Properties

Label 504.3.l.h.181.21
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.21
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.962692 - 1.75306i) q^{2} +(-2.14645 - 3.37532i) q^{4} -1.68264 q^{5} +(5.30913 + 4.56214i) q^{7} +(-7.98351 + 0.513465i) q^{8} +(-1.61986 + 2.94977i) q^{10} -11.9925i q^{11} -25.3039 q^{13} +(13.1088 - 4.91531i) q^{14} +(-6.78552 + 14.4899i) q^{16} -11.7219i q^{17} -0.0390239 q^{19} +(3.61170 + 5.67944i) q^{20} +(-21.0236 - 11.5451i) q^{22} -26.6539 q^{23} -22.1687 q^{25} +(-24.3598 + 44.3592i) q^{26} +(4.00287 - 27.7124i) q^{28} -46.0119i q^{29} +37.9501i q^{31} +(18.8693 + 25.8447i) q^{32} +(-20.5492 - 11.2846i) q^{34} +(-8.93335 - 7.67643i) q^{35} +19.5040i q^{37} +(-0.0375680 + 0.0684113i) q^{38} +(13.4334 - 0.863976i) q^{40} +41.0379i q^{41} -23.0681i q^{43} +(-40.4786 + 25.7413i) q^{44} +(-25.6595 + 46.7259i) q^{46} -56.6865i q^{47} +(7.37382 + 48.4420i) q^{49} +(-21.3417 + 38.8631i) q^{50} +(54.3134 + 85.4086i) q^{52} +56.2765i q^{53} +20.1791i q^{55} +(-44.7280 - 33.6958i) q^{56} +(-80.6617 - 44.2953i) q^{58} -64.4331 q^{59} +52.2895 q^{61} +(66.5289 + 36.5343i) q^{62} +(63.4727 - 8.19850i) q^{64} +42.5773 q^{65} -55.1497i q^{67} +(-39.5651 + 25.1604i) q^{68} +(-22.0573 + 8.27068i) q^{70} +8.38597 q^{71} -117.406i q^{73} +(34.1917 + 18.7764i) q^{74} +(0.0837628 + 0.131718i) q^{76} +(54.7115 - 63.6699i) q^{77} -13.2280 q^{79} +(11.4176 - 24.3812i) q^{80} +(71.9420 + 39.5069i) q^{82} -19.4050 q^{83} +19.7237i q^{85} +(-40.4398 - 22.2075i) q^{86} +(6.15774 + 95.7424i) q^{88} -36.4448i q^{89} +(-134.342 - 115.440i) q^{91} +(57.2112 + 89.9654i) q^{92} +(-99.3749 - 54.5717i) q^{94} +0.0656632 q^{95} -163.122i q^{97} +(92.0205 + 33.7080i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.962692 1.75306i 0.481346 0.876531i
\(3\) 0 0
\(4\) −2.14645 3.37532i −0.536612 0.843829i
\(5\) −1.68264 −0.336528 −0.168264 0.985742i \(-0.553816\pi\)
−0.168264 + 0.985742i \(0.553816\pi\)
\(6\) 0 0
\(7\) 5.30913 + 4.56214i 0.758448 + 0.651734i
\(8\) −7.98351 + 0.513465i −0.997938 + 0.0641831i
\(9\) 0 0
\(10\) −1.61986 + 2.94977i −0.161986 + 0.294977i
\(11\) 11.9925i 1.09023i −0.838361 0.545115i \(-0.816486\pi\)
0.838361 0.545115i \(-0.183514\pi\)
\(12\) 0 0
\(13\) −25.3039 −1.94645 −0.973226 0.229851i \(-0.926176\pi\)
−0.973226 + 0.229851i \(0.926176\pi\)
\(14\) 13.1088 4.91531i 0.936340 0.351093i
\(15\) 0 0
\(16\) −6.78552 + 14.4899i −0.424095 + 0.905618i
\(17\) 11.7219i 0.689523i −0.938690 0.344762i \(-0.887960\pi\)
0.938690 0.344762i \(-0.112040\pi\)
\(18\) 0 0
\(19\) −0.0390239 −0.00205389 −0.00102695 0.999999i \(-0.500327\pi\)
−0.00102695 + 0.999999i \(0.500327\pi\)
\(20\) 3.61170 + 5.67944i 0.180585 + 0.283972i
\(21\) 0 0
\(22\) −21.0236 11.5451i −0.955619 0.524778i
\(23\) −26.6539 −1.15887 −0.579433 0.815020i \(-0.696726\pi\)
−0.579433 + 0.815020i \(0.696726\pi\)
\(24\) 0 0
\(25\) −22.1687 −0.886749
\(26\) −24.3598 + 44.3592i −0.936917 + 1.70612i
\(27\) 0 0
\(28\) 4.00287 27.7124i 0.142960 0.989729i
\(29\) 46.0119i 1.58662i −0.608819 0.793309i \(-0.708357\pi\)
0.608819 0.793309i \(-0.291643\pi\)
\(30\) 0 0
\(31\) 37.9501i 1.22420i 0.790781 + 0.612099i \(0.209674\pi\)
−0.790781 + 0.612099i \(0.790326\pi\)
\(32\) 18.8693 + 25.8447i 0.589665 + 0.807648i
\(33\) 0 0
\(34\) −20.5492 11.2846i −0.604388 0.331899i
\(35\) −8.93335 7.67643i −0.255239 0.219326i
\(36\) 0 0
\(37\) 19.5040i 0.527136i 0.964641 + 0.263568i \(0.0848993\pi\)
−0.964641 + 0.263568i \(0.915101\pi\)
\(38\) −0.0375680 + 0.0684113i −0.000988632 + 0.00180030i
\(39\) 0 0
\(40\) 13.4334 0.863976i 0.335834 0.0215994i
\(41\) 41.0379i 1.00092i 0.865758 + 0.500462i \(0.166837\pi\)
−0.865758 + 0.500462i \(0.833163\pi\)
\(42\) 0 0
\(43\) 23.0681i 0.536468i −0.963354 0.268234i \(-0.913560\pi\)
0.963354 0.268234i \(-0.0864400\pi\)
\(44\) −40.4786 + 25.7413i −0.919967 + 0.585030i
\(45\) 0 0
\(46\) −25.6595 + 46.7259i −0.557815 + 1.01578i
\(47\) 56.6865i 1.20610i −0.797705 0.603048i \(-0.793953\pi\)
0.797705 0.603048i \(-0.206047\pi\)
\(48\) 0 0
\(49\) 7.37382 + 48.4420i 0.150486 + 0.988612i
\(50\) −21.3417 + 38.8631i −0.426833 + 0.777263i
\(51\) 0 0
\(52\) 54.3134 + 85.4086i 1.04449 + 1.64247i
\(53\) 56.2765i 1.06182i 0.847428 + 0.530910i \(0.178150\pi\)
−0.847428 + 0.530910i \(0.821850\pi\)
\(54\) 0 0
\(55\) 20.1791i 0.366892i
\(56\) −44.7280 33.6958i −0.798714 0.601710i
\(57\) 0 0
\(58\) −80.6617 44.2953i −1.39072 0.763712i
\(59\) −64.4331 −1.09209 −0.546043 0.837757i \(-0.683867\pi\)
−0.546043 + 0.837757i \(0.683867\pi\)
\(60\) 0 0
\(61\) 52.2895 0.857205 0.428603 0.903493i \(-0.359006\pi\)
0.428603 + 0.903493i \(0.359006\pi\)
\(62\) 66.5289 + 36.5343i 1.07305 + 0.589262i
\(63\) 0 0
\(64\) 63.4727 8.19850i 0.991761 0.128102i
\(65\) 42.5773 0.655035
\(66\) 0 0
\(67\) 55.1497i 0.823130i −0.911380 0.411565i \(-0.864982\pi\)
0.911380 0.411565i \(-0.135018\pi\)
\(68\) −39.5651 + 25.1604i −0.581840 + 0.370006i
\(69\) 0 0
\(70\) −22.0573 + 8.27068i −0.315105 + 0.118153i
\(71\) 8.38597 0.118112 0.0590561 0.998255i \(-0.481191\pi\)
0.0590561 + 0.998255i \(0.481191\pi\)
\(72\) 0 0
\(73\) 117.406i 1.60830i −0.594426 0.804150i \(-0.702621\pi\)
0.594426 0.804150i \(-0.297379\pi\)
\(74\) 34.1917 + 18.7764i 0.462051 + 0.253735i
\(75\) 0 0
\(76\) 0.0837628 + 0.131718i 0.00110214 + 0.00173313i
\(77\) 54.7115 63.6699i 0.710539 0.826882i
\(78\) 0 0
\(79\) −13.2280 −0.167442 −0.0837212 0.996489i \(-0.526681\pi\)
−0.0837212 + 0.996489i \(0.526681\pi\)
\(80\) 11.4176 24.3812i 0.142720 0.304765i
\(81\) 0 0
\(82\) 71.9420 + 39.5069i 0.877341 + 0.481791i
\(83\) −19.4050 −0.233795 −0.116897 0.993144i \(-0.537295\pi\)
