)
0.826911 0.562332i \(-0.190096\pi\)
\(258\) 0 0
\(259\) −140.832 295.579i −0.543754 1.14123i
\(260\) −12.2867 + 262.173i −0.0472564 + 1.00836i
\(261\) 0 0
\(262\) −278.126 + 265.397i −1.06155 + 1.01297i
\(263\) 273.840 1.04122 0.520609 0.853795i \(-0.325705\pi\)
0.520609 + 0.853795i \(0.325705\pi\)
\(264\) 0 0
\(265\) 321.645i 1.21375i
\(266\) 24.6457 64.6575i 0.0926532 0.243073i
\(267\) 0 0
\(268\) 6.54124 + 0.306553i 0.0244076 + 0.00114385i
\(269\) 115.065 0.427752 0.213876 0.976861i \(-0.431391\pi\)
0.213876 + 0.976861i \(0.431391\pi\)
\(270\) 0 0
\(271\) 85.2047i 0.314409i −0.987566 0.157204i \(-0.949752\pi\)
0.987566 0.157204i \(-0.0502481\pi\)
\(272\) 27.2679 290.283i 0.100250 1.06722i
\(273\) 0 0
\(274\) −384.122 + 366.542i −1.40191 + 1.33775i
\(275\) 9.22319i 0.0335389i
\(276\) 0 0
\(277\) 96.6558i 0.348938i 0.984663 + 0.174469i \(0.0558209\pi\)
−0.984663 + 0.174469i \(0.944179\pi\)
\(278\) 22.4504 21.4229i 0.0807568 0.0770607i
\(279\) 0 0
\(280\) −269.242 117.342i −0.961580 0.419080i
\(281\) −49.2889 −0.175405 −0.0877026 0.996147i \(-0.527953\pi\)
−0.0877026 + 0.996147i \(0.527953\pi\)
\(282\) 0 0
\(283\) 435.567 1.53911 0.769553 0.638583i \(-0.220479\pi\)
0.769553 + 0.638583i \(0.220479\pi\)
\(284\) −1.89007 + 40.3305i −0.00665519 + 0.142009i
\(285\) 0 0
\(286\) −63.5605 66.6089i −0.222239 0.232898i
\(287\) −199.648 419.020i −0.695636 1.46000i
\(288\) 0 0
\(289\) −43.0622 −0.149004
\(290\) −297.220 311.476i −1.02490 1.07405i
\(291\) 0 0
\(292\) −257.452 12.0654i −0.881685 0.0413199i
\(293\) 92.1414 0.314476 0.157238 0.987561i \(-0.449741\pi\)
0.157238 + 0.987561i \(0.449741\pi\)
\(294\) 0 0
\(295\) −372.081 −1.26129
\(296\) −282.510 + 245.368i −0.954425 + 0.828945i
\(297\) 0 0
\(298\) −215.563 225.902i −0.723367 0.758061i
\(299\) 24.2270 0.0810267
\(300\) 0 0
\(301\) −126.397 265.282i −0.419923 0.881335i
\(302\) −120.461 + 114.948i −0.398879 + 0.380623i
\(303\) 0 0
\(304\) −78.7338 7.39591i −0.258993 0.0243287i
\(305\) −430.067 −1.41005
\(306\) 0 0
\(307\) −554.865 −1.80738 −0.903689 0.428189i \(-0.859152\pi\)
−0.903689 + 0.428189i \(0.859152\pi\)
\(308\) 94.9826 39.9131i 0.308385 0.129588i
\(309\) 0 0
\(310\) 165.063 + 172.980i 0.532462 + 0.558000i
\(311\) 12.8088i 0.0411860i −0.999788 0.0205930i \(-0.993445\pi\)
0.999788 0.0205930i \(-0.00655542\pi\)
\(312\) 0 0
\(313\) 9.52099i 0.0304185i −0.999884 0.0152093i \(-0.995159\pi\)
0.999884 0.0152093i \(-0.00484144\pi\)
\(314\) 238.840 227.909i 0.760638 0.725826i
\(315\) 0 0
\(316\) −28.0321 + 598.150i −0.0887092 + 1.89288i
\(317\) 322.997i 1.01892i 0.860495 + 0.509459i \(0.170154\pi\)
−0.860495 + 0.509459i \(0.829846\pi\)
\(318\) 0 0
\(319\) 151.026 0.473437
\(320\) −47.0022 + 332.352i −0.146882 + 1.03860i
\(321\) 0 0
\(322\) −9.65619 + 25.3328i −0.0299882 + 0.0786732i
\(323\) 90.0656i 0.278841i
\(324\) 0 0
\(325\) −31.3596 −0.0964911
\(326\) 286.357 + 300.091i 0.878395 + 0.920525i
\(327\) 0 0
\(328\) −400.493 + 347.840i −1.22102 + 1.06049i
\(329\) 160.511 + 336.880i 0.487874 + 1.02395i
\(330\) 0 0
\(331\) 605.748i 1.83005i 0.403392 + 0.915027i \(0.367831\pi\)
−0.403392 + 0.915027i \(0.632169\pi\)
\(332\) −2.43232 + 51.9009i −0.00732626 + 0.156328i
\(333\) 0 0
\(334\) −234.847 246.110i −0.703133 0.736857i
\(335\) 8.58608i 0.0256301i
\(336\) 0 0
\(337\) −378.648 −1.12359 −0.561793 0.827278i \(-0.689888\pi\)
−0.561793 + 0.827278i \(0.689888\pi\)
\(338\) 18.0564 17.2300i 0.0534213 0.0509764i
\(339\) 0 0
\(340\) 381.867 + 17.8960i 1.12314 + 0.0526354i
\(341\) −83.8735 −0.245963
\(342\) 0 0
\(343\) −80.4899 + 333.422i −0.234665 + 0.972076i
\(344\) −253.552 + 220.217i −0.737071 + 0.640166i
\(345\) 0 0
\(346\) 353.713 337.525i 1.02229 0.975506i
\(347\) 297.236i 0.856586i −0.903640 0.428293i \(-0.859115\pi\)
0.903640 0.428293i \(-0.140885\pi\)
\(348\) 0 0
\(349\) 107.718 0.308649 0.154324 0.988020i \(-0.450680\pi\)
0.154324 + 0.988020i \(0.450680\pi\)
\(350\) 12.4991 32.7910i 0.0357116 0.0936884i
\(351\) 0 0
