Properties

Label 504.3.l.h.181.32
Level $504$
Weight $3$
Character 504.181
Analytic conductor $13.733$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,3,Mod(181,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 504.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7330053238\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.32
Character \(\chi\) \(=\) 504.181
Dual form 504.3.l.h.181.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.84891 + 0.762588i) q^{2} +(2.83692 + 2.81991i) q^{4} +2.18588 q^{5} +(-5.50290 - 4.32644i) q^{7} +(3.09477 + 7.37715i) q^{8} +(4.04149 + 1.66693i) q^{10} +13.7904i q^{11} +7.07900 q^{13} +(-6.87506 - 12.1956i) q^{14} +(0.0962226 + 15.9997i) q^{16} +27.5636i q^{17} +30.2138 q^{19} +(6.20116 + 6.16398i) q^{20} +(-10.5164 + 25.4972i) q^{22} +29.0258 q^{23} -20.2219 q^{25} +(13.0884 + 5.39836i) q^{26} +(-3.41110 - 27.7914i) q^{28} +21.2655i q^{29} -45.7050i q^{31} +(-12.0233 + 29.6554i) q^{32} +(-21.0196 + 50.9625i) q^{34} +(-12.0287 - 9.45708i) q^{35} +41.0047i q^{37} +(55.8626 + 23.0407i) q^{38} +(6.76480 + 16.1256i) q^{40} -60.4609i q^{41} -33.6925i q^{43} +(-38.8876 + 39.1222i) q^{44} +(53.6660 + 22.1347i) q^{46} -9.53009i q^{47} +(11.5638 + 47.6160i) q^{49} +(-37.3885 - 15.4210i) q^{50} +(20.0826 + 19.9621i) q^{52} -46.9181i q^{53} +30.1441i q^{55} +(14.8866 - 53.9851i) q^{56} +(-16.2168 + 39.3179i) q^{58} -95.6189 q^{59} -45.4040 q^{61} +(34.8540 - 84.5042i) q^{62} +(-44.8448 + 45.6612i) q^{64} +15.4738 q^{65} -19.4310i q^{67} +(-77.7268 + 78.1956i) q^{68} +(-15.0280 - 26.6582i) q^{70} -4.84963 q^{71} +5.02093i q^{73} +(-31.2697 + 75.8140i) q^{74} +(85.7142 + 85.2003i) q^{76} +(59.6633 - 75.8871i) q^{77} +110.666 q^{79} +(0.210331 + 34.9734i) q^{80} +(46.1067 - 111.787i) q^{82} +17.9504 q^{83} +60.2506i q^{85} +(25.6935 - 62.2944i) q^{86} +(-101.734 + 42.6781i) q^{88} -10.6492i q^{89} +(-38.9550 - 30.6269i) q^{91} +(82.3437 + 81.8500i) q^{92} +(7.26753 - 17.6203i) q^{94} +66.0438 q^{95} +8.67407i q^{97} +(-14.9310 + 96.8559i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 6 q^{4} + 2 q^{8} - 38 q^{14} - 46 q^{16} + 16 q^{22} - 64 q^{23} + 160 q^{25} - 122 q^{28} + 122 q^{32} + 216 q^{44} - 260 q^{46} - 16 q^{49} - 122 q^{50} - 98 q^{56} - 160 q^{58} - 174 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.84891 + 0.762588i 0.924454 + 0.381294i
\(3\) 0 0
\(4\) 2.83692 + 2.81991i 0.709230 + 0.704977i
\(5\) 2.18588 0.437176 0.218588 0.975817i \(-0.429855\pi\)
0.218588 + 0.975817i \(0.429855\pi\)
\(6\) 0 0
\(7\) −5.50290 4.32644i −0.786128 0.618063i
\(8\) 3.09477 + 7.37715i 0.386847 + 0.922144i
\(9\) 0 0
\(10\) 4.04149 + 1.66693i 0.404149 + 0.166693i
\(11\) 13.7904i 1.25367i 0.779151 + 0.626836i \(0.215650\pi\)
