Properties

Label 2-504-56.13-c2-0-74
Degree $2$
Conductor $504$
Sign $-0.798 - 0.601i$
Analytic cond. $13.7330$
Root an. cond. $3.70580$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.962 − 1.75i)2-s + (−2.14 − 3.37i)4-s − 1.68·5-s + (5.30 + 4.56i)7-s + (−7.98 + 0.513i)8-s + (−1.61 + 2.94i)10-s − 11.9i·11-s − 25.3·13-s + (13.1 − 4.91i)14-s + (−6.78 + 14.4i)16-s − 11.7i·17-s − 0.0390·19-s + (3.61 + 5.67i)20-s + (−21.0 − 11.5i)22-s − 26.6·23-s + ⋯
L(s)  = 1  + (0.481 − 0.876i)2-s + (−0.536 − 0.843i)4-s − 0.336·5-s + (0.758 + 0.651i)7-s + (−0.997 + 0.0641i)8-s + (−0.161 + 0.294i)10-s − 1.09i·11-s − 1.94·13-s + (0.936 − 0.351i)14-s + (−0.424 + 0.905i)16-s − 0.689i·17-s − 0.00205·19-s + (0.180 + 0.283i)20-s + (−0.955 − 0.524i)22-s − 1.15·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.798 - 0.601i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.798 - 0.601i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(504\)    =    \(2^{3} \cdot 3^{2} \cdot 7\)
Sign: $-0.798 - 0.601i$
Analytic conductor: \(13.7330\)
Root analytic conductor: \(3.70580\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{504} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 504,\ (\ :1),\ -0.798 - 0.601i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6453010317\)
\(L(\frac12)\) \(\approx\) \(0.6453010317\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.962 + 1.75i)T \)
3 \( 1 \)
7 \( 1 + (-5.30 - 4.56i)T \)
good5 \( 1 + 1.68T + 25T^{2} \)
11 \( 1 + 11.9iT - 121T^{2} \)
13 \( 1 + 25.3T + 169T^{2} \)
17 \( 1 + 11.7iT - 289T^{2} \)
19 \( 1 + 0.0390T + 361T^{2} \)
23 \( 1 + 26.6T + 529T^{2} \)
29 \( 1 + 46.0iT - 841T^{2} \)
31 \( 1 - 37.9iT - 961T^{2} \)
37 \( 1 - 19.5iT - 1.36e3T^{2} \)
41 \( 1 - 41.0iT - 1.68e3T^{2} \)
43 \( 1 + 23.0iT - 1.84e3T^{2} \)
47 \( 1 + 56.6iT - 2.20e3T^{2} \)
53 \( 1 - 56.2iT - 2.80e3T^{2} \)
59 \( 1 + 64.4T + 3.48e3T^{2} \)
61 \( 1 - 52.2T + 3.72e3T^{2} \)
67 \( 1 + 55.1iT - 4.48e3T^{2} \)
71 \( 1 - 8.38T + 5.04e3T^{2} \)
73 \( 1 + 117. iT - 5.32e3T^{2} \)
79 \( 1 + 13.2T + 6.24e3T^{2} \)
83 \( 1 + 19.4T + 6.88e3T^{2} \)
89 \( 1 + 36.4iT - 7.92e3T^{2} \)
97 \( 1 + 163. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23743949704508649311042447233, −9.521438878593477110625153887164, −8.487590686609276005051259675261, −7.61425502708314380678966905910, −6.11838446032425916335155144363, −5.19718900905223845674300060800, −4.38308015849817942151377508224, −3.02036300006158309570755848756, −2.02965328620293404968344091679, −0.20466646518853949333310692449, 2.20072284574074135959354743404, 3.93113022499019748090954613369, 4.61266716247275766657987793777, 5.53068354970623796980196701732, 6.91350773257823929840889505778, 7.54445978676735571690676268583, 8.118556912933072051819251749476, 9.449746945777853230603902642404, 10.18765138805881131895907516696, 11.47062800001871984024468705757

Graph of the $Z$-function along the critical line