−0.116897 + 0.993144i \(0.537295\pi\)
\(84\) 0 0
\(85\) 19.7237i 0.232044i
\(86\) −40.4398 22.2075i −0.470231 0.258227i
\(87\) 0 0
\(88\) 6.15774 + 95.7424i 0.0699743 + 1.08798i
\(89\) 36.4448i 0.409492i −0.978815 0.204746i \(-0.934363\pi\)
0.978815 0.204746i \(-0.0656368\pi\)
\(90\) 0 0
\(91\) −134.342 115.440i −1.47628 1.26857i
\(92\) 57.2112 + 89.9654i 0.621861 + 0.977884i
\(93\) 0 0
\(94\) −99.3749 54.5717i −1.05718 0.580550i
\(95\) 0.0656632 0.000691191
\(96\) 0 0
\(97\) 163.122i 1.68167i −0.541292 0.840835i \(-0.682064\pi\)
0.541292 0.840835i \(-0.317936\pi\)
\(98\) 92.0205 + 33.7080i 0.938985 + 0.343959i
\(99\) 0 0
\(100\) 47.5840 + 74.8265i 0.475840 + 0.748265i
\(101\) −115.558 −1.14414 −0.572072 0.820204i \(-0.693860\pi\)
−0.572072 + 0.820204i \(0.693860\pi\)
\(102\) 0 0
\(103\) 23.6994i 0.230091i 0.993360 + 0.115046i \(0.0367014\pi\)
−0.993360 + 0.115046i \(0.963299\pi\)
\(104\) 202.014 12.9927i 1.94244 0.124929i
\(105\) 0 0
\(106\) 98.6561 + 54.1769i 0.930718 + 0.511103i
\(107\) 96.7170i 0.903898i −0.892044 0.451949i \(-0.850729\pi\)
0.892044 0.451949i \(-0.149271\pi\)
\(108\) 0 0
\(109\) 89.7670i 0.823550i 0.911285 + 0.411775i \(0.135091\pi\)
−0.911285 + 0.411775i \(0.864909\pi\)
\(110\) 35.3752 + 19.4262i 0.321592 + 0.176602i
\(111\) 0 0
\(112\) −102.130 + 45.9723i −0.911876 + 0.410467i
\(113\) 219.679 1.94406 0.972032 0.234848i \(-0.0754594\pi\)
0.972032 + 0.234848i \(0.0754594\pi\)
\(114\) 0 0
\(115\) 44.8489 0.389990
\(116\) −155.305 + 98.7622i −1.33883 + 0.851398i
\(117\) 0 0
\(118\) −62.0292 + 112.955i −0.525671 + 0.957247i
\(119\) 53.4769 62.2331i 0.449386 0.522967i
\(120\) 0 0
\(121\) −22.8206 −0.188600
\(122\) 50.3387 91.6668i 0.412612 0.751367i
\(123\) 0 0
\(124\) 128.094 81.4579i 1.03301 0.656919i
\(125\) 79.3679 0.634943
\(126\) 0 0
\(127\) 47.5294 0.374247 0.187124 0.982336i \(-0.440084\pi\)
0.187124 + 0.982336i \(0.440084\pi\)
\(128\) 46.7322 119.164i 0.365095 0.930970i
\(129\) 0 0
\(130\) 40.9888 74.6406i 0.315298 0.574158i
\(131\) −173.193 −1.32209 −0.661043 0.750348i \(-0.729886\pi\)
−0.661043 + 0.750348i \(0.729886\pi\)
\(132\) 0 0
\(133\) −0.207183 0.178032i −0.00155777 0.00133859i
\(134\) −96.6809 53.0922i −0.721499 0.396211i
\(135\) 0 0
\(136\) 6.01878 + 93.5818i 0.0442558 + 0.688101i
\(137\) 22.7114 0.165777 0.0828884 0.996559i \(-0.473585\pi\)
0.0828884 + 0.996559i \(0.473585\pi\)
\(138\) 0 0
\(139\) −73.1490 −0.526252 −0.263126 0.964761i \(-0.584753\pi\)
−0.263126 + 0.964761i \(0.584753\pi\)
\(140\) −6.73539 + 46.6299i −0.0481099 + 0.333071i
\(141\) 0 0
\(142\) 8.07311 14.7011i 0.0568529 0.103529i
\(143\) 303.457i 2.12208i
\(144\) 0 0
\(145\) 77.4214i 0.533941i
\(146\) −205.820 113.026i −1.40972 0.774149i
\(147\) 0 0
\(148\) 65.8322 41.8644i 0.444812 0.282867i
\(149\) 39.6719i 0.266255i 0.991099 + 0.133127i \(0.0425019\pi\)
−0.991099 + 0.133127i \(0.957498\pi\)
\(150\) 0 0
\(151\) −75.6271 −0.500842 −0.250421 0.968137i \(-0.580569\pi\)
−0.250421 + 0.968137i \(0.580569\pi\)
\(152\) 0.311548 0.0200374i 0.00204966 0.000131825i
\(153\) 0 0
\(154\) −58.9469 157.207i −0.382772 1.02083i
\(155\) 63.8563i 0.411976i
\(156\) 0 0
\(157\) 148.998 0.949034 0.474517 0.880246i \(-0.342623\pi\)
0.474517 + 0.880246i \(0.342623\pi\)
\(158\) −12.7344 + 23.1894i −0.0805978 + 0.146768i
\(159\) 0 0
\(160\) −31.7502 43.4873i −0.198439 0.271796i
\(161\) −141.509 121.599i −0.878939 0.755272i
\(162\) 0 0
\(163\) 9.22009i 0.0565650i 0.999600 + 0.0282825i \(0.00900379\pi\)
−0.999600 + 0.0282825i \(0.990996\pi\)
\(164\) 138.516 88.0858i 0.844610 0.537108i
\(165\) 0 0
\(166\) −18.6810 + 34.0181i −0.112536 + 0.204928i
\(167\) 206.771i 1.23815i −0.785332 0.619075i \(-0.787508\pi\)
0.785332 0.619075i \(-0.212492\pi\)
\(168\) 0 0
\(169\) 471.286 2.78867
\(170\) 34.5769 + 18.9879i 0.203393 + 0.111693i
\(171\) 0 0
\(172\) −77.8622 + 49.5145i −0.452687 + 0.287875i
\(173\) −16.2366 −0.0938532 −0.0469266 0.998898i \(-0.514943\pi\)
−0.0469266 + 0.998898i \(0.514943\pi\)
\(174\) 0 0
\(175\) −117.697 101.137i −0.672553 0.577924i
\(176\) 173.770 + 81.3755i 0.987331 + 0.462361i
\(177\) 0 0
\(178\) −63.8899 35.0851i −0.358932 0.197107i
\(179\) 19.4905i 0.108886i 0.998517 + 0.0544428i \(0.0173382\pi\)
−0.998517 + 0.0544428i \(0.982662\pi\)
\(180\) 0 0
\(181\) 94.8825 0.524212 0.262106 0.965039i \(-0.415583\pi\)
0.262106 + 0.965039i \(0.415583\pi\)
\(182\) −331.703 + 124.376i −1.82254 + 0.683386i
\(183\) 0 0
\(184\) 212.792 13.6858i 1.15648 0.0743796i
\(185\) 32.8182i 0.177396i
\(186\) 0 0
\(187\) −140.575 −0.751738
\(188\) −191.335 + 121.675i −1.01774 + 0.647206i
\(189\) 0 0
\(190\) 0.0632134 0.115112i 0.000332702 0.000605850i
\(191\) −59.6646 −0.312380 −0.156190 0.987727i \(-0.549921\pi\)
−0.156190 + 0.987727i \(0.549921\pi\)
\(192\) 0 0
\(193\) 100.790 0.522228 0.261114 0.965308i \(-0.415910\pi\)
0.261114 + 0.965308i \(0.415910\pi\)
\(194\) −285.963 157.036i −1.47404 0.809465i
\(195\) 0 0
\(196\) 147.680 128.867i 0.753467 0.657486i
\(197\) 28.5190i 0.144766i 0.997377 + 0.0723832i \(0.0230604\pi\)
−0.997377 + 0.0723832i \(0.976940\pi\)
\(198\) 0 0
\(199\) 330.734i 1.66198i −0.556288 0.830990i \(-0.687775\pi\)
0.556288 0.830990i \(-0.312225\pi\)
\(200\) 176.984 11.3829i 0.884921 0.0569143i
\(201\) 0 0
\(202\) −111.247 + 202.581i −0.550729 + 1.00288i
\(203\) 209.913 244.283i 1.03405 1.20337i
\(204\) 0 0
\(205\) 69.0520i 0.336839i
\(206\) 41.5465 + 22.8152i 0.201682 + 0.110754i
\(207\) 0 0
\(208\) 171.700 366.650i 0.825480 1.76274i
\(209\) 0.467995i 0.00223921i
\(210\) 0 0
\(211\) 292.696i 1.38719i −0.720367 0.693593i \(-0.756027\pi\)
0.720367 0.693593i \(-0.243973\pi\)