−0.779151 + 0.626836i \(0.784350\pi\)
\(12\) 0 0
\(13\) 7.07900 0.544539 0.272269 0.962221i \(-0.412226\pi\)
0.272269 + 0.962221i \(0.412226\pi\)
\(14\) −6.87506 12.1956i −0.491076 0.871117i
\(15\) 0 0
\(16\) 0.0962226 + 15.9997i 0.00601391 + 0.999982i
\(17\) 27.5636i 1.62139i 0.585471 + 0.810693i \(0.300910\pi\)
−0.585471 + 0.810693i \(0.699090\pi\)
\(18\) 0 0
\(19\) 30.2138 1.59020 0.795101 0.606477i \(-0.207418\pi\)
0.795101 + 0.606477i \(0.207418\pi\)
\(20\) 6.20116 + 6.16398i 0.310058 + 0.308199i
\(21\) 0 0
\(22\) −10.5164 + 25.4972i −0.478017 + 1.15896i
\(23\) 29.0258 1.26199 0.630995 0.775787i \(-0.282647\pi\)
0.630995 + 0.775787i \(0.282647\pi\)
\(24\) 0 0
\(25\) −20.2219 −0.808877
\(26\) 13.0884 + 5.39836i 0.503401 + 0.207629i
\(27\) 0 0
\(28\) −3.41110 27.7914i −0.121825 0.992552i
\(29\) 21.2655i 0.733292i 0.930361 + 0.366646i \(0.119494\pi\)
−0.930361 + 0.366646i \(0.880506\pi\)
\(30\) 0 0
\(31\) 45.7050i 1.47435i −0.675700 0.737177i \(-0.736159\pi\)
0.675700 0.737177i \(-0.263841\pi\)
\(32\) −12.0233 + 29.6554i −0.375727 + 0.926730i
\(33\) 0 0
\(34\) −21.0196 + 50.9625i −0.618225 + 1.49890i
\(35\) −12.0287 9.45708i −0.343676 0.270202i
\(36\) 0 0
\(37\) 41.0047i 1.10824i 0.832438 + 0.554118i \(0.186944\pi\)
−0.832438 + 0.554118i \(0.813056\pi\)
\(38\) 55.8626 + 23.0407i 1.47007 + 0.606334i
\(39\) 0 0
\(40\) 6.76480 + 16.1256i 0.169120 + 0.403139i
\(41\) 60.4609i 1.47465i −0.675535 0.737327i \(-0.736087\pi\)
0.675535 0.737327i \(-0.263913\pi\)
\(42\) 0 0
\(43\) 33.6925i 0.783547i −0.920062 0.391774i \(-0.871862\pi\)
0.920062 0.391774i \(-0.128138\pi\)
\(44\) −38.8876 + 39.1222i −0.883810 + 0.889141i
\(45\) 0 0
\(46\) 53.6660 + 22.1347i 1.16665 + 0.481189i
\(47\) 9.53009i 0.202768i −0.994847 0.101384i \(-0.967673\pi\)
0.994847 0.101384i \(-0.0323271\pi\)
\(48\) 0 0
\(49\) 11.5638 + 47.6160i 0.235996 + 0.971754i
\(50\) −37.3885 15.4210i −0.747770 0.308420i
\(51\) 0 0
\(52\) 20.0826 + 19.9621i 0.386203 + 0.383887i
\(53\) 46.9181i 0.885247i −0.896708 0.442624i \(-0.854048\pi\)
0.896708 0.442624i \(-0.145952\pi\)
\(54\) 0 0
\(55\) 30.1441i 0.548075i
\(56\) 14.8866 53.9851i 0.265832 0.964019i
\(57\) 0 0
\(58\) −16.2168 + 39.3179i −0.279600 + 0.677895i
\(59\) −95.6189 −1.62066 −0.810329 0.585975i \(-0.800712\pi\)
−0.810329 + 0.585975i \(0.800712\pi\)
\(60\) 0 0
\(61\) −45.4040 −0.744327 −0.372164 0.928167i \(-0.621384\pi\)
−0.372164 + 0.928167i \(0.621384\pi\)
\(62\) 34.8540 84.5042i 0.562162 1.36297i
\(63\) 0 0
\(64\) −44.8448 + 45.6612i −0.700699 + 0.713457i
\(65\) 15.4738 0.238059
\(66\) 0 0
\(67\) 19.4310i 0.290014i −0.989431 0.145007i \(-0.953679\pi\)
0.989431 0.145007i \(-0.0463205\pi\)
\(68\) −77.7268 + 78.1956i −1.14304 + 1.14994i
\(69\) 0 0
\(70\) −15.0280 26.6582i −0.214686 0.380831i