\(352\) −72.9638 92.4145i −0.207283 0.262541i
\(353\) 158.792i 0.449836i 0.974378 + 0.224918i \(0.0722115\pi\)
−0.974378 + 0.224918i \(0.927789\pi\)
\(354\) 0 0
\(355\) −52.9381 −0.149121
\(356\) −522.149 24.4703i −1.46671 0.0687369i
\(357\) 0 0
\(358\) −71.0425 74.4498i −0.198443 0.207960i
\(359\) −202.772 −0.564825 −0.282412 0.959293i \(-0.591135\pi\)
−0.282412 + 0.959293i \(0.591135\pi\)
\(360\) 0 0
\(361\) −336.571 −0.932331
\(362\) −406.932 + 388.308i −1.12412 + 1.07267i
\(363\) 0 0
\(364\) −135.708 322.949i −0.372824 0.887221i
\(365\) 337.934i 0.925845i
\(366\) 0 0
\(367\) 669.013i 1.82292i 0.411383 + 0.911462i \(0.365046\pi\)
−0.411383 + 0.911462i \(0.634954\pi\)
\(368\) 30.8479 + 2.89771i 0.0838258 + 0.00787422i
\(369\) 0 0
\(370\) −338.706 354.951i −0.915422 0.959327i
\(371\) −184.654 387.553i −0.497721 1.04462i
\(372\) 0 0
\(373\) 148.124i 0.397116i 0.980089 + 0.198558i \(0.0636258\pi\)
−0.980089 + 0.198558i \(0.936374\pi\)
\(374\) −97.0188 + 92.5786i −0.259409 + 0.247536i
\(375\) 0 0
\(376\) 321.985 279.653i 0.856342 0.743757i
\(377\) 513.502i 1.36207i
\(378\) 0 0
\(379\) 3.50008i 0.00923505i −0.999989 0.00461753i \(-0.998530\pi\)
0.999989 0.00461753i \(-0.00146981\pi\)
\(380\) 4.85396 103.574i 0.0127736 0.272563i
\(381\) 0 0
\(382\) 183.208 174.823i 0.479602 0.457652i
\(383\) 113.064i 0.295206i −0.989047 0.147603i \(-0.952844\pi\)
0.989047 0.147603i \(-0.0471558\pi\)
\(384\) 0 0
\(385\) 58.1054 + 121.952i 0.150923 + 0.316758i
\(386\) −475.452 + 453.692i −1.23174 + 1.17537i
\(387\) 0 0
\(388\) 414.066 + 19.4051i 1.06718 + 0.0500130i
\(389\) 74.8109i 0.192316i −0.995366 0.0961580i \(-0.969345\pi\)
0.995366 0.0961580i \(-0.0306554\pi\)
\(390\) 0 0
\(391\) 35.2877i 0.0902497i
\(392\) 391.778 13.1837i 0.999434 0.0336318i
\(393\) 0 0
\(394\) −36.1652 37.8997i −0.0917898 0.0961922i
\(395\) −785.136 −1.98769
\(396\) 0 0
\(397\) 119.449 0.300880 0.150440 0.988619i \(-0.451931\pi\)
0.150440 + 0.988619i \(0.451931\pi\)
\(398\) 471.661 + 494.283i 1.18508 + 1.24192i
\(399\) 0 0
\(400\) −39.9298 3.75083i −0.0998244 0.00937707i
\(401\) 497.793 1.24138 0.620689 0.784057i \(-0.286853\pi\)
0.620689 + 0.784057i \(0.286853\pi\)
\(402\) 0 0
\(403\) 285.177i 0.707635i
\(404\) 4.27309 91.1794i 0.0105770 0.225692i
\(405\) 0 0
\(406\) 536.940 + 204.667i 1.32251 + 0.504107i
\(407\) 172.107 0.422866
\(408\) 0 0
\(409\) 241.893i 0.591425i −0.955277 0.295713i \(-0.904443\pi\)
0.955277 0.295713i \(-0.0955571\pi\)
\(410\) −480.159 503.188i −1.17112 1.22729i
\(411\) 0 0
\(412\) 632.182 + 29.6270i 1.53442 + 0.0719101i
\(413\) 448.324 213.609i 1.08553 0.517214i
\(414\) 0 0
\(415\) −68.1255 −0.164158
\(416\) −314.217 + 248.083i −0.755329 + 0.596353i
\(417\) 0 0
\(418\) 25.1102 + 26.3145i 0.0600722 + 0.0629534i
\(419\) 719.154 1.71636 0.858179 0.513351i \(-0.171596\pi\)
0.858179 + 0.513351i \(0.171596\pi\)
\(420\) 0 0
\(421\) 20.4985i 0.0486901i −0.999704 0.0243450i \(-0.992250\pi\)
0.999704 0.0243450i \(-0.00775003\pi\)
\(422\) 123.640 + 129.570i 0.292986 + 0.307039i
\(423\) 0 0
\(424\) −370.417 + 321.717i −0.873625 + 0.758768i
\(425\) 45.6766i 0.107474i
\(426\) 0 0
\(427\) 518.191 246.899i 1.21356 0.578217i
\(428\) 494.440 + 23.1718i 1.15523 + 0.0541396i
\(429\) 0 0
\(430\) −303.988 318.568i −0.706950 0.740857i
\(431\) 145.153 0.336782 0.168391 0.985720i \(-0.446143\pi\)
0.168391 + 0.985720i \(0.446143\pi\)
\(432\) 0 0
\(433\) 52.0462i 0.120199i −0.998192 0.0600996i \(-0.980858\pi\)
0.998192 0.0600996i \(-0.0191418\pi\)
\(434\) −298.193 113.663i −0.687081 0.261897i
\(435\) 0 0
\(436\) −158.031 7.40606i −0.362456 0.0169864i
\(437\) −9.57111 −0.0219018
\(438\) 0 0
\(439\) 265.081i 0.603829i −0.953335 0.301914i \(-0.902374\pi\)
0.953335 0.301914i \(-0.0976257\pi\)
\(440\) 116.560 101.235i 0.264908 0.230080i
\(441\) 0 0
\(442\) 314.775 + 329.872i 0.712160 + 0.746317i
\(443\) 330.902i 0.746957i 0.927639 + 0.373478i \(0.121835\pi\)
−0.927639 + 0.373478i \(0.878165\pi\)
\(444\) 0 0