\(212\) 189.951 120.794i 0.895995 0.569785i
\(213\) 0 0
\(214\) −169.551 93.1087i −0.792294 0.435087i
\(215\) 38.8153i 0.180536i
\(216\) 0 0
\(217\) −173.134 + 201.482i −0.797851 + 0.928490i
\(218\) 157.367 + 86.4180i 0.721867 + 0.396413i
\(219\) 0 0
\(220\) 68.1108 43.3134i 0.309594 0.196879i
\(221\) 296.609i 1.34212i
\(222\) 0 0
\(223\) 180.060i 0.807444i 0.914882 + 0.403722i \(0.132284\pi\)
−0.914882 + 0.403722i \(0.867716\pi\)
\(224\) −17.7276 + 223.297i −0.0791411 + 0.996863i
\(225\) 0 0
\(226\) 211.483 385.111i 0.935767 1.70403i
\(227\) 80.3777 0.354087 0.177043 0.984203i \(-0.443347\pi\)
0.177043 + 0.984203i \(0.443347\pi\)
\(228\) 0 0
\(229\) −25.1773 −0.109944 −0.0549722 0.998488i \(-0.517507\pi\)
−0.0549722 + 0.998488i \(0.517507\pi\)
\(230\) 43.1757 78.6229i 0.187720 0.341838i
\(231\) 0 0
\(232\) 23.6255 + 367.336i 0.101834 + 1.58335i
\(233\) −266.112 −1.14211 −0.571056 0.820911i \(-0.693466\pi\)
−0.571056 + 0.820911i \(0.693466\pi\)
\(234\) 0 0
\(235\) 95.3829i 0.405885i
\(236\) 138.302 + 217.482i 0.586027 + 0.921534i
\(237\) 0 0
\(238\) −57.6167 153.660i −0.242087 0.645628i
\(239\) 171.348 0.716937 0.358469 0.933542i \(-0.383299\pi\)
0.358469 + 0.933542i \(0.383299\pi\)
\(240\) 0 0
\(241\) 88.4386i 0.366965i 0.983023 + 0.183483i \(0.0587371\pi\)
−0.983023 + 0.183483i \(0.941263\pi\)
\(242\) −21.9692 + 40.0059i −0.0907819 + 0.165314i
\(243\) 0 0
\(244\) −112.237 176.494i −0.459987 0.723335i
\(245\) −12.4075 81.5104i −0.0506427 0.332695i
\(246\) 0 0
\(247\) 0.987456 0.00399780
\(248\) −19.4861 302.975i −0.0785728 1.22167i
\(249\) 0 0
\(250\) 76.4069 139.137i 0.305627 0.556547i
\(251\) −250.857 −0.999428 −0.499714 0.866190i \(-0.666562\pi\)
−0.499714 + 0.866190i \(0.666562\pi\)
\(252\) 0 0
\(253\) 319.648i 1.26343i
\(254\) 45.7562 83.3219i 0.180142 0.328039i
\(255\) 0 0
\(256\) −163.913 196.643i −0.640287 0.768136i
\(257\) 259.224i 1.00865i −0.863513 0.504326i \(-0.831741\pi\)
0.863513 0.504326i \(-0.168259\pi\)
\(258\) 0 0
\(259\) −88.9800 + 103.549i −0.343552 + 0.399805i
\(260\) −91.3899 143.712i −0.351500 0.552737i
\(261\) 0 0
\(262\) −166.732 + 303.618i −0.636381 + 1.15885i
\(263\) −16.9363 −0.0643964 −0.0321982 0.999482i \(-0.510251\pi\)
−0.0321982 + 0.999482i \(0.510251\pi\)
\(264\) 0 0
\(265\) 94.6929i 0.357332i
\(266\) −0.511556 + 0.191815i −0.00192314 + 0.000721107i
\(267\) 0 0
\(268\) −186.148 + 118.376i −0.694581 + 0.441702i
\(269\) −46.9302 −0.174462 −0.0872308 0.996188i \(-0.527802\pi\)
−0.0872308 + 0.996188i \(0.527802\pi\)
\(270\) 0 0
\(271\) 485.553i 1.79171i 0.444350 + 0.895853i \(0.353435\pi\)
−0.444350 + 0.895853i \(0.646565\pi\)
\(272\) 169.849 + 79.5391i 0.624444 + 0.292423i
\(273\) 0 0
\(274\) 21.8641 39.8145i 0.0797960 0.145308i
\(275\) 265.859i 0.966760i
\(276\) 0 0
\(277\) 392.536i 1.41710i 0.705662 + 0.708548i \(0.250650\pi\)
−0.705662 + 0.708548i \(0.749350\pi\)
\(278\) −70.4200 + 128.235i −0.253309 + 0.461276i
\(279\) 0 0
\(280\) 75.2611 + 56.6978i 0.268789 + 0.202492i
\(281\) −193.018 −0.686898 −0.343449 0.939171i \(-0.611595\pi\)
−0.343449 + 0.939171i \(0.611595\pi\)
\(282\) 0 0
\(283\) −382.634 −1.35206 −0.676031 0.736873i \(-0.736302\pi\)
−0.676031 + 0.736873i \(0.736302\pi\)
\(284\) −18.0000 28.3053i −0.0633805 0.0996666i
\(285\) 0 0
\(286\) 531.979 + 292.136i 1.86007 + 1.02145i
\(287\) −187.221 + 217.876i −0.652337 + 0.759149i
\(288\) 0 0
\(289\) 151.597 0.524558
\(290\) 135.724 + 74.5330i 0.468015 + 0.257010i
\(291\) 0 0
\(292\) −396.282 + 252.006i −1.35713 + 0.863034i
\(293\) 310.742 1.06055 0.530276 0.847825i \(-0.322088\pi\)
0.530276 + 0.847825i \(0.322088\pi\)
\(294\) 0 0
\(295\) 108.418 0.367517
\(296\) −10.0146 155.710i −0.0338332 0.526049i
\(297\) 0 0
\(298\) 69.5473 + 38.1919i 0.233380 + 0.128161i
\(299\) 674.447 2.25568
\(300\) 0 0
\(301\) 105.240 122.472i 0.349634 0.406883i
\(302\) −72.8056 + 132.579i −0.241078 + 0.439003i
\(303\) 0 0
\(304\) 0.264798 0.565452i 0.000871045 0.00186004i
\(305\) −87.9844 −0.288473
\(306\) 0 0
\(307\) 386.739 1.25974 0.629868 0.776702i \(-0.283109\pi\)
0.629868 + 0.776702i \(0.283109\pi\)
\(308\) −332.342 48.0046i −1.07903 0.155859i
\(309\) 0 0
\(310\) −111.944 61.4740i −0.361110 0.198303i
\(311\) 289.672i 0.931421i 0.884937 + 0.465710i \(0.154201\pi\)
−0.884937 + 0.465710i \(0.845799\pi\)
\(312\) 0 0
\(313\) 205.294i 0.655891i −0.944697 0.327945i \(-0.893644\pi\)
0.944697 0.327945i \(-0.106356\pi\)
\(314\) 143.439 261.203i 0.456814 0.831857i
\(315\) 0 0
\(316\) 28.3931 + 44.6485i 0.0898516 + 0.141293i
\(317\) 348.421i 1.09912i 0.835454 + 0.549560i \(0.185205\pi\)
−0.835454 + 0.549560i \(0.814795\pi\)
\(318\) 0 0
\(319\) −551.799 −1.72978
\(320\) −106.802 + 13.7951i −0.333755 + 0.0431097i
\(321\) 0 0
\(322\) −349.400 + 131.012i −1.08509 + 0.406870i
\(323\) 0.457434i 0.00141621i
\(324\) 0 0
\(325\) 560.955 1.72601
\(326\) 16.1634 + 8.87610i 0.0495809 + 0.0272273i
\(327\) 0 0
\(328\) −21.0715 327.626i −0.0642425 0.998861i
\(329\) 258.612 300.956i 0.786054 0.914761i
\(330\) 0 0
\(331\) 170.055i 0.513761i 0.966443 + 0.256881i \(0.0826947\pi\)
−0.966443 + 0.256881i \(0.917305\pi\)
\(332\) 41.6518 + 65.4979i 0.125457 + 0.197283i
\(333\) 0 0
\(334\) −362.482 199.057i −1.08528 0.595979i
\(335\) 92.7971i 0.277006i
\(336\) 0 0
\(337\) −216.000 −0.640949 −0.320475 0.947257i \(-0.603842\pi\)
−0.320475 + 0.947257i \(0.603842\pi\)
\(338\) 453.703 826.193i 1.34232 2.44436i
\(339\) 0 0
\(340\) 66.5738 42.3359i 0.195805 0.124517i
\(341\) 455.118 1.33466
\(342\) 0 0
\(343\) −181.850 + 290.825i −0.530176 + 0.847888i
\(344\) 11.8447 + 184.164i 0.0344322 + 0.535362i
\(345\) 0 0
\(346\) −15.6308 + 28.4638i −0.0451759 + 0.0822652i