\(71\) −4.84963 −0.0683047 −0.0341523 0.999417i \(-0.510873\pi\)
−0.0341523 + 0.999417i \(0.510873\pi\)
\(72\) 0 0
\(73\) 5.02093i 0.0687799i 0.999408 + 0.0343899i \(0.0109488\pi\)
−0.999408 + 0.0343899i \(0.989051\pi\)
\(74\) −31.2697 + 75.8140i −0.422564 + 1.02451i
\(75\) 0 0
\(76\) 85.7142 + 85.2003i 1.12782 + 1.12106i
\(77\) 59.6633 75.8871i 0.774848 0.985547i
\(78\) 0 0
\(79\) 110.666 1.40083 0.700416 0.713735i \(-0.252998\pi\)
0.700416 + 0.713735i \(0.252998\pi\)
\(80\) 0.210331 + 34.9734i 0.00262914 + 0.437168i
\(81\) 0 0
\(82\) 46.1067 111.787i 0.562277 1.36325i
\(83\) 17.9504 0.216270 0.108135 0.994136i \(-0.465512\pi\)
0.108135 + 0.994136i \(0.465512\pi\)
\(84\) 0 0
\(85\) 60.2506i 0.708831i
\(86\) 25.6935 62.2944i 0.298762 0.724353i
\(87\) 0 0
\(88\) −101.734 + 42.6781i −1.15607 + 0.484979i
\(89\) 10.6492i 0.119654i −0.998209 0.0598272i \(-0.980945\pi\)
0.998209 0.0598272i \(-0.0190550\pi\)
\(90\) 0 0
\(91\) −38.9550 30.6269i −0.428077 0.336559i
\(92\) 82.3437 + 81.8500i 0.895041 + 0.889674i
\(93\) 0 0
\(94\) 7.26753 17.6203i 0.0773142 0.187450i
\(95\) 66.0438 0.695198
\(96\) 0 0
\(97\) 8.67407i 0.0894234i 0.999000 + 0.0447117i \(0.0142369\pi\)
−0.999000 + 0.0447117i \(0.985763\pi\)
\(98\) −14.9310 + 96.8559i −0.152357 + 0.988326i
\(99\) 0 0
\(100\) −57.3680 57.0240i −0.573680 0.570240i
\(101\) 2.51811 0.0249318 0.0124659 0.999922i \(-0.496032\pi\)
0.0124659 + 0.999922i \(0.496032\pi\)
\(102\) 0 0
\(103\) 123.863i 1.20255i −0.799041 0.601277i \(-0.794659\pi\)
0.799041 0.601277i \(-0.205341\pi\)
\(104\) 21.9079 + 52.2229i 0.210653 + 0.502143i
\(105\) 0 0
\(106\) 35.7792 86.7472i 0.337539 0.818370i
\(107\) 101.168i 0.945494i −0.881198 0.472747i \(-0.843263\pi\)
0.881198 0.472747i \(-0.156737\pi\)
\(108\) 0 0
\(109\) 8.84786i 0.0811730i 0.999176 + 0.0405865i \(0.0129226\pi\)
−0.999176 + 0.0405865i \(0.987077\pi\)
\(110\) −22.9875 + 55.7337i −0.208978 + 0.506670i
\(111\) 0 0
\(112\) 68.6923 88.4611i 0.613324 0.789831i
\(113\) −52.4755 −0.464385 −0.232192 0.972670i \(-0.574590\pi\)
−0.232192 + 0.972670i \(0.574590\pi\)
\(114\) 0 0
\(115\) 63.4468 0.551711
\(116\) −59.9667 + 60.3284i −0.516954 + 0.520072i
\(117\) 0 0
\(118\) −176.790 72.9178i −1.49822 0.617947i
\(119\) 119.252 151.680i 1.00212 1.27462i
\(120\) 0 0
\(121\) −69.1748 −0.571692
\(122\) −83.9478 34.6245i −0.688096 0.283808i
\(123\) 0 0
\(124\) 128.884 129.661i 1.03939 1.04566i
\(125\) −98.8497 −0.790797
\(126\) 0 0
\(127\) −12.5367 −0.0987140 −0.0493570 0.998781i \(-0.515717\pi\)
−0.0493570 + 0.998781i \(0.515717\pi\)
\(128\) −117.735 + 50.2253i −0.919801 + 0.392385i
\(129\) 0 0
\(130\) 28.6097 + 11.8002i 0.220075 + 0.0907705i
\(131\) −17.4890 −0.133504 −0.0667519 0.997770i \(-0.521264\pi\)
