Properties

Label 2016.3.l.h.433.23
Level $2016$
Weight $3$
Character 2016.433
Analytic conductor $54.932$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2016,3,Mod(433,2016)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2016, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2016.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2016.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.9320212950\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 433.23
Character \(\chi\) \(=\) 2016.433
Dual form 2016.3.l.h.433.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.24467 q^{5} +(6.31936 + 3.01094i) q^{7} -3.67957i q^{11} -12.5108 q^{13} -18.2226i q^{17} -4.94253 q^{19} +1.93648 q^{23} +2.50660 q^{25} -41.0446i q^{29} -22.7944i q^{31} +(33.1430 + 15.7914i) q^{35} -46.7736i q^{37} -66.3075i q^{41} +41.9792i q^{43} -53.3092i q^{47} +(30.8685 + 38.0544i) q^{49} -61.3279i q^{53} -19.2981i q^{55} +70.9445 q^{59} -82.0007 q^{61} -65.6152 q^{65} +1.63710i q^{67} +10.0937 q^{71} +64.4337i q^{73} +(11.0789 - 23.2525i) q^{77} +149.702 q^{79} +12.9895 q^{83} -95.5714i q^{85} +130.681i q^{89} +(-79.0604 - 37.6693i) q^{91} -25.9219 q^{95} -103.630i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 64 q^{23} + 160 q^{25} - 16 q^{49} - 640 q^{71} + 64 q^{79} - 768 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2016\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1765\) \(1793\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.24467 1.04893 0.524467 0.851431i \(-0.324264\pi\)
0.524467 + 0.851431i \(0.324264\pi\)
\(6\) 0 0
\(7\) 6.31936 + 3.01094i 0.902765 + 0.430134i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.67957i 0.334506i −0.985914 0.167253i \(-0.946510\pi\)
0.985914 0.167253i \(-0.0534897\pi\)
\(12\) 0 0
\(13\) −12.5108 −0.962372 −0.481186 0.876619i \(-0.659794\pi\)
−0.481186 + 0.876619i \(0.659794\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.2226i 1.07192i −0.844245 0.535958i \(-0.819951\pi\)
0.844245 0.535958i \(-0.180049\pi\)
\(18\) 0 0
\(19\) −4.94253 −0.260133 −0.130067 0.991505i \(-0.541519\pi\)
−0.130067 + 0.991505i \(0.541519\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.93648 0.0841948 0.0420974 0.999114i \(-0.486596\pi\)
0.0420974 + 0.999114i \(0.486596\pi\)
\(24\) 0 0
\(25\) 2.50660 0.100264
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 41.0446i 1.41533i −0.706548 0.707665i \(-0.749748\pi\)
0.706548 0.707665i \(-0.250252\pi\)
\(30\) 0 0
\(31\) 22.7944i 0.735303i −0.929964 0.367652i \(-0.880162\pi\)
0.929964 0.367652i \(-0.119838\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 33.1430 + 15.7914i 0.946942 + 0.451182i
\(36\) 0 0
\(37\) 46.7736i 1.26415i −0.774907 0.632075i \(-0.782203\pi\)
0.774907 0.632075i \(-0.217797\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 66.3075i 1.61725i −0.588321 0.808627i \(-0.700211\pi\)
0.588321 0.808627i \(-0.299789\pi\)
\(42\) 0 0
\(43\) 41.9792i 0.976261i 0.872771 + 0.488131i \(0.162321\pi\)
−0.872771 + 0.488131i \(0.837679\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 53.3092i 1.13424i −0.823636 0.567119i \(-0.808058\pi\)
0.823636 0.567119i \(-0.191942\pi\)
\(48\) 0 0
\(49\) 30.8685 + 38.0544i 0.629970 + 0.776620i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 61.3279i 1.15713i −0.815636 0.578565i \(-0.803613\pi\)
0.815636 0.578565i \(-0.196387\pi\)
\(54\) 0 0
\(55\) 19.2981i 0.350875i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 70.9445 1.20245 0.601225 0.799080i \(-0.294680\pi\)
0.601225 + 0.799080i \(0.294680\pi\)
\(60\) 0 0
\(61\) −82.0007 −1.34427 −0.672137 0.740427i \(-0.734623\pi\)
−0.672137 + 0.740427i \(0.734623\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −65.6152 −1.00947
\(66\) 0 0
\(67\) 1.63710i 0.0244344i 0.999925 + 0.0122172i \(0.00388895\pi\)
−0.999925 + 0.0122172i \(0.996111\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0937 0.142165 0.0710823 0.997470i \(-0.477355\pi\)
0.0710823 + 0.997470i \(0.477355\pi\)
\(72\) 0 0
\(73\) 64.4337i 0.882653i 0.897347 + 0.441326i \(0.145492\pi\)
−0.897347 + 0.441326i \(0.854508\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.0789 23.2525i 0.143882 0.301980i
\(78\) 0 0
\(79\) 149.702 1.89496 0.947479 0.319818i \(-0.103622\pi\)