\(347\) 31.9124i 0.0919666i 0.998942 + 0.0459833i \(0.0146421\pi\)
−0.998942 + 0.0459833i \(0.985358\pi\)
\(348\) 0 0
\(349\) −27.2479 −0.0780743 −0.0390372 0.999238i \(-0.512429\pi\)
−0.0390372 + 0.999238i \(0.512429\pi\)
\(350\) −290.605 + 108.966i −0.830299 + 0.311332i
\(351\) 0 0
\(352\) 309.944 226.290i 0.880521 0.642870i
\(353\) 155.127i 0.439454i 0.975561 + 0.219727i \(0.0705166\pi\)
−0.975561 + 0.219727i \(0.929483\pi\)
\(354\) 0 0
\(355\) −14.1106 −0.0397480
\(356\) −123.013 + 78.2268i −0.345541 + 0.219738i
\(357\) 0 0
\(358\) 34.1681 + 18.7634i 0.0954415 + 0.0524116i
\(359\) −310.919 −0.866070 −0.433035 0.901377i \(-0.642557\pi\)
−0.433035 + 0.901377i \(0.642557\pi\)
\(360\) 0 0
\(361\) −360.998 −0.999996
\(362\) 91.3426 166.335i 0.252328 0.459488i
\(363\) 0 0
\(364\) −101.288 + 701.231i −0.278264 + 1.92646i
\(365\) 197.552i 0.541238i
\(366\) 0 0
\(367\) 483.310i 1.31692i −0.752615 0.658461i \(-0.771208\pi\)
0.752615 0.658461i \(-0.228792\pi\)
\(368\) 180.861 386.212i 0.491469 1.04949i
\(369\) 0 0
\(370\) −57.5323 31.5938i −0.155493 0.0853887i
\(371\) −256.741 + 298.779i −0.692024 + 0.805335i
\(372\) 0 0
\(373\) 31.2857i 0.0838758i 0.999120 + 0.0419379i \(0.0133532\pi\)
−0.999120 + 0.0419379i \(0.986647\pi\)
\(374\) −135.330 + 246.437i −0.361846 + 0.658922i
\(375\) 0 0
\(376\) 29.1065 + 452.557i 0.0774110 + 1.20361i
\(377\) 1164.28i 3.08827i
\(378\) 0 0
\(379\) 362.325i 0.956003i 0.878359 + 0.478002i \(0.158639\pi\)
−0.878359 + 0.478002i \(0.841361\pi\)
\(380\) −0.140943 0.221634i −0.000370901 0.000583247i
\(381\) 0 0
\(382\) −57.4387 + 104.596i −0.150363 + 0.273811i
\(383\) 91.9648i 0.240117i −0.992767 0.120058i \(-0.961692\pi\)
0.992767 0.120058i \(-0.0383082\pi\)
\(384\) 0 0
\(385\) −92.0597 + 107.133i −0.239116 + 0.278269i
\(386\) 97.0298 176.691i 0.251373 0.457749i
\(387\) 0 0
\(388\) −550.588 + 350.133i −1.41904 + 0.902404i
\(389\) 33.9094i 0.0871706i −0.999050 0.0435853i \(-0.986122\pi\)
0.999050 0.0435853i \(-0.0138780\pi\)
\(390\) 0 0
\(391\) 312.434i 0.799064i
\(392\) −83.7422 382.951i −0.213628 0.976915i
\(393\) 0 0
\(394\) 49.9955 + 27.4550i 0.126892 + 0.0696827i
\(395\) 22.2579 0.0563490
\(396\) 0 0
\(397\) −467.018 −1.17637 −0.588184 0.808727i \(-0.700157\pi\)
−0.588184 + 0.808727i \(0.700157\pi\)
\(398\) −579.797 318.395i −1.45678 0.799987i
\(399\) 0 0
\(400\) 150.426 321.222i 0.376066 0.803056i
\(401\) 87.5191 0.218252 0.109126 0.994028i \(-0.465195\pi\)
0.109126 + 0.994028i \(0.465195\pi\)
\(402\) 0 0
\(403\) 960.285i 2.38284i
\(404\) 248.040 + 390.046i 0.613961 + 0.965461i
\(405\) 0 0
\(406\) −226.163 603.159i −0.557051 1.48561i
\(407\) 233.902 0.574699
\(408\) 0 0
\(409\) 604.684i 1.47845i 0.673461 + 0.739223i \(0.264807\pi\)
−0.673461 + 0.739223i \(0.735193\pi\)
\(410\) −121.052 66.4758i −0.295250 0.162136i
\(411\) 0 0
\(412\) 79.9930 50.8695i 0.194158 0.123470i
\(413\) −342.084 293.953i −0.828290 0.711750i
\(414\) 0 0
\(415\) 32.6515 0.0786784
\(416\) −477.466 653.972i −1.14775 1.57205i
\(417\) 0 0
\(418\) 0.820424 + 0.450535i 0.00196274 + 0.00107784i
\(419\) −484.795 −1.15703 −0.578514 0.815672i \(-0.696367\pi\)
−0.578514 + 0.815672i \(0.696367\pi\)
\(420\) 0 0
\(421\) 606.917i 1.44161i −0.693139 0.720804i \(-0.743773\pi\)
0.693139 0.720804i \(-0.256227\pi\)
\(422\) −513.115 281.776i −1.21591 0.667717i
\(423\) 0 0
\(424\) −28.8960 449.283i −0.0681509 1.05963i
\(425\) 259.859i 0.611434i
\(426\) 0 0
\(427\) 277.612 + 238.552i 0.650146 + 0.558670i
\(428\) −326.451 + 207.598i −0.762735 + 0.485042i
\(429\) 0 0
\(430\) 68.0456 + 37.3672i 0.158246 + 0.0869004i
\(431\) −774.667 −1.79737 −0.898685 0.438594i \(-0.855477\pi\)
−0.898685 + 0.438594i \(0.855477\pi\)
\(432\) 0 0
\(433\) 469.957i 1.08535i −0.839942 0.542676i \(-0.817411\pi\)
0.839942 0.542676i \(-0.182589\pi\)
\(434\) 186.536 + 497.479i 0.429807 + 1.14627i
\(435\) 0 0
\(436\) 302.992 192.680i 0.694936 0.441927i
\(437\) 1.04014 0.00238018
\(438\) 0 0
\(439\) 19.2308i 0.0438060i −0.999760 0.0219030i \(-0.993028\pi\)
0.999760 0.0219030i \(-0.00697250\pi\)
\(440\) −10.3613 161.100i −0.0235483 0.366136i
\(441\) 0 0
\(442\) 519.974 + 285.543i 1.17641 + 0.646026i
\(443\) 702.218i 1.58514i 0.609779 + 0.792572i \(0.291258\pi\)
−0.609779 + 0.792572i \(0.708742\pi\)
\(444\) 0 0
\(445\) 61.3234i 0.137805i
\(446\) 315.656 + 173.342i 0.707750 + 0.388660i
\(447\) 0 0
\(448\) 374.388 + 246.044i 0.835687 + 0.549206i
\(449\) 488.093 1.08707 0.543533 0.839388i \(-0.317086\pi\)
0.543533 + 0.839388i \(0.317086\pi\)
\(450\) 0 0
\(451\) 492.148 1.09124
\(452\) −471.530 741.487i −1.04321 1.64046i
\(453\) 0 0
\(454\) 77.3790 140.907i 0.170438 0.310368i
\(455\) 226.048 + 194.243i 0.496810 + 0.426908i
\(456\) 0 0
\(457\) −732.332 −1.60248 −0.801239 0.598344i \(-0.795825\pi\)
−0.801239 + 0.598344i \(0.795825\pi\)
\(458\) −24.2380 + 44.1373i −0.0529213 + 0.0963697i
\(459\) 0 0
\(460\) −96.2658 151.379i −0.209274 0.329085i
\(461\) −234.921 −0.509591 −0.254796 0.966995i \(-0.582008\pi\)
−0.254796 + 0.966995i \(0.582008\pi\)
\(462\) 0 0
\(463\) 899.121 1.94195 0.970974 0.239187i \(-0.0768809\pi\)
0.970974 + 0.239187i \(0.0768809\pi\)
\(464\) 666.707 + 312.215i 1.43687 + 0.672877i
\(465\) 0 0
\(466\) −256.184 + 466.511i −0.549751 + 1.00110i
\(467\) −436.886 −0.935516 −0.467758 0.883857i \(-0.654938\pi\)
−0.467758 + 0.883857i \(0.654938\pi\)
\(468\) 0 0
\(469\) 251.601 292.797i 0.536462 0.624301i
\(470\) 167.212 + 91.8244i 0.355770 + 0.195371i
\(471\) 0 0
\(472\) 514.402 33.0841i 1.08983 0.0700935i
\(473\) −276.645 −0.584873
\(474\) 0 0
\(475\) 0.865111 0.00182129
\(476\) −324.842 46.9213i −0.682441 0.0985741i