−0.0667519 + 0.997770i \(0.521264\pi\)
\(132\) 0 0
\(133\) −166.264 130.718i −1.25010 0.982845i
\(134\) 14.8178 35.9260i 0.110581 0.268105i
\(135\) 0 0
\(136\) −203.341 + 85.3030i −1.49515 + 0.627228i
\(137\) 66.3588 0.484371 0.242186 0.970230i \(-0.422136\pi\)
0.242186 + 0.970230i \(0.422136\pi\)
\(138\) 0 0
\(139\) −136.556 −0.982416 −0.491208 0.871042i \(-0.663444\pi\)
−0.491208 + 0.871042i \(0.663444\pi\)
\(140\) −7.45626 60.7487i −0.0532590 0.433920i
\(141\) 0 0
\(142\) −8.96652 3.69827i −0.0631445 0.0260442i
\(143\) 97.6222i 0.682672i
\(144\) 0 0
\(145\) 46.4837i 0.320578i
\(146\) −3.82890 + 9.28324i −0.0262254 + 0.0635838i
\(147\) 0 0
\(148\) −115.630 + 116.327i −0.781281 + 0.785994i
\(149\) 143.761i 0.964841i −0.875940 0.482420i \(-0.839758\pi\)
0.875940 0.482420i \(-0.160242\pi\)
\(150\) 0 0
\(151\) 213.192 1.41186 0.705932 0.708279i \(-0.250528\pi\)
0.705932 + 0.708279i \(0.250528\pi\)
\(152\) 93.5050 + 222.892i 0.615164 + 1.46640i
\(153\) 0 0
\(154\) 168.183 94.8097i 1.09209 0.615648i
\(155\) 99.9055i 0.644552i
\(156\) 0 0
\(157\) 91.0134 0.579703 0.289851 0.957072i \(-0.406394\pi\)
0.289851 + 0.957072i \(0.406394\pi\)
\(158\) 204.611 + 84.3923i 1.29500 + 0.534129i
\(159\) 0 0
\(160\) −26.2814 + 64.8231i −0.164259 + 0.405144i
\(161\) −159.726 125.578i −0.992086 0.779989i
\(162\) 0 0
\(163\) 201.585i 1.23672i −0.785895 0.618360i \(-0.787797\pi\)
0.785895 0.618360i \(-0.212203\pi\)
\(164\) 170.494 171.523i 1.03960 1.04587i
\(165\) 0 0
\(166\) 33.1886 + 13.6887i 0.199931 + 0.0824623i
\(167\) 196.271i 1.17527i −0.809125 0.587637i \(-0.800059\pi\)
0.809125 0.587637i \(-0.199941\pi\)
\(168\) 0 0
\(169\) −118.888 −0.703478
\(170\) −45.9464 + 111.398i −0.270273 + 0.655282i
\(171\) 0 0
\(172\) 95.0099 95.5830i 0.552383 0.555715i
\(173\) 10.8740 0.0628556 0.0314278 0.999506i \(-0.489995\pi\)
0.0314278 + 0.999506i \(0.489995\pi\)
\(174\) 0 0
\(175\) 111.279 + 87.4890i 0.635881 + 0.499937i
\(176\) −220.642 + 1.32695i −1.25365 + 0.00753947i
\(177\) 0 0
\(178\) 8.12098 19.6895i 0.0456235 0.110615i
\(179\) 113.741i 0.635422i 0.948188 + 0.317711i \(0.102914\pi\)
−0.948188 + 0.317711i \(0.897086\pi\)
\(180\) 0 0
\(181\) 249.908 1.38071 0.690354 0.723471i \(-0.257455\pi\)
0.690354 + 0.723471i \(0.257455\pi\)
\(182\) −48.6685 86.3329i −0.267410 0.474357i
\(183\) 0 0
\(184\) 89.8281 + 214.127i 0.488196 + 1.16374i
\(185\) 89.6314i 0.484494i
\(186\) 0 0
\(187\) −380.112 −2.03269
\(188\) 26.8740 27.0361i 0.142947 0.143809i
\(189\) 0 0
\(190\) 122.109 + 50.3642i 0.642678 + 0.265075i
\(191\) 29.4966 0.154433 0.0772163 0.997014i \(-0.475397\pi\)
0.0772163 + 0.997014i \(0.475397\pi\)
\(192\) 0 0
\(193\) 4.76565 0.0246925 0.0123462 0.999924i \(-0.496070\pi\)
0.0123462 + 0.999924i \(0.496070\pi\)