\(445\) 685.377i 1.54017i
\(446\) 541.120 + 567.073i 1.21327 + 1.27146i
\(447\) 0 0
\(448\) −134.168 427.438i −0.299482 0.954102i
\(449\) −625.698 −1.39354 −0.696768 0.717296i \(-0.745379\pi\)
−0.696768 + 0.717296i \(0.745379\pi\)
\(450\) 0 0
\(451\) 243.983 0.540982
\(452\) 9.95870 212.499i 0.0220325 0.470131i
\(453\) 0 0
\(454\) −442.969 + 422.695i −0.975702 + 0.931047i
\(455\) 414.646 197.563i 0.911310 0.434205i
\(456\) 0 0
\(457\) 397.689 0.870217 0.435108 0.900378i \(-0.356710\pi\)
0.435108 + 0.900378i \(0.356710\pi\)
\(458\) −77.4012 + 73.8588i −0.168998 + 0.161264i
\(459\) 0 0
\(460\) −1.90178 + 40.5803i −0.00413431 + 0.0882180i
\(461\) −71.4288 −0.154943 −0.0774715 0.996995i \(-0.524685\pi\)
−0.0774715 + 0.996995i \(0.524685\pi\)
\(462\) 0 0
\(463\) −88.0481 −0.190169 −0.0950844 0.995469i \(-0.530312\pi\)
−0.0950844 + 0.995469i \(0.530312\pi\)
\(464\) 61.4184 653.835i 0.132367 1.40913i
\(465\) 0 0
\(466\) −41.5422 + 39.6409i −0.0891462 + 0.0850663i
\(467\) 118.536 0.253824 0.126912 0.991914i \(-0.459493\pi\)
0.126912 + 0.991914i \(0.459493\pi\)
\(468\) 0 0
\(469\) −4.92922 10.3454i −0.0105101 0.0220585i
\(470\) 386.033 + 404.548i 0.821347 + 0.860741i
\(471\) 0 0
\(472\) −372.165 428.501i −0.788485 0.907841i
\(473\) 154.465 0.326565
\(474\) 0 0
\(475\) 12.3889 0.0260819
\(476\) −470.389 + 197.664i −0.988212 + 0.415261i
\(477\) 0 0
\(478\) 310.616 296.400i 0.649824 0.620084i
\(479\) 138.101i 0.288311i 0.989555 + 0.144156i \(0.0460466\pi\)
−0.989555 + 0.144156i \(0.953953\pi\)
\(480\) 0 0
\(481\) 585.176i 1.21658i
\(482\) 491.448 + 515.019i 1.01960 + 1.06850i
\(483\) 0 0
\(484\) 20.1224 429.372i 0.0415751 0.887132i
\(485\) 543.506i 1.12063i
\(486\) 0 0
\(487\) 311.781 0.640206 0.320103 0.947383i \(-0.396282\pi\)
0.320103 + 0.947383i \(0.396282\pi\)
\(488\) −430.164 495.280i −0.881484 1.01492i
\(489\) 0 0
\(490\) 41.3145 + 512.315i 0.0843152 + 1.04554i
\(491\) 602.082i 1.22624i −0.789991 0.613118i \(-0.789915\pi\)
0.789991 0.613118i \(-0.210085\pi\)
\(492\) 0 0
\(493\) −747.938 −1.51712
\(494\) 89.4715 85.3767i 0.181116 0.172827i
\(495\) 0 0
\(496\) −34.1091 + 363.112i −0.0687684 + 0.732080i
\(497\) 63.7856 30.3914i 0.128341 0.0611498i
\(498\) 0 0
\(499\) 209.915i 0.420671i −0.977629 0.210335i \(-0.932544\pi\)
0.977629 0.210335i \(-0.0674556\pi\)
\(500\) −22.0903 + 471.365i −0.0441807 + 0.942730i
\(501\) 0 0
\(502\) −125.203 + 119.472i −0.249408 + 0.237993i
\(503\) 8.12961i 0.0161622i −0.999967 0.00808112i \(-0.997428\pi\)
0.999967 0.00808112i \(-0.00257233\pi\)
\(504\) 0 0
\(505\) 119.683 0.236995
\(506\) −9.83816 10.3100i −0.0194430 0.0203755i
\(507\) 0 0
\(508\) −8.27570 + 176.587i −0.0162908 + 0.347613i
\(509\) −116.510 −0.228899 −0.114449 0.993429i \(-0.536510\pi\)
−0.114449 + 0.993429i \(0.536510\pi\)
\(510\) 0 0
\(511\) 194.006 + 407.179i 0.379659 + 0.796828i
\(512\) −429.761 + 278.298i −0.839376 + 0.543551i
\(513\) 0 0
\(514\) 399.080 + 418.221i 0.776421 + 0.813660i
\(515\) 829.807i 1.61128i
\(516\) 0 0
\(517\) −196.155 −0.379410
\(518\) 611.886 + 233.235i 1.18125 + 0.450260i
\(519\) 0 0
\(520\) −344.208 396.312i −0.661939 0.762139i
\(521\) 459.362i 0.881693i 0.897583 + 0.440846i \(0.145322\pi\)
−0.897583 + 0.440846i \(0.854678\pi\)
\(522\) 0 0
\(523\) 392.738 0.750933 0.375467 0.926836i \(-0.377482\pi\)
0.375467 + 0.926836i \(0.377482\pi\)
\(524\) 35.9933 768.026i 0.0686895 1.46570i
\(525\) 0 0
\(526\) −396.230 + 378.096i −0.753289 + 0.718813i
\(527\) 415.373 0.788183
\(528\) 0 0
\(529\) −525.250 −0.992911
\(530\) −444.099 465.399i −0.837924 0.878112i
\(531\) 0 0
\(532\) 53.6127 + 127.584i 0.100776 + 0.239820i
\(533\) 829.561i 1.55640i
\(534\) 0 0
\(535\) 649.006i 1.21309i
\(536\) −9.88802 + 8.58802i −0.0184478 + 0.0160224i
\(537\) 0 0
\(538\) −166.492 + 158.872i −0.309465 + 0.295302i
\(539\) −140.024 113.583i −0.259784 0.210729i
\(540\) 0 0
\(541\) 224.719i 0.415378i −0.978195 0.207689i \(-0.933406\pi\)
0.978195 0.207689i \(-0.0665942\pi\)