\(477\) 0 0
\(478\) 164.955 300.384i 0.345095 0.628417i
\(479\) 480.110i 1.00232i −0.865356 0.501158i \(-0.832907\pi\)
0.865356 0.501158i \(-0.167093\pi\)
\(480\) 0 0
\(481\) 493.527i 1.02604i
\(482\) 155.038 + 85.1391i 0.321656 + 0.176637i
\(483\) 0 0
\(484\) 48.9833 + 77.0268i 0.101205 + 0.159146i
\(485\) 274.475i 0.565929i
\(486\) 0 0
\(487\) −338.026 −0.694098 −0.347049 0.937847i \(-0.612816\pi\)
−0.347049 + 0.937847i \(0.612816\pi\)
\(488\) −417.454 + 26.8489i −0.855438 + 0.0550181i
\(489\) 0 0
\(490\) −154.837 56.7183i −0.315994 0.115752i
\(491\) 824.167i 1.67855i −0.543709 0.839274i \(-0.682981\pi\)
0.543709 0.839274i \(-0.317019\pi\)
\(492\) 0 0
\(493\) −539.347 −1.09401
\(494\) 0.950616 1.73107i 0.00192432 0.00350419i
\(495\) 0 0
\(496\) −549.893 257.511i −1.10865 0.519176i
\(497\) 44.5222 + 38.2579i 0.0895820 + 0.0769777i
\(498\) 0 0
\(499\) 617.384i 1.23724i 0.785689 + 0.618621i \(0.212309\pi\)
−0.785689 + 0.618621i \(0.787691\pi\)
\(500\) −170.359 267.892i −0.340718 0.535784i
\(501\) 0 0
\(502\) −241.498 + 439.767i −0.481071 + 0.876030i
\(503\) 995.122i 1.97837i −0.146663 0.989187i \(-0.546853\pi\)
0.146663 0.989187i \(-0.453147\pi\)
\(504\) 0 0
\(505\) 194.443 0.385036
\(506\) 560.362 + 307.722i 1.10743 + 0.608147i
\(507\) 0 0
\(508\) −102.019 160.427i −0.200826 0.315801i
\(509\) 77.0714 0.151417 0.0757086 0.997130i \(-0.475878\pi\)
0.0757086 + 0.997130i \(0.475878\pi\)
\(510\) 0 0
\(511\) 535.622 623.324i 1.04818 1.21981i
\(512\) −502.525 + 98.0438i −0.981494 + 0.191492i
\(513\) 0 0
\(514\) −454.435 249.552i −0.884114 0.485511i
\(515\) 39.8775i 0.0774321i
\(516\) 0 0
\(517\) −679.814 −1.31492
\(518\) 95.8682 + 255.674i 0.185074 + 0.493578i
\(519\) 0 0
\(520\) −339.916 + 21.8619i −0.653684 + 0.0420422i
\(521\) 503.937i 0.967249i −0.875276 0.483624i \(-0.839320\pi\)
0.875276 0.483624i \(-0.160680\pi\)
\(522\) 0 0
\(523\) 499.828 0.955694 0.477847 0.878443i \(-0.341417\pi\)
0.477847 + 0.878443i \(0.341417\pi\)
\(524\) 371.750 + 584.582i 0.709447 + 1.11561i
\(525\) 0 0
\(526\) −16.3044 + 29.6903i −0.0309970 + 0.0564454i
\(527\) 444.847 0.844112
\(528\) 0 0
\(529\) 181.431 0.342969
\(530\) −166.003 91.1601i −0.313212 0.172000i
\(531\) 0 0
\(532\) −0.156208 + 1.08145i −0.000293624 + 0.00203279i
\(533\) 1038.42i 1.94825i
\(534\) 0 0
\(535\) 162.740i 0.304187i
\(536\) 28.3175 + 440.288i 0.0528311 + 0.821433i
\(537\) 0 0
\(538\) −45.1793 + 82.2715i −0.0839764 + 0.152921i
\(539\) 580.942 88.4307i 1.07781 0.164064i
\(540\) 0 0
\(541\) 688.182i 1.27206i 0.771666 + 0.636028i \(0.219424\pi\)
−0.771666 + 0.636028i \(0.780576\pi\)
\(542\) 851.203 + 467.438i 1.57049 + 0.862431i
\(543\) 0 0
\(544\) 302.949 221.184i 0.556892 0.406588i
\(545\) 151.045i 0.277147i
\(546\) 0 0
\(547\) 448.735i 0.820357i −0.912005 0.410178i \(-0.865466\pi\)
0.912005 0.410178i \(-0.134534\pi\)
\(548\) −48.7489 76.6582i −0.0889578 0.139887i
\(549\) 0 0
\(550\) 466.067 + 255.940i 0.847395 + 0.465346i
\(551\) 1.79557i 0.00325874i
\(552\) 0 0
\(553\) −70.2290 60.3477i −0.126996 0.109128i
\(554\) 688.139 + 377.891i 1.24213 + 0.682114i
\(555\) 0 0
\(556\) 157.011 + 246.901i 0.282393 + 0.444067i
\(557\) 540.742i 0.970811i −0.874289 0.485405i \(-0.838672\pi\)
0.874289 0.485405i \(-0.161328\pi\)
\(558\) 0 0
\(559\) 583.713i 1.04421i
\(560\) 171.848 77.3547i 0.306871 0.138133i
\(561\) 0 0
\(562\) −185.817 + 338.373i −0.330636 + 0.602087i
\(563\) 506.381 0.899434 0.449717 0.893171i \(-0.351525\pi\)
0.449717 + 0.893171i \(0.351525\pi\)
\(564\) 0 0
\(565\) −369.641 −0.654231
\(566\) −368.358 + 670.780i −0.650810 + 1.18512i
\(567\) 0 0
\(568\) −66.9494 + 4.30590i −0.117869 + 0.00758081i
\(569\) −704.539 −1.23821 −0.619103 0.785310i \(-0.712504\pi\)
−0.619103 + 0.785310i \(0.712504\pi\)
\(570\) 0 0
\(571\) 585.849i 1.02601i 0.858387 + 0.513003i \(0.171467\pi\)
−0.858387 + 0.513003i \(0.828533\pi\)
\(572\) 1024.26 651.355i 1.79067 1.13873i
\(573\) 0 0
\(574\) 201.714 + 537.957i 0.351418 + 0.937206i
\(575\) 590.883 1.02762
\(576\) 0 0
\(577\) 134.209i 0.232598i 0.993214 + 0.116299i \(0.0371031\pi\)
−0.993214 + 0.116299i \(0.962897\pi\)
\(578\) 145.941 265.759i 0.252494 0.459791i
\(579\) 0 0
\(580\) 261.322 166.181i 0.450555 0.286519i
\(581\) −103.024 88.5281i −0.177321 0.152372i
\(582\) 0 0
\(583\) 674.897 1.15763
\(584\) 60.2839 + 937.311i 0.103226 + 1.60498i
\(585\) 0 0
\(586\) 299.149 544.750i 0.510493 0.929607i
\(587\) 540.615 0.920979 0.460489 0.887665i \(-0.347674\pi\)
0.460489 + 0.887665i \(0.347674\pi\)
\(588\) 0 0
\(589\) 1.48096i 0.00251437i
\(590\) 104.373 190.063i 0.176903 0.322140i
\(591\) 0 0
\(592\) −282.611 132.345i −0.477383 0.223556i
\(593\) 422.070i 0.711754i 0.934533 + 0.355877i \(0.115818\pi\)
−0.934533 + 0.355877i \(0.884182\pi\)
\(594\) 0 0
\(595\) −89.9823 + 104.716i −0.151231 + 0.175993i
\(596\) 133.905 85.1537i 0.224673 0.142875i
\(597\) 0 0
\(598\) 649.285 1182.35i 1.08576 1.97717i
\(599\) −580.079 −0.968412 −0.484206 0.874954i \(-0.660891\pi\)
−0.484206 + 0.874954i \(0.660891\pi\)
\(600\) 0 0
\(601\) 112.203i 0.186694i −0.995634 0.0933471i \(-0.970243\pi\)
0.995634 0.0933471i \(-0.0297566\pi\)
\(602\) −113.387 302.395i −0.188350 0.502317i
\(603\) 0 0
\(604\) 162.330 + 255.265i 0.268758 + 0.422625i
\(605\) 38.3988 0.0634692
\(606\) 0 0
\(607\) 432.839i 0.713078i −0.934280 0.356539i \(-0.883957\pi\)
0.934280 0.356539i \(-0.116043\pi\)
\(608\) −0.736354 1.00856i −0.00121111 0.00165882i
\(609\) 0 0
\(610\) −84.7019 + 154.242i −0.138856 + 0.252856i
\(611\) 1434.39i 2.34761i
\(612\) 0 0
\(613\) 29.6778i 0.0484141i −0.999707 0.0242070i \(-0.992294\pi\)
0.999707 0.0242070i \(-0.00770610\pi\)