0.947479 + 0.319818i \(0.103622\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.9895 0.156500 0.0782498 0.996934i \(-0.475067\pi\)
0.0782498 + 0.996934i \(0.475067\pi\)
\(84\) 0 0
\(85\) 95.5714i 1.12437i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 130.681i 1.46832i 0.678976 + 0.734160i \(0.262424\pi\)
−0.678976 + 0.734160i \(0.737576\pi\)
\(90\) 0 0
\(91\) −79.0604 37.6693i −0.868796 0.413949i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −25.9219 −0.272863
\(96\) 0 0
\(97\) 103.630i 1.06835i −0.845373 0.534176i \(-0.820622\pi\)
0.845373 0.534176i \(-0.179378\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 22.8199 0.225939 0.112970 0.993598i \(-0.463964\pi\)
0.112970 + 0.993598i \(0.463964\pi\)
\(102\) 0 0
\(103\) 158.219i 1.53611i 0.640386 + 0.768053i \(0.278774\pi\)
−0.640386 + 0.768053i \(0.721226\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 123.746i 1.15650i 0.815859 + 0.578251i \(0.196265\pi\)
−0.815859 + 0.578251i \(0.803735\pi\)
\(108\) 0 0
\(109\) 39.5511i 0.362854i 0.983404 + 0.181427i \(0.0580716\pi\)
−0.983404 + 0.181427i \(0.941928\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 53.1831 0.470647 0.235324 0.971917i \(-0.424385\pi\)
0.235324 + 0.971917i \(0.424385\pi\)
\(114\) 0 0
\(115\) 10.1562 0.0883148
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 54.8670 115.155i 0.461067 0.967688i
\(120\) 0 0
\(121\) 107.461 0.888106
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −117.971 −0.943764
\(126\) 0 0
\(127\) 44.1953 0.347994 0.173997 0.984746i \(-0.444332\pi\)
0.173997 + 0.984746i \(0.444332\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −192.217 −1.46731 −0.733654 0.679523i \(-0.762187\pi\)
−0.733654 + 0.679523i \(0.762187\pi\)
\(132\) 0 0
\(133\) −31.2336 14.8816i −0.234839 0.111892i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 265.473 1.93776 0.968879 0.247535i \(-0.0796206\pi\)
0.968879 + 0.247535i \(0.0796206\pi\)
\(138\) 0 0
\(139\) 15.5158 0.111624 0.0558122 0.998441i \(-0.482225\pi\)
0.0558122 + 0.998441i \(0.482225\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 46.0345i 0.321919i
\(144\) 0 0
\(145\) 215.265i 1.48459i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 156.124i 1.04782i −0.851775 0.523908i \(-0.824474\pi\)
0.851775 0.523908i \(-0.175526\pi\)
\(150\) 0 0
\(151\) −83.2527 −0.551342 −0.275671 0.961252i \(-0.588900\pi\)
−0.275671 + 0.961252i \(0.588900\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 119.549i 0.771285i
\(156\) 0 0
\(157\) −165.066 −1.05138 −0.525689 0.850677i \(-0.676192\pi\)
−0.525689 + 0.850677i \(0.676192\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.2373 + 5.83062i 0.0760081 + 0.0362150i
\(162\) 0 0
\(163\) 207.397i 1.27238i −0.771534 0.636188i \(-0.780510\pi\)
0.771534 0.636188i \(-0.219490\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 170.091i 1.01851i 0.860617 + 0.509253i \(0.170078\pi\)
−0.860617 + 0.509253i \(0.829922\pi\)
\(168\) 0 0
\(169\) −12.4791 −0.0738406
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −244.457 −1.41304 −0.706522 0.707691i \(-0.749737\pi\)
−0.706522 + 0.707691i \(0.749737\pi\)
\(174\) 0 0
\(175\) 15.8401 + 7.54720i 0.0905147 + 0.0431269i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 51.4534i 0.287449i 0.989618 + 0.143725i \(0.0459079\pi\)
−0.989618 + 0.143725i \(0.954092\pi\)
\(180\) 0 0
\(181\) 281.237 1.55380 0.776898 0.629626i \(-0.216792\pi\)
0.776898 + 0.629626i \(0.216792\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 245.312i 1.32601i
\(186\) 0 0
\(187\) −67.0512 −0.358562
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 126.618 0.662921 0.331460 0.943469i \(-0.392459\pi\)
0.331460 + 0.943469i \(0.392459\pi\)
\(192\) 0 0
\(193\) 328.592 1.70255 0.851275 0.524719i \(-0.175830\pi\)
0.851275 + 0.524719i \(0.175830\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.1931i 0.132960i −0.997788 0.0664799i \(-0.978823\pi\)
0.997788 0.0664799i \(-0.0211768\pi\)
\(198\) 0 0
\(199\) 341.606i 1.71661i −0.513137 0.858307i \(-0.671517\pi\)
0.513137 0.858307i \(-0.328483\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 123.583 259.375i 0.608782 1.27771i
\(204\) 0 0