\(542\) 117.643 + 123.286i 0.217054 + 0.227465i
\(543\) 0 0
\(544\) 361.343 + 457.671i 0.664234 + 0.841307i
\(545\) 207.432i 0.380610i
\(546\) 0 0
\(547\) 650.761i 1.18969i 0.803840 + 0.594845i \(0.202787\pi\)
−0.803840 + 0.594845i \(0.797213\pi\)
\(548\) 49.7106 1060.73i 0.0907128 1.93563i
\(549\) 0 0
\(550\) 12.7346 + 13.3454i 0.0231538 + 0.0242643i
\(551\) 202.864i 0.368174i
\(552\) 0 0
\(553\) 946.018 450.742i 1.71070 0.815086i
\(554\) −133.454 139.855i −0.240892 0.252446i
\(555\) 0 0
\(556\) −2.90538 + 61.9951i −0.00522550 + 0.111502i
\(557\) 269.480i 0.483806i 0.970300 + 0.241903i \(0.0777715\pi\)
−0.970300 + 0.241903i \(0.922228\pi\)
\(558\) 0 0
\(559\) 525.195i 0.939526i
\(560\) 551.593 201.960i 0.984988 0.360643i
\(561\) 0 0
\(562\) 71.3179 68.0539i 0.126900 0.121092i
\(563\) 114.814 0.203932 0.101966 0.994788i \(-0.467487\pi\)
0.101966 + 0.994788i \(0.467487\pi\)
\(564\) 0 0
\(565\) 278.928 0.493678
\(566\) −630.238 + 601.394i −1.11349 + 1.06253i
\(567\) 0 0
\(568\) −52.9501 60.9653i −0.0932220 0.107333i
\(569\) −226.624 −0.398285 −0.199143 0.979971i \(-0.563816\pi\)
−0.199143 + 0.979971i \(0.563816\pi\)
\(570\) 0 0
\(571\) 905.094i 1.58510i 0.609805 + 0.792551i \(0.291248\pi\)
−0.609805 + 0.792551i \(0.708752\pi\)
\(572\) 183.936 + 8.62009i 0.321566 + 0.0150701i
\(573\) 0 0
\(574\) 867.425 + 330.640i 1.51119 + 0.576028i
\(575\) −4.85397 −0.00844169
\(576\) 0 0
\(577\) 288.394i 0.499816i 0.968270 + 0.249908i \(0.0804004\pi\)
−0.968270 + 0.249908i \(0.919600\pi\)
\(578\) 62.3082 59.4566i 0.107800 0.102866i
\(579\) 0 0
\(580\) 860.118 + 40.3091i 1.48296 + 0.0694985i
\(581\) 82.0851 39.1105i 0.141282 0.0673158i
\(582\) 0 0
\(583\) 225.660 0.387067
\(584\) 389.176 338.010i 0.666397 0.578784i
\(585\) 0 0
\(586\) −133.323 + 127.221i −0.227513 + 0.217101i
\(587\) −478.167 −0.814594 −0.407297 0.913296i \(-0.633529\pi\)
−0.407297 + 0.913296i \(0.633529\pi\)
\(588\) 0 0
\(589\) 112.662i 0.191277i
\(590\) 538.377 513.737i 0.912504 0.870742i
\(591\) 0 0
\(592\) 69.9911 745.097i 0.118228 1.25861i
\(593\) 350.708i 0.591414i 0.955279 + 0.295707i \(0.0955552\pi\)
−0.955279 + 0.295707i \(0.904445\pi\)
\(594\) 0 0
\(595\) −287.760 603.950i −0.483629 1.01504i
\(596\) 623.813 + 29.2348i 1.04667 + 0.0490517i
\(597\) 0 0
\(598\) −35.0549 + 33.4506i −0.0586203 + 0.0559374i
\(599\) −781.919 −1.30537 −0.652687 0.757627i \(-0.726358\pi\)
−0.652687 + 0.757627i \(0.726358\pi\)
\(600\) 0 0
\(601\) 125.321i 0.208521i −0.994550 0.104260i \(-0.966752\pi\)
0.994550 0.104260i \(-0.0332475\pi\)
\(602\) 549.167 + 209.328i 0.912237 + 0.347721i
\(603\) 0 0
\(604\) 15.5893 332.646i 0.0258101 0.550738i
\(605\) 563.597 0.931565
\(606\) 0 0
\(607\) 25.4854i 0.0419859i −0.999780 0.0209929i \(-0.993317\pi\)
0.999780 0.0209929i \(-0.00668275\pi\)
\(608\) 124.135 98.0076i 0.204169 0.161197i
\(609\) 0 0
\(610\) 622.279 593.799i 1.02013 0.973442i
\(611\) 666.943i 1.09156i
\(612\) 0 0
\(613\) 1044.03i 1.70315i −0.524230 0.851577i \(-0.675647\pi\)
0.524230 0.851577i \(-0.324353\pi\)
\(614\) 802.855 766.111i 1.30758 1.24774i
\(615\) 0 0
\(616\) −82.3252 + 188.896i −0.133645 + 0.306649i
\(617\) 540.524 0.876052 0.438026 0.898962i \(-0.355678\pi\)
0.438026 + 0.898962i \(0.355678\pi\)
\(618\) 0 0
\(619\) −295.065 −0.476680 −0.238340 0.971182i \(-0.576603\pi\)
−0.238340 + 0.971182i \(0.576603\pi\)
\(620\) −477.672 22.3860i −0.770439 0.0361064i
\(621\) 0 0
\(622\) 17.6854 + 18.5336i 0.0284331 + 0.0297968i
\(623\) 393.471 + 825.817i 0.631574 + 1.32555i
\(624\) 0 0
\(625\) −681.382 −1.09021
\(626\) 13.1458 + 13.7763i 0.0209996 + 0.0220068i
\(627\) 0 0
\(628\) −30.9092 + 659.541i −0.0492184 + 1.05022i
\(629\) −852.335 −1.35506
\(630\) 0 0
\(631\) 787.813 1.24852 0.624258 0.781219i \(-0.285402\pi\)
0.624258 + 0.781219i \(0.285402\pi\)
\(632\) −785.314 904.190i −1.24259 1.43068i
\(633\) 0 0
\(634\) −445.967 467.356i −0.703418 0.737155i
\(635\) −231.790 −0.365023
\(636\) 0 0
\(637\) −386.191 + 476.092i −0.606265 + 0.747397i