\(614\) 372.310 677.977i 0.606369 1.10420i
\(615\) 0 0
\(616\) −404.098 + 536.402i −0.656002 + 0.870782i
\(617\) 465.733 0.754835 0.377417 0.926043i \(-0.376812\pi\)
0.377417 + 0.926043i \(0.376812\pi\)
\(618\) 0 0
\(619\) −903.672 −1.45989 −0.729945 0.683506i \(-0.760454\pi\)
−0.729945 + 0.683506i \(0.760454\pi\)
\(620\) −215.535 + 137.064i −0.347638 + 0.221071i
\(621\) 0 0
\(622\) 507.813 + 278.865i 0.816419 + 0.448336i
\(623\) 166.266 193.490i 0.266880 0.310578i
\(624\) 0 0
\(625\) 420.671 0.673073
\(626\) −359.893 197.635i −0.574909 0.315710i
\(627\) 0 0
\(628\) −319.817 502.916i −0.509263 0.800822i
\(629\) 228.624 0.363472
\(630\) 0 0
\(631\) −125.556 −0.198979 −0.0994897 0.995039i \(-0.531721\pi\)
−0.0994897 + 0.995039i \(0.531721\pi\)
\(632\) 105.605 6.79209i 0.167097 0.0107470i
\(633\) 0 0
\(634\) 610.803 + 335.422i 0.963412 + 0.529057i
\(635\) −79.9748 −0.125945
\(636\) 0 0
\(637\) −186.586 1225.77i −0.292914 1.92429i
\(638\) −531.212 + 967.337i −0.832621 + 1.51620i
\(639\) 0 0
\(640\) −78.6334 + 200.510i −0.122865 + 0.313297i
\(641\) 849.006 1.32450 0.662251 0.749282i \(-0.269601\pi\)
0.662251 + 0.749282i \(0.269601\pi\)
\(642\) 0 0
\(643\) 756.458 1.17645 0.588225 0.808697i \(-0.299827\pi\)
0.588225 + 0.808697i \(0.299827\pi\)
\(644\) −106.692 + 738.644i −0.165671 + 1.14696i
\(645\) 0 0
\(646\) 0.801910 + 0.440368i 0.00124135 + 0.000681685i
\(647\) 544.689i 0.841868i 0.907091 + 0.420934i \(0.138298\pi\)
−0.907091 + 0.420934i \(0.861702\pi\)
\(648\) 0 0
\(649\) 772.715i 1.19062i
\(650\) 540.027 983.388i 0.830810 1.51290i
\(651\) 0 0
\(652\) 31.1207 19.7904i 0.0477312 0.0303534i
\(653\) 170.803i 0.261567i −0.991411 0.130784i \(-0.958251\pi\)
0.991411 0.130784i \(-0.0417493\pi\)
\(654\) 0 0
\(655\) 291.422 0.444918
\(656\) −594.635 278.464i −0.906455 0.424487i
\(657\) 0 0
\(658\) −278.632 743.090i −0.423452 1.12932i
\(659\) 438.353i 0.665180i −0.943072 0.332590i \(-0.892078\pi\)
0.943072 0.332590i \(-0.107922\pi\)
\(660\) 0 0
\(661\) −433.173 −0.655330 −0.327665 0.944794i \(-0.606262\pi\)
−0.327665 + 0.944794i \(0.606262\pi\)
\(662\) 298.117 + 163.711i 0.450328 + 0.247297i
\(663\) 0 0
\(664\) 154.920 9.96377i 0.233313 0.0150057i
\(665\) 0.348615 + 0.299564i 0.000524232 + 0.000450473i
\(666\) 0 0
\(667\) 1226.40i 1.83868i
\(668\) −697.918 + 443.824i −1.04479 + 0.664406i
\(669\) 0 0
\(670\) 162.679 + 89.3350i 0.242804 + 0.133336i
\(671\) 627.083i 0.934551i
\(672\) 0 0
\(673\) 800.284 1.18913 0.594565 0.804048i \(-0.297324\pi\)
0.594565 + 0.804048i \(0.297324\pi\)
\(674\) −207.941 + 378.661i −0.308518 + 0.561812i
\(675\) 0 0
\(676\) −1011.59 1590.74i −1.49644 2.35316i
\(677\) −1235.04 −1.82428 −0.912142 0.409875i \(-0.865572\pi\)
−0.912142 + 0.409875i \(0.865572\pi\)
\(678\) 0 0
\(679\) 744.185 866.037i 1.09600 1.27546i
\(680\) −10.1274 157.464i −0.0148933 0.231565i
\(681\) 0 0
\(682\) 438.138 797.849i 0.642431 1.16987i
\(683\) 716.152i 1.04854i −0.851552 0.524269i \(-0.824338\pi\)
0.851552 0.524269i \(-0.175662\pi\)
\(684\) 0 0
\(685\) −38.2151 −0.0557885
\(686\) 334.769 + 598.770i 0.488001 + 0.872843i
\(687\) 0 0
\(688\) 334.254 + 156.529i 0.485835 + 0.227513i
\(689\) 1424.01i 2.06678i
\(690\) 0 0
\(691\) −66.2153 −0.0958253 −0.0479126 0.998852i \(-0.515257\pi\)
−0.0479126 + 0.998852i \(0.515257\pi\)
\(692\) 34.8510 + 54.8037i 0.0503628 + 0.0791961i
\(693\) 0 0
\(694\) 55.9444 + 30.7218i 0.0806115 + 0.0442677i
\(695\) 123.083 0.177098
\(696\) 0 0
\(697\) 481.042 0.690161
\(698\) −26.2314 + 47.7673i −0.0375808 + 0.0684345i
\(699\) 0 0
\(700\) −88.7386 + 614.349i −0.126769 + 0.877641i
\(701\) 172.520i 0.246106i −0.992400 0.123053i \(-0.960732\pi\)
0.992400 0.123053i \(-0.0392685\pi\)
\(702\) 0 0
\(703\) 0.761123i 0.00108268i
\(704\) −98.3207 761.198i −0.139660 1.08125i
\(705\) 0 0
\(706\) 271.947 + 149.340i 0.385195 + 0.211529i
\(707\) −613.515 527.194i −0.867773 0.745677i
\(708\) 0 0
\(709\) 967.706i 1.36489i −0.730937 0.682444i \(-0.760917\pi\)
0.730937 0.682444i \(-0.239083\pi\)
\(710\) −13.5841 + 24.7367i −0.0191326 + 0.0348404i
\(711\) 0 0
\(712\) 18.7131 + 290.957i 0.0262825 + 0.408647i
\(713\) 1011.52i 1.41868i
\(714\) 0 0
\(715\) 510.609i 0.714138i
\(716\) 65.7866 41.8354i 0.0918808 0.0584293i
\(717\) 0 0
\(718\) −299.319 + 545.060i −0.416879 + 0.759137i
\(719\) 248.215i 0.345222i −0.984990 0.172611i \(-0.944780\pi\)
0.984990 0.172611i \(-0.0552204\pi\)
\(720\) 0 0
\(721\) −108.120 + 125.823i −0.149958 + 0.174512i
\(722\) −347.530 + 632.852i −0.481344 + 0.876527i
\(723\) 0 0
\(724\) −203.660 320.258i −0.281299 0.442346i
\(725\) 1020.03i 1.40693i
\(726\) 0 0
\(727\) 350.160i 0.481651i −0.970568 0.240825i \(-0.922582\pi\)
0.970568 0.240825i \(-0.0774181\pi\)
\(728\) 1131.79 + 852.634i 1.55466 + 1.17120i
\(729\) 0 0
\(730\) 346.320 + 190.182i 0.474412 + 0.260523i
\(731\) −270.402 −0.369907
\(732\) 0 0
\(733\) 1193.91 1.62880 0.814398 0.580306i \(-0.197067\pi\)
0.814398 + 0.580306i \(0.197067\pi\)
\(734\) −847.272 465.279i −1.15432 0.633895i
\(735\) 0 0
\(736\) −502.940 688.863i −0.683343 0.935955i
\(737\) −661.384 −0.897401
\(738\) 0 0
\(739\) 459.023i 0.621141i −0.950550 0.310571i \(-0.899480\pi\)
0.950550 0.310571i \(-0.100520\pi\)
\(740\) −110.772 + 70.4426i −0.149692 + 0.0951927i
\(741\) 0 0
\(742\) 276.616 + 737.715i 0.372798 + 0.994225i
\(743\) −115.842 −0.155911 −0.0779555 0.996957i \(-0.524839\pi\)
−0.0779555 + 0.996957i \(0.524839\pi\)
\(744\) 0 0
\(745\) 66.7535i 0.0896020i
\(746\) 54.8457 + 30.1185i 0.0735197 + 0.0403733i
\(747\) 0 0
\(748\) 301.737 + 474.485i 0.403392 + 0.634339i
\(749\) 441.236 513.484i 0.589101 0.685559i
\(750\) 0 0