\(205\) 347.761i 1.69639i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.1864i 0.0870161i
\(210\) 0 0
\(211\) 89.5480i 0.424398i −0.977226 0.212199i \(-0.931938\pi\)
0.977226 0.212199i \(-0.0680625\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 220.167i 1.02403i
\(216\) 0 0
\(217\) 68.6325 144.046i 0.316279 0.663806i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 227.980i 1.03158i
\(222\) 0 0
\(223\) 391.913i 1.75746i −0.477323 0.878728i \(-0.658393\pi\)
0.477323 0.878728i \(-0.341607\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −306.142 −1.34864 −0.674322 0.738437i \(-0.735564\pi\)
−0.674322 + 0.738437i \(0.735564\pi\)
\(228\) 0 0
\(229\) 53.4932 0.233595 0.116797 0.993156i \(-0.462737\pi\)
0.116797 + 0.993156i \(0.462737\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.7104 0.123221 0.0616103 0.998100i \(-0.480376\pi\)
0.0616103 + 0.998100i \(0.480376\pi\)
\(234\) 0 0
\(235\) 279.589i 1.18974i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 214.671 0.898207 0.449103 0.893480i \(-0.351744\pi\)
0.449103 + 0.893480i \(0.351744\pi\)
\(240\) 0 0
\(241\) 355.937i 1.47692i 0.674298 + 0.738459i \(0.264446\pi\)
−0.674298 + 0.738459i \(0.735554\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 161.895 + 199.583i 0.660797 + 0.814623i
\(246\) 0 0
\(247\) 61.8351 0.250345
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −86.5294 −0.344739 −0.172369 0.985032i \(-0.555142\pi\)
−0.172369 + 0.985032i \(0.555142\pi\)
\(252\) 0 0
\(253\) 7.12541i 0.0281637i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 289.039i 1.12466i 0.826911 + 0.562332i \(0.190096\pi\)
−0.826911 + 0.562332i \(0.809904\pi\)
\(258\) 0 0
\(259\) 140.832 295.579i 0.543754 1.14123i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −273.840 −1.04122 −0.520609 0.853795i \(-0.674295\pi\)
−0.520609 + 0.853795i \(0.674295\pi\)
\(264\) 0 0
\(265\) 321.645i 1.21375i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 115.065 0.427752 0.213876 0.976861i \(-0.431391\pi\)
0.213876 + 0.976861i \(0.431391\pi\)
\(270\) 0 0
\(271\) 85.2047i 0.314409i −0.987566 0.157204i \(-0.949752\pi\)
0.987566 0.157204i \(-0.0502481\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.22319i 0.0335389i
\(276\) 0 0
\(277\) 96.6558i 0.348938i −0.984663 0.174469i \(-0.944179\pi\)
0.984663 0.174469i \(-0.0558209\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −49.2889 −0.175405 −0.0877026 0.996147i \(-0.527953\pi\)
−0.0877026 + 0.996147i \(0.527953\pi\)
\(282\) 0 0
\(283\) −435.567 −1.53911 −0.769553 0.638583i \(-0.779521\pi\)
−0.769553 + 0.638583i \(0.779521\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 199.648 419.020i 0.695636 1.46000i
\(288\) 0 0
\(289\) −43.0622 −0.149004
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 92.1414 0.314476 0.157238 0.987561i \(-0.449741\pi\)
0.157238 + 0.987561i \(0.449741\pi\)
\(294\) 0 0
\(295\) 372.081 1.26129
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.2270 −0.0810267
\(300\) 0 0
\(301\) −126.397 + 265.282i −0.419923 + 0.881335i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −430.067 −1.41005
\(306\) 0 0
\(307\) 554.865 1.80738 0.903689 0.428189i \(-0.140848\pi\)
0.903689 + 0.428189i \(0.140848\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.8088i 0.0411860i −0.999788 0.0205930i \(-0.993445\pi\)
0.999788 0.0205930i \(-0.00655542\pi\)
\(312\) 0 0
\(313\) 9.52099i 0.0304185i 0.999884 + 0.0152093i \(0.00484144\pi\)
−0.999884 + 0.0152093i \(0.995159\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 322.997i 1.01892i −0.860495 0.509459i \(-0.829846\pi\)
0.860495 0.509459i \(-0.170154\pi\)
\(318\) 0 0
\(319\) −151.026 −0.473437
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 90.0656i 0.278841i
\(324\) 0 0
\(325\) −31.3596 −0.0964911
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 160.511 336.880i 0.487874 1.02395i
\(330\) 0 0
\(331\) 605.748i 1.83005i 0.403392 + 0.915027i \(0.367831\pi\)
−0.403392 + 0.915027i \(0.632169\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.58608i 0.0256301i
\(336\) 0 0
\(337\) −378.648 −1.12359 −0.561793 0.827278i \(-0.689888\pi\)
−0.561793 + 0.827278i \(0.689888\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −83.8735 −0.245963
\(342\) 0 0
