L(s) = 1 | + (1.84 + 0.762i)2-s + (2.83 + 2.81i)4-s + 2.18·5-s + (−5.50 − 4.32i)7-s + (3.09 + 7.37i)8-s + (4.04 + 1.66i)10-s + 13.7i·11-s + 7.07·13-s + (−6.87 − 12.1i)14-s + (0.0962 + 15.9i)16-s + 27.5i·17-s + 30.2·19-s + (6.20 + 6.16i)20-s + (−10.5 + 25.4i)22-s + 29.0·23-s + ⋯ |
L(s) = 1 | + (0.924 + 0.381i)2-s + (0.709 + 0.704i)4-s + 0.437·5-s + (−0.786 − 0.618i)7-s + (0.386 + 0.922i)8-s + (0.404 + 0.166i)10-s + 1.25i·11-s + 0.544·13-s + (−0.491 − 0.871i)14-s + (0.00601 + 0.999i)16-s + 1.62i·17-s + 1.59·19-s + (0.310 + 0.308i)20-s + (−0.478 + 1.15i)22-s + 1.26·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 - 0.964i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.181924513\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.181924513\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.84 - 0.762i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (5.50 + 4.32i)T \) |
good | 5 | \( 1 - 2.18T + 25T^{2} \) |
| 11 | \( 1 - 13.7iT - 121T^{2} \) |
| 13 | \( 1 - 7.07T + 169T^{2} \) |
| 17 | \( 1 - 27.5iT - 289T^{2} \) |
| 19 | \( 1 - 30.2T + 361T^{2} \) |
| 23 | \( 1 - 29.0T + 529T^{2} \) |
| 29 | \( 1 - 21.2iT - 841T^{2} \) |
| 31 | \( 1 + 45.7iT - 961T^{2} \) |
| 37 | \( 1 - 41.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 60.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 33.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 9.53iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 46.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 95.6T + 3.48e3T^{2} \) |
| 61 | \( 1 + 45.4T + 3.72e3T^{2} \) |
| 67 | \( 1 + 19.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 4.84T + 5.04e3T^{2} \) |
| 73 | \( 1 - 5.02iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 110.T + 6.24e3T^{2} \) |
| 83 | \( 1 - 17.9T + 6.88e3T^{2} \) |
| 89 | \( 1 + 10.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 8.67iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91893197079707619793473040809, −10.10849186484510655630273122324, −9.177953213384447263103098203117, −7.84497100331744984502301989764, −7.07274897012399021931246549708, −6.24094311903312315031871751159, −5.30678050787856300278668972604, −4.12640770641208945932475681800, −3.24913789036361751044289113477, −1.73478634207551566399329354040,
1.01440864888082616513018834139, 2.82088318551848595700071564991, 3.32181472559922168172822832292, 4.96045032823265874501603676909, 5.74457511095359728188037869756, 6.48407036394496885537595072084, 7.59283249008038753538398291495, 9.153829133365995403859170827320, 9.573635435328651332251860738518, 10.78498748855977372923636243349