\(638\) −218.526 + 208.524i −0.342517 + 0.326841i
\(639\) 0 0
\(640\) −390.874 545.789i −0.610741 0.852795i
\(641\) −1170.55 −1.82613 −0.913066 0.407811i \(-0.866292\pi\)
−0.913066 + 0.407811i \(0.866292\pi\)
\(642\) 0 0
\(643\) −570.395 −0.887085 −0.443542 0.896253i \(-0.646278\pi\)
−0.443542 + 0.896253i \(0.646278\pi\)
\(644\) −21.0054 49.9874i −0.0326171 0.0776201i
\(645\) 0 0
\(646\) −124.355 130.319i −0.192500 0.201733i
\(647\) 869.330i 1.34363i −0.740718 0.671816i \(-0.765515\pi\)
0.740718 0.671816i \(-0.234485\pi\)
\(648\) 0 0
\(649\) 261.045i 0.402227i
\(650\) 45.3754 43.2987i 0.0698083 0.0666134i
\(651\) 0 0
\(652\) −828.680 38.8358i −1.27098 0.0595641i
\(653\) 1004.79i 1.53872i 0.638813 + 0.769362i \(0.279426\pi\)
−0.638813 + 0.769362i \(0.720574\pi\)
\(654\) 0 0
\(655\) 1008.12 1.53911
\(656\) 99.2213 1056.27i 0.151252 1.61017i
\(657\) 0 0
\(658\) −697.384 265.824i −1.05985 0.403989i
\(659\) 323.660i 0.491139i 0.969379 + 0.245569i \(0.0789749\pi\)
−0.969379 + 0.245569i \(0.921025\pi\)
\(660\) 0 0
\(661\) 803.454 1.21551 0.607756 0.794124i \(-0.292070\pi\)
0.607756 + 0.794124i \(0.292070\pi\)
\(662\) −836.365 876.479i −1.26339 1.32399i
\(663\) 0 0
\(664\) −68.1410 78.4557i −0.102622 0.118156i
\(665\) −163.810 + 78.0493i −0.246331 + 0.117367i
\(666\) 0 0
\(667\) 79.4820i 0.119163i
\(668\) 679.616 + 31.8500i 1.01739 + 0.0476796i
\(669\) 0 0
\(670\) −11.8549 12.4235i −0.0176939 0.0185426i
\(671\) 301.727i 0.449668i
\(672\) 0 0
\(673\) −336.584 −0.500125 −0.250063 0.968230i \(-0.580451\pi\)
−0.250063 + 0.968230i \(0.580451\pi\)
\(674\) 547.880 522.805i 0.812879 0.775676i
\(675\) 0 0
\(676\) −2.33674 + 49.8615i −0.00345672 + 0.0737596i
\(677\) 516.746 0.763289 0.381644 0.924309i \(-0.375358\pi\)
0.381644 + 0.924309i \(0.375358\pi\)
\(678\) 0 0
\(679\) −312.024 654.876i −0.459534 0.964471i
\(680\) −577.246 + 501.354i −0.848892 + 0.737286i
\(681\) 0 0
\(682\) 121.360 115.805i 0.177947 0.169803i
\(683\) 587.298i 0.859879i 0.902858 + 0.429940i \(0.141465\pi\)
−0.902858 + 0.429940i \(0.858535\pi\)
\(684\) 0 0
\(685\) 1392.32 2.03258
\(686\) −343.897 593.575i −0.501308 0.865269i
\(687\) 0 0
\(688\) 62.8170 668.724i 0.0913038 0.971982i
\(689\) 767.263i 1.11359i
\(690\) 0 0
\(691\) −1102.12 −1.59497 −0.797483 0.603342i \(-0.793835\pi\)
−0.797483 + 0.603342i \(0.793835\pi\)
\(692\) −45.7753 + 976.755i −0.0661492 + 1.41150i
\(693\) 0 0
\(694\) 410.397 + 430.081i 0.591351 + 0.619713i
\(695\) −81.3753 −0.117087
\(696\) 0 0
\(697\) −1208.29 −1.73356
\(698\) −155.862 + 148.728i −0.223298 + 0.213078i
\(699\) 0 0
\(700\) 27.1896 + 64.7041i 0.0388423 + 0.0924344i
\(701\) 12.2107i 0.0174189i −0.999962 0.00870946i \(-0.997228\pi\)
0.999962 0.00870946i \(-0.00277234\pi\)
\(702\) 0 0
\(703\) 231.180i 0.328847i
\(704\) 233.172 + 32.9759i 0.331210 + 0.0468407i
\(705\) 0 0
\(706\) −219.247 229.762i −0.310548 0.325442i
\(707\) −144.207 + 68.7092i −0.203970 + 0.0971841i
\(708\) 0 0
\(709\) 1129.01i 1.59239i 0.605037 + 0.796197i \(0.293158\pi\)
−0.605037 + 0.796197i \(0.706842\pi\)
\(710\) 76.5981 73.0924i 0.107885 0.102947i
\(711\) 0 0
\(712\) 789.303 685.532i 1.10857 0.962826i
\(713\) 44.1409i 0.0619087i
\(714\) 0 0
\(715\) 241.436i 0.337672i
\(716\) 205.588 + 9.63481i 0.287134 + 0.0134564i
\(717\) 0 0
\(718\) 293.398 279.970i 0.408633 0.389931i
\(719\) 878.237i 1.22147i 0.791835 + 0.610735i \(0.209126\pi\)
−0.791835 + 0.610735i \(0.790874\pi\)
\(720\) 0 0
\(721\) −476.387 999.842i −0.660731 1.38674i
\(722\) 486.998 464.709i 0.674512 0.643641i
\(723\) 0 0
\(724\) 52.6625 1123.72i 0.0727383 1.55209i
\(725\) 102.882i 0.141907i
\(726\) 0 0
\(727\) 226.673i 0.311793i 0.987773 + 0.155896i \(0.0498266\pi\)
−0.987773 + 0.155896i \(0.950173\pi\)
\(728\) 642.261 + 279.913i 0.882226 + 0.384495i
\(729\) 0 0
\(730\) 466.590 + 488.968i 0.639164 + 0.669820i
\(731\) −764.970 −1.04647
\(732\) 0 0
\(733\) 103.641 0.141393 0.0706964 0.997498i \(-0.477478\pi\)
0.0706964 + 0.997498i \(0.477478\pi\)