\(343\) 80.4899 + 333.422i 0.234665 + 0.972076i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 297.236i 0.856586i −0.903640 0.428293i \(-0.859115\pi\)
0.903640 0.428293i \(-0.140885\pi\)
\(348\) 0 0
\(349\) 107.718 0.308649 0.154324 0.988020i \(-0.450680\pi\)
0.154324 + 0.988020i \(0.450680\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 158.792i 0.449836i −0.974378 0.224918i \(-0.927789\pi\)
0.974378 0.224918i \(-0.0722115\pi\)
\(354\) 0 0
\(355\) 52.9381 0.149121
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 202.772 0.564825 0.282412 0.959293i \(-0.408865\pi\)
0.282412 + 0.959293i \(0.408865\pi\)
\(360\) 0 0
\(361\) −336.571 −0.932331
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 337.934i 0.925845i
\(366\) 0 0
\(367\) 669.013i 1.82292i 0.411383 + 0.911462i \(0.365046\pi\)
−0.411383 + 0.911462i \(0.634954\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 184.654 387.553i 0.497721 1.04462i
\(372\) 0 0
\(373\) 148.124i 0.397116i −0.980089 0.198558i \(-0.936374\pi\)
0.980089 0.198558i \(-0.0636258\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 513.502i 1.36207i
\(378\) 0 0
\(379\) 3.50008i 0.00923505i −0.999989 0.00461753i \(-0.998530\pi\)
0.999989 0.00461753i \(-0.00146981\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 113.064i 0.295206i −0.989047 0.147603i \(-0.952844\pi\)
0.989047 0.147603i \(-0.0471558\pi\)
\(384\) 0 0
\(385\) 58.1054 121.952i 0.150923 0.316758i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 74.8109i 0.192316i 0.995366 + 0.0961580i \(0.0306554\pi\)
−0.995366 + 0.0961580i \(0.969345\pi\)
\(390\) 0 0
\(391\) 35.2877i 0.0902497i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 785.136 1.98769
\(396\) 0 0
\(397\) 119.449 0.300880 0.150440 0.988619i \(-0.451931\pi\)
0.150440 + 0.988619i \(0.451931\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 497.793 1.24138 0.620689 0.784057i \(-0.286853\pi\)
0.620689 + 0.784057i \(0.286853\pi\)
\(402\) 0 0
\(403\) 285.177i 0.707635i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −172.107 −0.422866
\(408\) 0 0
\(409\) 241.893i 0.591425i 0.955277 + 0.295713i \(0.0955571\pi\)
−0.955277 + 0.295713i \(0.904443\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 448.324 + 213.609i 1.08553 + 0.517214i
\(414\) 0 0
\(415\) 68.1255 0.164158
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −719.154 −1.71636 −0.858179 0.513351i \(-0.828404\pi\)
−0.858179 + 0.513351i \(0.828404\pi\)
\(420\) 0 0
\(421\) 20.4985i 0.0486901i 0.999704 + 0.0243450i \(0.00775003\pi\)
−0.999704 + 0.0243450i \(0.992250\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 45.6766i 0.107474i
\(426\) 0 0
\(427\) −518.191 246.899i −1.21356 0.578217i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −145.153 −0.336782 −0.168391 0.985720i \(-0.553857\pi\)
−0.168391 + 0.985720i \(0.553857\pi\)
\(432\) 0 0
\(433\) 52.0462i 0.120199i 0.998192 + 0.0600996i \(0.0191418\pi\)
−0.998192 + 0.0600996i \(0.980858\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.57111 −0.0219018
\(438\) 0 0
\(439\) 265.081i 0.603829i −0.953335 0.301914i \(-0.902374\pi\)
0.953335 0.301914i \(-0.0976257\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 330.902i 0.746957i 0.927639 + 0.373478i \(0.121835\pi\)
−0.927639 + 0.373478i \(0.878165\pi\)
\(444\) 0 0
\(445\) 685.377i 1.54017i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −625.698 −1.39354 −0.696768 0.717296i \(-0.745379\pi\)
−0.696768 + 0.717296i \(0.745379\pi\)
\(450\) 0 0
\(451\) −243.983 −0.540982
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −414.646 197.563i −0.911310 0.434205i
\(456\) 0 0
\(457\) 397.689 0.870217 0.435108 0.900378i \(-0.356710\pi\)
0.435108 + 0.900378i \(0.356710\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −71.4288 −0.154943 −0.0774715 0.996995i \(-0.524685\pi\)
−0.0774715 + 0.996995i \(0.524685\pi\)
\(462\) 0 0
\(463\) 88.0481 0.190169 0.0950844 0.995469i \(-0.469688\pi\)
0.0950844 + 0.995469i \(0.469688\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −118.536 −0.253824 −0.126912 0.991914i \(-0.540507\pi\)
−0.126912 + 0.991914i \(0.540507\pi\)
\(468\) 0 0
\(469\) −4.92922 + 10.3454i −0.0105101 + 0.0220585i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 154.465 0.326565