\(751\) −995.994 −1.32622 −0.663112 0.748520i \(-0.730765\pi\)
−0.663112 + 0.748520i \(0.730765\pi\)
\(752\) 821.381 + 384.648i 1.09226 + 0.511499i
\(753\) 0 0
\(754\) 2041.05 + 1120.84i 2.70697 + 1.48653i
\(755\) 127.253 0.168547
\(756\) 0 0
\(757\) 389.915i 0.515079i −0.966268 0.257540i \(-0.917088\pi\)
0.966268 0.257540i \(-0.0829118\pi\)
\(758\) 635.178 + 348.808i 0.837966 + 0.460168i
\(759\) 0 0
\(760\) −0.524222 + 0.0337157i −0.000689766 + 4.43628e-5i
\(761\) 859.447i 1.12937i 0.825308 + 0.564683i \(0.191001\pi\)
−0.825308 + 0.564683i \(0.808999\pi\)
\(762\) 0 0
\(763\) −409.529 + 476.585i −0.536736 + 0.624620i
\(764\) 128.067 + 201.387i 0.167627 + 0.263596i
\(765\) 0 0
\(766\) −161.220 88.5338i −0.210470 0.115579i
\(767\) 1630.41 2.12569
\(768\) 0 0
\(769\) 310.638i 0.403951i 0.979391 + 0.201975i \(0.0647361\pi\)
−0.979391 + 0.201975i \(0.935264\pi\)
\(770\) 99.1864 + 264.523i 0.128813 + 0.343536i
\(771\) 0 0
\(772\) −216.341 340.198i −0.280234 0.440672i
\(773\) −968.383 −1.25276 −0.626380 0.779518i \(-0.715464\pi\)
−0.626380 + 0.779518i \(0.715464\pi\)
\(774\) 0 0
\(775\) 841.306i 1.08556i
\(776\) 83.7574 + 1302.29i 0.107935 + 1.67820i
\(777\) 0 0
\(778\) −59.4452 32.6443i −0.0764077 0.0419592i
\(779\) 1.60146i 0.00205579i
\(780\) 0 0
\(781\) 100.569i 0.128769i
\(782\) 547.716 + 300.778i 0.700405 + 0.384626i
\(783\) 0 0
\(784\) −751.954 221.858i −0.959125 0.282983i
\(785\) −250.710 −0.319376
\(786\) 0 0
\(787\) 705.562 0.896522 0.448261 0.893903i \(-0.352044\pi\)
0.448261 + 0.893903i \(0.352044\pi\)
\(788\) 96.2606 61.2145i 0.122158 0.0776834i
\(789\) 0 0
\(790\) 21.4275 39.0194i 0.0271234 0.0493917i
\(791\) 1166.31 + 1002.21i 1.47447 + 1.26701i
\(792\) 0 0
\(793\) −1323.13 −1.66851
\(794\) −449.594 + 818.711i −0.566240 + 1.03112i
\(795\) 0 0
\(796\) −1116.33 + 709.903i −1.40243 + 0.891838i
\(797\) −53.1630 −0.0667039 −0.0333519 0.999444i \(-0.510618\pi\)
−0.0333519 + 0.999444i \(0.510618\pi\)
\(798\) 0 0
\(799\) −664.473 −0.831631
\(800\) −418.308 572.945i −0.522885 0.716181i
\(801\) 0 0
\(802\) 84.2540 153.426i 0.105055 0.191305i
\(803\) −1407.99 −1.75342
\(804\) 0 0
\(805\) 238.109 + 204.607i 0.295787 + 0.254170i
\(806\) −1683.44 924.458i −2.08863 1.14697i
\(807\) 0 0
\(808\) 922.562 59.3352i 1.14178 0.0734347i
\(809\) −1346.92 −1.66492 −0.832460 0.554086i \(-0.813068\pi\)
−0.832460 + 0.554086i \(0.813068\pi\)
\(810\) 0 0
\(811\) −507.939 −0.626313 −0.313156 0.949702i \(-0.601386\pi\)
−0.313156 + 0.949702i \(0.601386\pi\)
\(812\) −1275.10 184.180i −1.57032 0.226822i
\(813\) 0 0
\(814\) 225.176 410.045i 0.276629 0.503741i
\(815\) 15.5141i 0.0190357i
\(816\) 0 0
\(817\) 0.900208i 0.00110185i
\(818\) 1060.05 + 582.125i 1.29590 + 0.711644i
\(819\) 0 0
\(820\) −233.072 + 148.217i −0.284235 + 0.180752i
\(821\) 233.428i 0.284321i −0.989844 0.142160i \(-0.954595\pi\)
0.989844 0.142160i \(-0.0454049\pi\)
\(822\) 0 0
\(823\) 20.9805 0.0254928 0.0127464 0.999919i \(-0.495943\pi\)
0.0127464 + 0.999919i \(0.495943\pi\)
\(824\) −12.1688 189.204i −0.0147680 0.229617i
\(825\) 0 0
\(826\) −844.638 + 316.708i −1.02256 + 0.383424i
\(827\) 337.263i 0.407815i −0.978990 0.203908i \(-0.934636\pi\)
0.978990 0.203908i \(-0.0653642\pi\)
\(828\) 0 0
\(829\) −444.428 −0.536102 −0.268051 0.963405i \(-0.586379\pi\)
−0.268051 + 0.963405i \(0.586379\pi\)
\(830\) 31.4334 57.2402i 0.0378715 0.0689641i
\(831\) 0 0
\(832\) −1606.11 + 207.454i −1.93041 + 0.249344i
\(833\) 567.832 86.4351i 0.681671 0.103764i
\(834\) 0 0
\(835\) 347.921i 0.416672i
\(836\) 1.57963 1.00453i 0.00188951 0.00120159i
\(837\) 0 0
\(838\) −466.708 + 849.875i −0.556931 + 1.01417i
\(839\) 1330.43i 1.58573i 0.609396 + 0.792866i \(0.291412\pi\)
−0.609396 + 0.792866i \(0.708588\pi\)
\(840\) 0 0
\(841\) −1276.10 −1.51736
\(842\) −1063.96 584.274i −1.26361 0.693912i
\(843\) 0 0
\(844\) −987.943 + 628.258i −1.17055 + 0.744381i
\(845\) −793.004 −0.938466
\(846\) 0 0
\(847\) −121.158 104.111i −0.143043 0.122917i
\(848\) −815.439 381.865i −0.961603 0.450313i
\(849\) 0 0
\(850\) 455.550 + 250.165i 0.535941 + 0.294311i
\(851\) 519.858i 0.610879i
\(852\) 0 0
\(853\) −1439.08 −1.68708 −0.843540 0.537066i \(-0.819533\pi\)
−0.843540 + 0.537066i \(0.819533\pi\)
\(854\) 685.451 257.019i 0.802636 0.300959i
\(855\) 0 0
\(856\) 49.6608 + 772.141i 0.0580150 + 0.902034i
\(857\) 895.486i 1.04491i 0.852668 + 0.522454i \(0.174983\pi\)
−0.852668 + 0.522454i \(0.825017\pi\)
\(858\) 0 0
\(859\) 530.971 0.618127 0.309064 0.951041i \(-0.399984\pi\)
0.309064 + 0.951041i \(0.399984\pi\)
\(860\) 131.014 83.3150i 0.152342 0.0968780i
\(861\) 0 0
\(862\) −745.765 + 1358.04i −0.865157 + 1.57545i
\(863\) −597.284 −0.692102 −0.346051 0.938216i \(-0.612478\pi\)
−0.346051 + 0.938216i \(0.612478\pi\)
\(864\) 0 0
\(865\) 27.3203 0.0315842
\(866\) −823.864 452.424i −0.951344 0.522430i
\(867\) 0 0
\(868\) 1051.69 + 151.909i 1.21162 + 0.175011i
\(869\) 158.637i 0.182551i
\(870\) 0 0
\(871\) 1395.50i 1.60218i
\(872\) −46.0922 716.655i −0.0528580 0.821852i
\(873\) 0 0
\(874\) 1.00133 1.82343i 0.00114569 0.00208630i
\(875\) 421.375 + 362.087i 0.481571 + 0.413814i
\(876\) 0 0
\(877\) 1682.09i 1.91801i −0.283396 0.959003i \(-0.591461\pi\)
0.283396 0.959003i \(-0.408539\pi\)
\(878\) −33.7128 18.5134i −0.0383973 0.0210858i
\(879\) 0 0
\(880\) −292.393 136.926i −0.332264 0.155597i
\(881\) 387.244i 0.439551i 0.975550 + 0.219775i \(0.0705325\pi\)
−0.975550 + 0.219775i \(0.929468\pi\)
\(882\) 0 0
\(883\) 848.009i 0.960373i 0.877166 + 0.480187i \(0.159431\pi\)
−0.877166 + 0.480187i \(0.840569\pi\)
\(884\) 1001.15 636.656i 1.13252 0.720199i
\(885\) 0 0
\(886\) 1231.03 + 676.020i 1.38943 + 0.763002i