\(734\) −923.717 968.020i −1.25847 1.31883i
\(735\) 0 0
\(736\) −48.6359 + 38.3993i −0.0660813 + 0.0521730i
\(737\) 6.02383 0.00817345
\(738\) 0 0
\(739\) 708.603i 0.958867i 0.877578 + 0.479434i \(0.159158\pi\)
−0.877578 + 0.479434i \(0.840842\pi\)
\(740\) 980.173 + 45.9354i 1.32456 + 0.0620749i
\(741\) 0 0
\(742\) 802.283 + 305.809i 1.08124 + 0.412142i
\(743\) 64.3198 0.0865677 0.0432838 0.999063i \(-0.486218\pi\)
0.0432838 + 0.999063i \(0.486218\pi\)
\(744\) 0 0
\(745\) 818.822i 1.09909i
\(746\) −204.517 214.326i −0.274152 0.287301i
\(747\) 0 0
\(748\) 12.5555 267.911i 0.0167855 0.358169i
\(749\) −372.590 781.993i −0.497451 1.04405i
\(750\) 0 0
\(751\) −500.993 −0.667101 −0.333551 0.942732i \(-0.608247\pi\)
−0.333551 + 0.942732i \(0.608247\pi\)
\(752\) −79.7709 + 849.209i −0.106078 + 1.12927i
\(753\) 0 0
\(754\) 709.000 + 743.005i 0.940318 + 0.985418i
\(755\) 436.633 0.578322
\(756\) 0 0
\(757\) 1207.70i 1.59537i −0.603074 0.797685i \(-0.706058\pi\)
0.603074 0.797685i \(-0.293942\pi\)
\(758\) 4.83262 + 5.06440i 0.00637549 + 0.00668127i
\(759\) 0 0
\(760\) 135.983 + 156.567i 0.178925 + 0.206009i
\(761\) 389.162i 0.511382i 0.966759 + 0.255691i \(0.0823030\pi\)
−0.966759 + 0.255691i \(0.917697\pi\)
\(762\) 0 0
\(763\) 119.086 + 249.937i 0.156076 + 0.327572i
\(764\) −23.7096 + 505.916i −0.0310335 + 0.662194i
\(765\) 0 0
\(766\) 156.109 + 163.596i 0.203798 + 0.213572i
\(767\) 887.575 1.15720
\(768\) 0 0
\(769\) 656.498i 0.853704i 0.904322 + 0.426852i \(0.140377\pi\)
−0.904322 + 0.426852i \(0.859623\pi\)
\(770\) −252.455 96.2294i −0.327864 0.124973i
\(771\) 0 0
\(772\) 61.5299 1312.93i 0.0797020 1.70068i
\(773\) 369.776 0.478364 0.239182 0.970975i \(-0.423121\pi\)
0.239182 + 0.970975i \(0.423121\pi\)
\(774\) 0 0
\(775\) 57.1364i 0.0737243i
\(776\) −625.920 + 543.629i −0.806598 + 0.700553i
\(777\) 0 0
\(778\) 103.293 + 108.247i 0.132767 + 0.139135i
\(779\) 327.726i 0.420701i
\(780\) 0 0
\(781\) 37.1404i 0.0475549i
\(782\) 48.7222 + 51.0590i 0.0623046 + 0.0652928i
\(783\) 0 0
\(784\) −548.676 + 560.010i −0.699841 + 0.714298i
\(785\) −865.718 −1.10283
\(786\) 0 0
\(787\) −590.922 −0.750854 −0.375427 0.926852i \(-0.622504\pi\)
−0.375427 + 0.926852i \(0.622504\pi\)
\(788\) 104.657 + 4.90473i 0.132814 + 0.00622428i
\(789\) 0 0
\(790\) 1136.04 1084.05i 1.43803 1.37221i
\(791\) −336.083 + 160.131i −0.424884 + 0.202441i
\(792\) 0 0
\(793\) 1025.90 1.29369
\(794\) −172.836 + 164.926i −0.217677 + 0.207715i
\(795\) 0 0
\(796\) −1364.93 63.9668i −1.71473 0.0803603i
\(797\) −1185.20 −1.48708 −0.743539 0.668692i \(-0.766854\pi\)
−0.743539 + 0.668692i \(0.766854\pi\)
\(798\) 0 0
\(799\) 971.431 1.21581
\(800\) 62.9547 49.7044i 0.0786933 0.0621305i
\(801\) 0 0
\(802\) −720.274 + 687.310i −0.898098 + 0.856994i
\(803\) −237.088 −0.295253
\(804\) 0 0
\(805\) 64.1807 30.5797i 0.0797276 0.0379872i
\(806\) −393.748 412.633i −0.488521 0.511952i
\(807\) 0 0
\(808\) 119.710 + 137.831i 0.148156 + 0.170583i
\(809\) 697.293 0.861920 0.430960 0.902371i \(-0.358175\pi\)
0.430960 + 0.902371i \(0.358175\pi\)
\(810\) 0 0
\(811\) 744.052 0.917450 0.458725 0.888578i \(-0.348306\pi\)
0.458725 + 0.888578i \(0.348306\pi\)
\(812\) −1059.51 + 445.220i −1.30481 + 0.548300i
\(813\) 0 0
\(814\) −249.027 + 237.630i −0.305930 + 0.291929i
\(815\) 1087.73i 1.33464i
\(816\) 0 0
\(817\) 207.484i 0.253958i
\(818\) 333.985 + 350.004i 0.408295 + 0.427878i
\(819\) 0 0
\(820\) 1389.52 + 65.1193i 1.69453 + 0.0794138i
\(821\) 71.5020i 0.0870913i 0.999051 + 0.0435457i \(0.0138654\pi\)
−0.999051 + 0.0435457i \(0.986135\pi\)
\(822\) 0 0
\(823\) 1001.05 1.21635 0.608174 0.793804i \(-0.291902\pi\)
0.608174 + 0.793804i \(0.291902\pi\)
\(824\) −955.634 + 829.995i −1.15975 + 1.00727i
\(825\) 0 0
\(826\) −353.762 + 928.087i −0.428284 + 1.12359i
\(827\) 504.214i 0.609691i 0.952402 + 0.304845i \(0.0986048\pi\)
−0.952402 + 0.304845i \(0.901395\pi\)
\(828\) 0 0
\(829\) 709.973 0.856421 0.428210 0.903679i \(-0.359144\pi\)
0.428210 + 0.903679i \(0.359144\pi\)