\(474\) 0 0
\(475\) −12.3889 −0.0260819
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 138.101i 0.288311i 0.989555 + 0.144156i \(0.0460466\pi\)
−0.989555 + 0.144156i \(0.953953\pi\)
\(480\) 0 0
\(481\) 585.176i 1.21658i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 543.506i 1.12063i
\(486\) 0 0
\(487\) −311.781 −0.640206 −0.320103 0.947383i \(-0.603718\pi\)
−0.320103 + 0.947383i \(0.603718\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 602.082i 1.22624i −0.789991 0.613118i \(-0.789915\pi\)
0.789991 0.613118i \(-0.210085\pi\)
\(492\) 0 0
\(493\) −747.938 −1.51712
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 63.7856 + 30.3914i 0.128341 + 0.0611498i
\(498\) 0 0
\(499\) 209.915i 0.420671i −0.977629 0.210335i \(-0.932544\pi\)
0.977629 0.210335i \(-0.0674556\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.12961i 0.0161622i −0.999967 0.00808112i \(-0.997428\pi\)
0.999967 0.00808112i \(-0.00257233\pi\)
\(504\) 0 0
\(505\) 119.683 0.236995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −116.510 −0.228899 −0.114449 0.993429i \(-0.536510\pi\)
−0.114449 + 0.993429i \(0.536510\pi\)
\(510\) 0 0
\(511\) −194.006 + 407.179i −0.379659 + 0.796828i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 829.807i 1.61128i
\(516\) 0 0
\(517\) −196.155 −0.379410
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 459.362i 0.881693i −0.897583 0.440846i \(-0.854678\pi\)
0.897583 0.440846i \(-0.145322\pi\)
\(522\) 0 0
\(523\) −392.738 −0.750933 −0.375467 0.926836i \(-0.622518\pi\)
−0.375467 + 0.926836i \(0.622518\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −415.373 −0.788183
\(528\) 0 0
\(529\) −525.250 −0.992911
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 829.561i 1.55640i
\(534\) 0 0
\(535\) 649.006i 1.21309i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 140.024 113.583i 0.259784 0.210729i
\(540\) 0 0
\(541\) 224.719i 0.415378i 0.978195 + 0.207689i \(0.0665942\pi\)
−0.978195 + 0.207689i \(0.933406\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 207.432i 0.380610i
\(546\) 0 0
\(547\) 650.761i 1.18969i 0.803840 + 0.594845i \(0.202787\pi\)
−0.803840 + 0.594845i \(0.797213\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 202.864i 0.368174i
\(552\) 0 0
\(553\) 946.018 + 450.742i 1.71070 + 0.815086i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 269.480i 0.483806i −0.970300 0.241903i \(-0.922228\pi\)
0.970300 0.241903i \(-0.0777715\pi\)
\(558\) 0 0
\(559\) 525.195i 0.939526i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −114.814 −0.203932 −0.101966 0.994788i \(-0.532513\pi\)
−0.101966 + 0.994788i \(0.532513\pi\)
\(564\) 0 0
\(565\) 278.928 0.493678
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −226.624 −0.398285 −0.199143 0.979971i \(-0.563816\pi\)
−0.199143 + 0.979971i \(0.563816\pi\)
\(570\) 0 0
\(571\) 905.094i 1.58510i 0.609805 + 0.792551i \(0.291248\pi\)
−0.609805 + 0.792551i \(0.708752\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.85397 0.00844169
\(576\) 0 0
\(577\) 288.394i 0.499816i −0.968270 0.249908i \(-0.919600\pi\)
0.968270 0.249908i \(-0.0804004\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 82.0851 + 39.1105i 0.141282 + 0.0673158i
\(582\) 0 0
\(583\) −225.660 −0.387067
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 478.167 0.814594 0.407297 0.913296i \(-0.366471\pi\)
0.407297 + 0.913296i \(0.366471\pi\)
\(588\) 0 0
\(589\) 112.662i 0.191277i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 350.708i 0.591414i −0.955279 0.295707i \(-0.904445\pi\)
0.955279 0.295707i \(-0.0955552\pi\)
\(594\) 0 0
\(595\) 287.760 603.950i 0.483629 1.01504i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 781.919 1.30537 0.652687 0.757627i \(-0.273642\pi\)
0.652687 + 0.757627i \(0.273642\pi\)
\(600\) 0 0
\(601\) 125.321i 0.208521i 0.994550 + 0.104260i \(0.0332475\pi\)
−0.994550 + 0.104260i \(0.966752\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 563.597 0.931565
\(606\) 0 0
\(607\) 25.4854i 0.0419859i −0.999780 0.0209929i \(-0.993317\pi\)
0.999780 0.0209929i \(-0.00668275\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 666.943i 1.09156i
\(612\) 0 0
\(613\) 1044.03i 1.70315i 0.524230 + 0.851577i \(0.324353\pi\)