\(887\) 234.255i 0.264098i 0.991243 + 0.132049i \(0.0421556\pi\)
−0.991243 + 0.132049i \(0.957844\pi\)
\(888\) 0 0
\(889\) 252.340 + 216.836i 0.283847 + 0.243910i
\(890\) 107.504 + 59.0355i 0.120791 + 0.0663320i
\(891\) 0 0
\(892\) 607.760 386.490i 0.681345 0.433284i
\(893\) 2.21213i 0.00247719i
\(894\) 0 0
\(895\) 32.7955i 0.0366430i
\(896\) 791.751 419.460i 0.883650 0.468147i
\(897\) 0 0
\(898\) 469.883 855.657i 0.523255 0.952847i
\(899\) 1746.16 1.94233
\(900\) 0 0
\(901\) 659.667 0.732149
\(902\) 473.787 862.766i 0.525263 0.956503i
\(903\) 0 0
\(904\) −1753.81 + 112.798i −1.94006 + 0.124776i
\(905\) −159.653 −0.176412
\(906\) 0 0
\(907\) 1658.09i 1.82811i −0.405593 0.914054i \(-0.632935\pi\)
0.405593 0.914054i \(-0.367065\pi\)
\(908\) −172.527 271.300i −0.190007 0.298789i
\(909\) 0 0
\(910\) 558.135 209.280i 0.613336 0.229978i
\(911\) −1227.41 −1.34732 −0.673662 0.739039i \(-0.735280\pi\)
−0.673662 + 0.739039i \(0.735280\pi\)
\(912\) 0 0
\(913\) 232.715i 0.254890i
\(914\) −705.011 + 1283.82i −0.771346 + 1.40462i
\(915\) 0 0
\(916\) 54.0417 + 84.9813i 0.0589975 + 0.0927743i
\(917\) −919.506 790.131i −1.00273 0.861648i
\(918\) 0 0
\(919\) 386.961 0.421067 0.210533 0.977587i \(-0.432480\pi\)
0.210533 + 0.977587i \(0.432480\pi\)
\(920\) −358.051 + 23.0283i −0.389186 + 0.0250308i
\(921\) 0 0
\(922\) −226.157 + 411.832i −0.245290 + 0.446672i
\(923\) −212.197 −0.229900
\(924\) 0 0
\(925\) 432.379i 0.467437i
\(926\) 865.577 1576.22i 0.934748 1.70218i
\(927\) 0 0
\(928\) 1189.17 868.212i 1.28143 0.935573i
\(929\) 729.180i 0.784909i −0.919772 0.392454i \(-0.871626\pi\)
0.919772 0.392454i \(-0.128374\pi\)
\(930\) 0 0
\(931\) −0.287755 1.89040i −0.000309082 0.00203050i
\(932\) 571.196 + 898.213i 0.612871 + 0.963748i
\(933\) 0 0
\(934\) −420.586 + 765.888i −0.450307 + 0.820008i
\(935\) 236.537 0.252981
\(936\) 0 0
\(937\) 370.331i 0.395231i 0.980280 + 0.197615i \(0.0633197\pi\)
−0.980280 + 0.197615i \(0.936680\pi\)
\(938\) −271.078 722.945i −0.288996 0.770730i
\(939\) 0 0
\(940\) 321.948 204.734i 0.342497 0.217803i
\(941\) 929.751 0.988045 0.494023 0.869449i \(-0.335526\pi\)
0.494023 + 0.869449i \(0.335526\pi\)
\(942\) 0 0
\(943\) 1093.82i 1.15994i
\(944\) 437.212 933.628i 0.463148 0.989013i
\(945\) 0 0
\(946\) −266.324 + 484.976i −0.281526 + 0.512659i
\(947\) 676.560i 0.714425i 0.934023 + 0.357212i \(0.116273\pi\)
−0.934023 + 0.357212i \(0.883727\pi\)
\(948\) 0 0
\(949\) 2970.82i 3.13048i
\(950\) 0.832835 1.51659i 0.000876669 0.00159641i
\(951\) 0 0
\(952\) −394.978 + 524.297i −0.414893 + 0.550732i
\(953\) 194.019 0.203587 0.101794 0.994806i \(-0.467542\pi\)
0.101794 + 0.994806i \(0.467542\pi\)
\(954\) 0 0
\(955\) 100.394 0.105125
\(956\) −367.790 578.354i −0.384717 0.604972i
\(957\) 0 0
\(958\) −841.662 462.198i −0.878561 0.482461i
\(959\) 120.578 + 103.613i 0.125733 + 0.108042i
\(960\) 0 0
\(961\) −479.211 −0.498659
\(962\) −865.183 475.115i −0.899359 0.493882i
\(963\) 0 0
\(964\) 298.508 189.829i 0.309656 0.196918i
\(965\) −169.593 −0.175744
\(966\) 0 0
\(967\) −1251.92 −1.29465 −0.647324 0.762215i \(-0.724112\pi\)
−0.647324 + 0.762215i \(0.724112\pi\)
\(968\) 182.188 11.7176i 0.188211 0.0121049i
\(969\) 0 0
\(970\) 481.172 + 264.235i 0.496054 + 0.272407i
\(971\) 990.379 1.01996 0.509979 0.860187i \(-0.329653\pi\)
0.509979 + 0.860187i \(0.329653\pi\)
\(972\) 0 0
\(973\) −388.358 333.716i −0.399135 0.342976i
\(974\) −325.415 + 592.580i −0.334101 + 0.608398i
\(975\) 0 0
\(976\) −354.812 + 757.669i −0.363537 + 0.776300i
\(977\) 1149.77 1.17684 0.588419 0.808556i \(-0.299751\pi\)
0.588419 + 0.808556i \(0.299751\pi\)
\(978\) 0 0
\(979\) −437.065 −0.446440
\(980\) −248.491 + 216.837i −0.253563 + 0.221262i
\(981\) 0 0
\(982\) −1444.81 793.419i −1.47130 0.807962i
\(983\) 1524.11i 1.55047i −0.631675 0.775234i \(-0.717632\pi\)
0.631675 0.775234i \(-0.282368\pi\)
\(984\) 0 0
\(985\) 47.9871i 0.0487179i
\(986\) −519.225 + 945.508i −0.526597 + 0.958933i
\(987\) 0 0
\(988\) −2.11952 3.33298i −0.00214527 0.00337346i
\(989\) 614.855i 0.621694i
\(990\) 0 0
\(991\) −624.497 −0.630168 −0.315084 0.949064i \(-0.602033\pi\)
−0.315084 + 0.949064i \(0.602033\pi\)
\(992\) −980.810 + 716.092i −0.988720 + 0.721866i
\(993\) 0 0
\(994\) 109.930 41.2196i 0.110593 0.0414684i
\(995\) 556.506i 0.559302i
\(996\) 0 0
\(997\) −26.7499 −0.0268304 −0.0134152 0.999910i \(-0.504270\pi\)
−0.0134152 + 0.999910i \(0.504270\pi\)
\(998\) 1082.31 + 594.351i 1.08448 + 0.595542i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.21 32
3.2 odd 2 168.3.l.a.13.11 yes 32
4.3 odd 2 2016.3.l.h.433.13 32
7.6 odd 2 inner 504.3.l.h.181.22 32
8.3 odd 2 2016.3.l.h.433.20 32
8.5 even 2 inner 504.3.l.h.181.24 32
12.11 even 2 672.3.l.a.433.21 32
21.20 even 2 168.3.l.a.13.12 yes 32
24.5 odd 2 168.3.l.a.13.10 yes 32
24.11 even 2 672.3.l.a.433.12 32
28.27 even 2 2016.3.l.h.433.19 32
56.13 odd 2 inner 504.3.l.h.181.23 32
56.27 even 2 2016.3.l.h.433.14 32
84.83 odd 2 672.3.l.a.433.5 32
168.83 odd 2 672.3.l.a.433.28 32
168.125 even 2 168.3.l.a.13.9 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.9 32 168.125 even 2
168.3.l.a.13.10 yes 32 24.5 odd 2
168.3.l.a.13.11 yes 32 3.2 odd 2
168.3.l.a.13.12 yes 32 21.20 even 2
504.3.l.h.181.21 32 1.1 even 1 trivial
504.3.l.h.181.22 32 7.6 odd 2 inner
504.3.l.h.181.23 32 56.13 odd 2 inner
504.3.l.h.181.24 32 8.5 even 2 inner
672.3.l.a.433.5 32 84.83 odd 2
672.3.l.a.433.12 32 24.11 even 2
672.3.l.a.433.21 32 12.11 even 2
672.3.l.a.433.28 32 168.83 odd 2
2016.3.l.h.433.13 32 4.3 odd 2
2016.3.l.h.433.14 32 56.27 even 2
2016.3.l.h.433.19 32 28.27 even 2
2016.3.l.h.433.20 32 8.3 odd 2