\(830\) 98.5734 94.0619i 0.118763 0.113328i
\(831\) 0 0
\(832\) 112.121 792.804i 0.134760 0.952890i
\(833\) 693.448 + 562.504i 0.832471 + 0.675275i
\(834\) 0 0
\(835\) 892.069i 1.06835i
\(836\) −72.6657 3.40545i −0.0869207 0.00407351i
\(837\) 0 0
\(838\) −1040.57 + 992.946i −1.24173 + 1.18490i
\(839\) 868.501i 1.03516i 0.855634 + 0.517581i \(0.173167\pi\)
−0.855634 + 0.517581i \(0.826833\pi\)
\(840\) 0 0
\(841\) −843.658 −1.00316
\(842\) 28.3026 + 29.6601i 0.0336136 + 0.0352257i
\(843\) 0 0
\(844\) −357.799 16.7681i −0.423933 0.0198675i
\(845\) −65.4486 −0.0774539
\(846\) 0 0
\(847\) −679.083 + 323.558i −0.801751 + 0.382004i
\(848\) 91.7699 976.945i 0.108219 1.15206i
\(849\) 0 0
\(850\) −63.0664 66.0912i −0.0741958 0.0777544i
\(851\) 90.5761i 0.106435i
\(852\) 0 0
\(853\) −404.626 −0.474356 −0.237178 0.971466i \(-0.576222\pi\)
−0.237178 + 0.971466i \(0.576222\pi\)
\(854\) −408.893 + 1072.72i −0.478798 + 1.25611i
\(855\) 0 0
\(856\) −747.417 + 649.153i −0.873151 + 0.758356i
\(857\) 1427.04i 1.66515i −0.553910 0.832577i \(-0.686865\pi\)
0.553910 0.832577i \(-0.313135\pi\)
\(858\) 0 0
\(859\) −1004.69 −1.16960 −0.584801 0.811177i \(-0.698827\pi\)
−0.584801 + 0.811177i \(0.698827\pi\)
\(860\) 879.704 + 41.2270i 1.02291 + 0.0479384i
\(861\) 0 0
\(862\) −210.027 + 200.415i −0.243651 + 0.232500i
\(863\) 328.400 0.380533 0.190267 0.981732i \(-0.439065\pi\)
0.190267 + 0.981732i \(0.439065\pi\)
\(864\) 0 0
\(865\) −1282.10 −1.48219
\(866\) 71.8610 + 75.3076i 0.0829804 + 0.0869603i
\(867\) 0 0
\(868\) 588.404 247.256i 0.677884 0.284857i
\(869\) 550.837i 0.633875i
\(870\) 0 0
\(871\) 20.4815i 0.0235150i
\(872\) 238.886 207.479i 0.273952 0.237935i
\(873\) 0 0
\(874\) 13.8488 13.2150i 0.0158453 0.0151201i
\(875\) 745.498 355.202i 0.851998 0.405945i
\(876\) 0 0
\(877\) 924.919i 1.05464i 0.849667 + 0.527320i \(0.176803\pi\)
−0.849667 + 0.527320i \(0.823197\pi\)
\(878\) 366.001 + 383.555i 0.416858 + 0.436851i
\(879\) 0 0
\(880\) −28.8774 + 307.417i −0.0328152 + 0.349337i
\(881\) 1330.68i 1.51042i −0.655483 0.755210i \(-0.727535\pi\)
0.655483 0.755210i \(-0.272465\pi\)
\(882\) 0 0
\(883\) 1431.52i 1.62120i −0.585601 0.810600i \(-0.699141\pi\)
0.585601 0.810600i \(-0.300859\pi\)
\(884\) −910.918 42.6899i −1.03045 0.0482917i
\(885\) 0 0
\(886\) −456.881 478.794i −0.515667 0.540400i
\(887\) 1257.50i 1.41770i −0.705359 0.708850i \(-0.749214\pi\)
0.705359 0.708850i \(-0.250786\pi\)
\(888\) 0 0
\(889\) 279.286 133.069i 0.314157 0.149684i
\(890\) 946.310 + 991.697i 1.06327 + 1.11427i
\(891\) 0 0
\(892\) −1565.93 73.3868i −1.75553 0.0822722i
\(893\) 263.482i 0.295053i
\(894\) 0 0
\(895\) 269.856i 0.301515i
\(896\) 784.302 + 433.228i 0.875337 + 0.483513i
\(897\) 0 0
\(898\) 905.346 863.911i 1.00818 0.962038i
\(899\) 935.587 1.04070
\(900\) 0 0
\(901\) −1117.55 −1.24035
\(902\) −353.028 + 336.871i −0.391383 + 0.373471i
\(903\) 0 0
\(904\) 278.991 + 321.223i 0.308619 + 0.355335i
\(905\) 1475.00 1.62983
\(906\) 0 0
\(907\) 1630.83i 1.79805i 0.437899 + 0.899024i \(0.355723\pi\)
−0.437899 + 0.899024i \(0.644277\pi\)
\(908\) 57.3261 1223.23i 0.0631344 1.34717i
\(909\) 0 0
\(910\) −327.188 + 858.370i −0.359547 + 0.943263i
\(911\) 778.173 0.854197 0.427098 0.904205i \(-0.359536\pi\)
0.427098 + 0.904205i \(0.359536\pi\)
\(912\) 0 0
\(913\) 47.7956i 0.0523501i
\(914\) −575.431 + 549.095i −0.629574 + 0.600760i
\(915\) 0 0
\(916\) 10.0168 213.738i 0.0109353 0.233338i
\(917\) −1214.69 + 578.754i −1.32463 + 0.631139i
\(918\) 0 0
\(919\) −116.976 −0.127286 −0.0636429 0.997973i \(-0.520272\pi\)
−0.0636429 + 0.997973i \(0.520272\pi\)
\(920\) −53.2780 61.3429i −0.0579109 0.0666771i
\(921\) 0 0
\(922\) 103.353 98.6227i 0.112096 0.106966i
\(923\) 126.280 0.136815
\(924\) 0 0
\(925\) 117.242i 0.126749i
\(926\) 127.400 121.569i 0.137581 0.131284i
\(927\) 0 0
\(928\) 813.891 + 1030.86i 0.877038 + 1.11084i
\(929\) 631.449i 0.679709i −0.940478 0.339854i \(-0.889622\pi\)
0.940478 0.339854i \(-0.110378\pi\)