−0.524230 + 0.851577i \(0.675647\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 540.524 0.876052 0.438026 0.898962i \(-0.355678\pi\)
0.438026 + 0.898962i \(0.355678\pi\)
\(618\) 0 0
\(619\) 295.065 0.476680 0.238340 0.971182i \(-0.423397\pi\)
0.238340 + 0.971182i \(0.423397\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −393.471 + 825.817i −0.631574 + 1.32555i
\(624\) 0 0
\(625\) −681.382 −1.09021
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −852.335 −1.35506
\(630\) 0 0
\(631\) −787.813 −1.24852 −0.624258 0.781219i \(-0.714598\pi\)
−0.624258 + 0.781219i \(0.714598\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 231.790 0.365023
\(636\) 0 0
\(637\) −386.191 476.092i −0.606265 0.747397i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1170.55 −1.82613 −0.913066 0.407811i \(-0.866292\pi\)
−0.913066 + 0.407811i \(0.866292\pi\)
\(642\) 0 0
\(643\) 570.395 0.887085 0.443542 0.896253i \(-0.353722\pi\)
0.443542 + 0.896253i \(0.353722\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 869.330i 1.34363i −0.740718 0.671816i \(-0.765515\pi\)
0.740718 0.671816i \(-0.234485\pi\)
\(648\) 0 0
\(649\) 261.045i 0.402227i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1004.79i 1.53872i −0.638813 0.769362i \(-0.720574\pi\)
0.638813 0.769362i \(-0.279426\pi\)
\(654\) 0 0
\(655\) −1008.12 −1.53911
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 323.660i 0.491139i 0.969379 + 0.245569i \(0.0789749\pi\)
−0.969379 + 0.245569i \(0.921025\pi\)
\(660\) 0 0
\(661\) 803.454 1.21551 0.607756 0.794124i \(-0.292070\pi\)
0.607756 + 0.794124i \(0.292070\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −163.810 78.0493i −0.246331 0.117367i
\(666\) 0 0
\(667\) 79.4820i 0.119163i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 301.727i 0.449668i
\(672\) 0 0
\(673\) −336.584 −0.500125 −0.250063 0.968230i \(-0.580451\pi\)
−0.250063 + 0.968230i \(0.580451\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 516.746 0.763289 0.381644 0.924309i \(-0.375358\pi\)
0.381644 + 0.924309i \(0.375358\pi\)
\(678\) 0 0
\(679\) 312.024 654.876i 0.459534 0.964471i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 587.298i 0.859879i 0.902858 + 0.429940i \(0.141465\pi\)
−0.902858 + 0.429940i \(0.858535\pi\)
\(684\) 0 0
\(685\) 1392.32 2.03258
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 767.263i 1.11359i
\(690\) 0 0
\(691\) 1102.12 1.59497 0.797483 0.603342i \(-0.206165\pi\)
0.797483 + 0.603342i \(0.206165\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 81.3753 0.117087
\(696\) 0 0
\(697\) −1208.29 −1.73356
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.2107i 0.0174189i 0.999962 + 0.00870946i \(0.00277234\pi\)
−0.999962 + 0.00870946i \(0.997228\pi\)
\(702\) 0 0
\(703\) 231.180i 0.328847i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 144.207 + 68.7092i 0.203970 + 0.0971841i
\(708\) 0 0
\(709\) 1129.01i 1.59239i −0.605037 0.796197i \(-0.706842\pi\)
0.605037 0.796197i \(-0.293158\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 44.1409i 0.0619087i
\(714\) 0 0
\(715\) 241.436i 0.337672i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 878.237i 1.22147i 0.791835 + 0.610735i \(0.209126\pi\)
−0.791835 + 0.610735i \(0.790874\pi\)
\(720\) 0 0
\(721\) −476.387 + 999.842i −0.660731 + 1.38674i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 102.882i 0.141907i
\(726\) 0 0
\(727\) 226.673i 0.311793i 0.987773 + 0.155896i \(0.0498266\pi\)
−0.987773 + 0.155896i \(0.950173\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 764.970 1.04647
\(732\) 0 0
\(733\) 103.641 0.141393 0.0706964 0.997498i \(-0.477478\pi\)
0.0706964 + 0.997498i \(0.477478\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.02383 0.00817345
\(738\) 0 0
\(739\) 708.603i 0.958867i 0.877578 + 0.479434i \(0.159158\pi\)
−0.877578 + 0.479434i \(0.840842\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −64.3198 −0.0865677 −0.0432838 0.999063i \(-0.513782\pi\)
−0.0432838 + 0.999063i \(0.513782\pi\)
\(744\) 0 0
\(745\) 818.822i 1.09909i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −372.590 + 781.993i −0.497451 + 1.04405i
\(750\) 0 0
\(751\) 500.993 0.667101 0.333551 0.942732i \(-0.391753\pi\)
0.333551 + 0.942732i \(0.391753\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −436.633 −0.578322
\(756\) 0 0
\(757\) 1207.70i 1.59537i 0.603074 + 0.797685i \(0.293942\pi\)
−0.603074 + 0.797685i \(0.706058\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 389.162i 0.511382i −0.966759 0.255691i \(-0.917697\pi\)
0.966759 0.255691i \(-0.0823030\pi\)
\(762\) 0 0
\(763\) −119.086 + 249.937i −0.156076 + 0.327572i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −887.575 −1.15720
\(768\) 0 0
\(769\) 656.498i 0.853704i −0.904322 0.426852i \(-0.859623\pi\)
0.904322 0.426852i \(-0.140377\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 369.776 0.478364 0.239182 0.970975i \(-0.423121\pi\)
0.239182 + 0.970975i \(0.423121\pi\)
\(774\) 0 0
\(775\) 57.1364i 0.0737243i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 327.726i 0.420701i
\(780\) 0 0
\(781\) 37.1404i 0.0475549i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −865.718 −1.10283
\(786\) 0 0
\(787\) 590.922 0.750854 0.375427 0.926852i \(-0.377496\pi\)
0.375427 + 0.926852i \(0.377496\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 336.083 + 160.131i 0.424884 + 0.202441i
\(792\) 0 0
\(793\) 1025.90 1.29369
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1185.20 −1.48708 −0.743539 0.668692i \(-0.766854\pi\)
−0.743539 + 0.668692i \(0.766854\pi\)
\(798\) 0 0
\(799\) −971.431 −1.21581
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 237.088 0.295253
\(804\) 0 0
\(805\) 64.1807 + 30.5797i 0.0797276 + 0.0379872i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 697.293 0.861920 0.430960 0.902371i \(-0.358175\pi\)
0.430960 + 0.902371i \(0.358175\pi\)
\(810\) 0 0
\(811\) −744.052 −0.917450 −0.458725 0.888578i \(-0.651694\pi\)
−0.458725 + 0.888578i \(0.651694\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1087.73i 1.33464i
\(816\) 0 0
\(817\) 207.484i 0.253958i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 71.5020i 0.0870913i −0.999051 0.0435457i \(-0.986135\pi\)
0.999051 0.0435457i \(-0.0138654\pi\)
\(822\) 0 0
\(823\) −1001.05 −1.21635 −0.608174 0.793804i \(-0.708098\pi\)
−0.608174 + 0.793804i \(0.708098\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 504.214i 0.609691i 0.952402 + 0.304845i \(0.0986048\pi\)
−0.952402 + 0.304845i \(0.901395\pi\)
\(828\) 0 0
\(829\) 709.973 0.856421 0.428210 0.903679i \(-0.359144\pi\)
0.428210 + 0.903679i \(0.359144\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 693.448 562.504i 0.832471 0.675275i
\(834\) 0 0
\(835\) 892.069i 1.06835i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 868.501i 1.03516i 0.855634 + 0.517581i \(0.173167\pi\)
−0.855634 + 0.517581i \(0.826833\pi\)
\(840\) 0 0
\(841\) −843.658 −1.00316
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −65.4486 −0.0774539
\(846\) 0 0
\(847\) 679.083 + 323.558i 0.801751 + 0.382004i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 90.5761i 0.106435i
\(852\) 0 0
\(853\) −404.626 −0.474356 −0.237178 0.971466i \(-0.576222\pi\)
−0.237178 + 0.971466i \(0.576222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1427.04i 1.66515i 0.553910 + 0.832577i \(0.313135\pi\)
−0.553910 + 0.832577i \(0.686865\pi\)
\(858\) 0 0
\(859\) 1004.69 1.16960 0.584801 0.811177i \(-0.301173\pi\)
0.584801 + 0.811177i \(0.301173\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −328.400 −0.380533 −0.190267 0.981732i \(-0.560935\pi\)
−0.190267 + 0.981732i \(0.560935\pi\)
\(864\) 0 0
\(865\) −1282.10 −1.48219
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 550.837i 0.633875i
\(870\) 0 0
\(871\) 20.4815i 0.0235150i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −745.498 355.202i −0.851998 0.405945i
\(876\) 0 0
\(877\) 924.919i 1.05464i −0.849667 0.527320i \(-0.823197\pi\)
0.849667 0.527320i \(-0.176803\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1330.68i 1.51042i 0.655483 + 0.755210i \(0.272465\pi\)
−0.655483 + 0.755210i \(0.727535\pi\)
\(882\) 0 0
\(883\) 1431.52i 1.62120i −0.585601 0.810600i \(-0.699141\pi\)
0.585601 0.810600i \(-0.300859\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1257.50i 1.41770i −0.705359 0.708850i \(-0.749214\pi\)
0.705359 0.708850i \(-0.250786\pi\)
\(888\) 0 0
\(889\) 279.286 + 133.069i 0.314157 + 0.149684i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 263.482i 0.295053i