\(930\) 0 0
\(931\) 152.569 188.085i 0.163876 0.202024i
\(932\) 5.37611 114.716i 0.00576836 0.123086i
\(933\) 0 0
\(934\) −171.514 + 163.664i −0.183634 + 0.175229i
\(935\) 351.662 0.376109
\(936\) 0 0
\(937\) 50.0533i 0.0534187i 0.999643 + 0.0267093i \(0.00850286\pi\)
−0.999643 + 0.0267093i \(0.991497\pi\)
\(938\) 21.4164 + 8.16336i 0.0228320 + 0.00870294i
\(939\) 0 0
\(940\) −1117.13 52.3540i −1.18844 0.0556957i
\(941\) −272.536 −0.289623 −0.144812 0.989459i \(-0.546258\pi\)
−0.144812 + 0.989459i \(0.546258\pi\)
\(942\) 0 0
\(943\) 128.403i 0.136164i
\(944\) 1130.14 + 106.160i 1.19718 + 0.112458i
\(945\) 0 0
\(946\) −223.502 + 213.273i −0.236260 + 0.225447i
\(947\) 1505.37i 1.58962i 0.606858 + 0.794810i \(0.292430\pi\)
−0.606858 + 0.794810i \(0.707570\pi\)
\(948\) 0 0
\(949\) 806.119i 0.849440i
\(950\) −17.9260 + 17.1056i −0.0188695 + 0.0180059i
\(951\) 0 0
\(952\) 407.705 935.480i 0.428261 0.982648i
\(953\) 714.817 0.750070 0.375035 0.927011i \(-0.377631\pi\)
0.375035 + 0.927011i \(0.377631\pi\)
\(954\) 0 0
\(955\) −664.069 −0.695360
\(956\) −40.1979 + 857.744i −0.0420480 + 0.897222i
\(957\) 0 0
\(958\) −190.678 199.823i −0.199038 0.208584i
\(959\) −1677.62 + 799.322i −1.74934 + 0.833495i
\(960\) 0 0
\(961\) 441.415 0.459329
\(962\) 807.962 + 846.713i 0.839877 + 0.880159i
\(963\) 0 0
\(964\) −1422.19 66.6504i −1.47530 0.0691394i
\(965\) 1723.36 1.78586
\(966\) 0 0
\(967\) −982.093 −1.01561 −0.507804 0.861473i \(-0.669543\pi\)
−0.507804 + 0.861473i \(0.669543\pi\)
\(968\) 563.724 + 649.057i 0.582360 + 0.670514i
\(969\) 0 0
\(970\) −750.427 786.419i −0.773636 0.810741i
\(971\) −119.012 −0.122566 −0.0612832 0.998120i \(-0.519519\pi\)
−0.0612832 + 0.998120i \(0.519519\pi\)
\(972\) 0 0
\(973\) 98.0498 46.7171i 0.100771 0.0480134i
\(974\) −451.127 + 430.480i −0.463169 + 0.441971i
\(975\) 0 0
\(976\) 1306.26 + 122.704i 1.33838 + 0.125722i
\(977\) −1313.25 −1.34417 −0.672083 0.740476i \(-0.734600\pi\)
−0.672083 + 0.740476i \(0.734600\pi\)
\(978\) 0 0
\(979\) −480.848 −0.491162
\(980\) −767.140 684.244i −0.782796 0.698208i
\(981\) 0 0
\(982\) 831.304 + 871.175i 0.846541 + 0.887143i
\(983\) 59.3222i 0.0603482i 0.999545 + 0.0301741i \(0.00960617\pi\)
−0.999545 + 0.0301741i \(0.990394\pi\)
\(984\) 0 0
\(985\) 137.374i 0.139466i
\(986\) 1082.22 1032.69i 1.09759 1.04735i
\(987\) 0 0
\(988\) −11.5788 + 247.069i −0.0117195 + 0.250070i
\(989\) 81.2920i 0.0821961i
\(990\) 0 0
\(991\) −790.745 −0.797927 −0.398963 0.916967i \(-0.630630\pi\)
−0.398963 + 0.916967i \(0.630630\pi\)
\(992\) −452.000 572.495i −0.455645 0.577112i
\(993\) 0 0
\(994\) −50.3318 + 132.044i −0.0506356 + 0.132841i
\(995\) 1791.61i 1.80062i
\(996\) 0 0
\(997\) −1034.13 −1.03724 −0.518622 0.855004i \(-0.673555\pi\)
−0.518622 + 0.855004i \(0.673555\pi\)
\(998\) 289.832 + 303.733i 0.290413 + 0.304342i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.8 32
3.2 odd 2 168.3.l.a.13.25 32
4.3 odd 2 2016.3.l.h.433.24 32
7.6 odd 2 inner 504.3.l.h.181.7 32
8.3 odd 2 2016.3.l.h.433.9 32
8.5 even 2 inner 504.3.l.h.181.5 32
12.11 even 2 672.3.l.a.433.26 32
21.20 even 2 168.3.l.a.13.26 yes 32
24.5 odd 2 168.3.l.a.13.28 yes 32
24.11 even 2 672.3.l.a.433.7 32
28.27 even 2 2016.3.l.h.433.10 32
56.13 odd 2 inner 504.3.l.h.181.6 32
56.27 even 2 2016.3.l.h.433.23 32
84.83 odd 2 672.3.l.a.433.10 32
168.83 odd 2 672.3.l.a.433.23 32
168.125 even 2 168.3.l.a.13.27 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.25 32 3.2 odd 2
168.3.l.a.13.26 yes 32 21.20 even 2
168.3.l.a.13.27 yes 32 168.125 even 2
168.3.l.a.13.28 yes 32 24.5 odd 2
504.3.l.h.181.5 32 8.5 even 2 inner
504.3.l.h.181.6 32 56.13 odd 2 inner
504.3.l.h.181.7 32 7.6 odd 2 inner
504.3.l.h.181.8 32 1.1 even 1 trivial
672.3.l.a.433.7 32 24.11 even 2
672.3.l.a.433.10 32 84.83 odd 2
672.3.l.a.433.23 32 168.83 odd 2
672.3.l.a.433.26 32 12.11 even 2
2016.3.l.h.433.9 32 8.3 odd 2
2016.3.l.h.433.10 32 28.27 even 2
2016.3.l.h.433.23 32 56.27 even 2
2016.3.l.h.433.24 32 4.3 odd 2