\(894\) 0 0
\(895\) 269.856i 0.301515i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −935.587 −1.04070
\(900\) 0 0
\(901\) −1117.55 −1.24035
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1475.00 1.62983
\(906\) 0 0
\(907\) 1630.83i 1.79805i 0.437899 + 0.899024i \(0.355723\pi\)
−0.437899 + 0.899024i \(0.644277\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −778.173 −0.854197 −0.427098 0.904205i \(-0.640464\pi\)
−0.427098 + 0.904205i \(0.640464\pi\)
\(912\) 0 0
\(913\) 47.7956i 0.0523501i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1214.69 578.754i −1.32463 0.631139i
\(918\) 0 0
\(919\) 116.976 0.127286 0.0636429 0.997973i \(-0.479728\pi\)
0.0636429 + 0.997973i \(0.479728\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −126.280 −0.136815
\(924\) 0 0
\(925\) 117.242i 0.126749i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 631.449i 0.679709i 0.940478 + 0.339854i \(0.110378\pi\)
−0.940478 + 0.339854i \(0.889622\pi\)
\(930\) 0 0
\(931\) −152.569 188.085i −0.163876 0.202024i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −351.662 −0.376109
\(936\) 0 0
\(937\) 50.0533i 0.0534187i −0.999643 0.0267093i \(-0.991497\pi\)
0.999643 0.0267093i \(-0.00850286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −272.536 −0.289623 −0.144812 0.989459i \(-0.546258\pi\)
−0.144812 + 0.989459i \(0.546258\pi\)
\(942\) 0 0
\(943\) 128.403i 0.136164i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1505.37i 1.58962i 0.606858 + 0.794810i \(0.292430\pi\)
−0.606858 + 0.794810i \(0.707570\pi\)
\(948\) 0 0
\(949\) 806.119i 0.849440i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 714.817 0.750070 0.375035 0.927011i \(-0.377631\pi\)
0.375035 + 0.927011i \(0.377631\pi\)
\(954\) 0 0
\(955\) 664.069 0.695360
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1677.62 + 799.322i 1.74934 + 0.833495i
\(960\) 0 0
\(961\) 441.415 0.459329
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1723.36 1.78586
\(966\) 0 0
\(967\) 982.093 1.01561 0.507804 0.861473i \(-0.330457\pi\)
0.507804 + 0.861473i \(0.330457\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 119.012 0.122566 0.0612832 0.998120i \(-0.480481\pi\)
0.0612832 + 0.998120i \(0.480481\pi\)
\(972\) 0 0
\(973\) 98.0498 + 46.7171i 0.100771 + 0.0480134i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1313.25 −1.34417 −0.672083 0.740476i \(-0.734600\pi\)
−0.672083 + 0.740476i \(0.734600\pi\)
\(978\) 0 0
\(979\) 480.848 0.491162
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 59.3222i 0.0603482i 0.999545 + 0.0301741i \(0.00960617\pi\)
−0.999545 + 0.0301741i \(0.990394\pi\)
\(984\) 0 0
\(985\) 137.374i 0.139466i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 81.2920i 0.0821961i
\(990\) 0 0
\(991\) 790.745 0.797927 0.398963 0.916967i \(-0.369370\pi\)
0.398963 + 0.916967i \(0.369370\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1791.61i 1.80062i
\(996\) 0 0
\(997\) −1034.13 −1.03724 −0.518622 0.855004i \(-0.673555\pi\)
−0.518622 + 0.855004i \(0.673555\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2016.3.l.h.433.23 32
3.2 odd 2 672.3.l.a.433.23 32
4.3 odd 2 504.3.l.h.181.6 32
7.6 odd 2 inner 2016.3.l.h.433.9 32
8.3 odd 2 504.3.l.h.181.7 32
8.5 even 2 inner 2016.3.l.h.433.10 32
12.11 even 2 168.3.l.a.13.27 yes 32
21.20 even 2 672.3.l.a.433.7 32
24.5 odd 2 672.3.l.a.433.10 32
24.11 even 2 168.3.l.a.13.26 yes 32
28.27 even 2 504.3.l.h.181.5 32
56.13 odd 2 inner 2016.3.l.h.433.24 32
56.27 even 2 504.3.l.h.181.8 32
84.83 odd 2 168.3.l.a.13.28 yes 32
168.83 odd 2 168.3.l.a.13.25 32
168.125 even 2 672.3.l.a.433.26 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.25 32 168.83 odd 2
168.3.l.a.13.26 yes 32 24.11 even 2
168.3.l.a.13.27 yes 32 12.11 even 2
168.3.l.a.13.28 yes 32 84.83 odd 2
504.3.l.h.181.5 32 28.27 even 2
504.3.l.h.181.6 32 4.3 odd 2
504.3.l.h.181.7 32 8.3 odd 2
504.3.l.h.181.8 32 56.27 even 2
672.3.l.a.433.7 32 21.20 even 2
672.3.l.a.433.10 32 24.5 odd 2
672.3.l.a.433.23 32 3.2 odd 2
672.3.l.a.433.26 32 168.125 even 2
2016.3.l.h.433.9 32 7.6 odd 2 inner
2016.3.l.h.433.10 32 8.5 even 2 inner
2016.3.l.h.433.23 32 1.1 even 1 trivial
2016.3.l.h.433.24 32 56.13 odd 2 inner