\(194\) −6.61474 + 16.0376i −0.0340966 + 0.0826678i
\(195\) 0 0
\(196\) −101.467 + 167.691i −0.517689 + 0.855569i
\(197\) 371.925i 1.88794i 0.330028 + 0.943971i \(0.392942\pi\)
−0.330028 + 0.943971i \(0.607058\pi\)
\(198\) 0 0
\(199\) 245.194i 1.23213i −0.787695 0.616065i \(-0.788726\pi\)
0.787695 0.616065i \(-0.211274\pi\)
\(200\) −62.5823 149.180i −0.312911 0.745901i
\(201\) 0 0
\(202\) 4.65575 + 1.92028i 0.0230483 + 0.00950634i
\(203\) 92.0038 117.022i 0.453221 0.576462i
\(204\) 0 0
\(205\) 132.160i 0.644684i
\(206\) 94.4564 229.011i 0.458526 1.11170i
\(207\) 0 0
\(208\) 0.681160 + 113.262i 0.00327481 + 0.544529i
\(209\) 416.660i 1.99359i
\(210\) 0 0
\(211\) 303.979i 1.44066i 0.693633 + 0.720328i \(0.256009\pi\)
−0.693633 + 0.720328i \(0.743991\pi\)
\(212\) 132.305 133.103i 0.624079 0.627844i
\(213\) 0 0
\(214\) 77.1494 187.050i 0.360511 0.874065i
\(215\) 73.6478i 0.342548i
\(216\) 0 0
\(217\) −197.740 + 251.510i −0.911244 + 1.15903i
\(218\) −6.74727 + 16.3589i −0.0309508 + 0.0750407i
\(219\) 0 0
\(220\) −85.0037 + 85.5164i −0.386380 + 0.388711i
\(221\) 195.123i 0.882907i
\(222\) 0 0
\(223\) 342.621i 1.53642i −0.640200 0.768208i \(-0.721149\pi\)
0.640200 0.768208i \(-0.278851\pi\)
\(224\) 194.465 111.172i 0.868148 0.496306i
\(225\) 0 0
\(226\) −97.0223 40.0172i −0.429302 0.177067i
\(227\) −337.680 −1.48758 −0.743788 0.668416i \(-0.766973\pi\)
−0.743788 + 0.668416i \(0.766973\pi\)
\(228\) 0 0
\(229\) 327.787 1.43138 0.715692 0.698416i \(-0.246111\pi\)
0.715692 + 0.698416i \(0.246111\pi\)
\(230\) 117.307 + 48.3838i 0.510032 + 0.210364i
\(231\) 0 0
\(232\) −156.879 + 65.8118i −0.676201 + 0.283672i
\(233\) 226.032 0.970093 0.485047 0.874488i \(-0.338803\pi\)
0.485047 + 0.874488i \(0.338803\pi\)
\(234\) 0 0
\(235\) 20.8316i 0.0886452i
\(236\) −271.263 269.637i −1.14942 1.14253i
\(237\) 0 0
\(238\) 336.155 189.501i 1.41242 0.796224i
\(239\) 13.0451 0.0545818 0.0272909 0.999628i \(-0.491312\pi\)
0.0272909 + 0.999628i \(0.491312\pi\)
\(240\) 0 0
\(241\) 36.2348i 0.150352i −0.997170 0.0751759i \(-0.976048\pi\)
0.997170 0.0751759i \(-0.0239518\pi\)
\(242\) −127.898 52.7518i −0.528503 0.217983i
\(243\) 0 0
\(244\) −128.807 128.035i −0.527899 0.524734i
\(245\) 25.2770 + 104.083i 0.103172 + 0.424827i
\(246\) 0 0
\(247\) 213.884 0.865926
\(248\) 337.172 141.446i 1.35957 0.570349i
\(249\) 0 0
\(250\) −182.764 75.3816i −0.731056 0.301526i
\(251\) 489.836 1.95154 0.975769 0.218805i \(-0.0702158\pi\)
0.975769 + 0.218805i \(0.0702158\pi\)
\(252\) 0 0
\(253\) 400.276i 1.58212i
\(254\) −23.1791 9.56031i −0.0912565 0.0376390i
\(255\) 0 0
\(256\) −255.981 + 3.07907i −0.999928 + 0.0120276i
\(257\) 76.9880i 0.299564i 0.988719 + 0.149782i \(0.0478572\pi\)
−0.988719 + 0.149782i \(0.952143\pi\)
\(258\) 0 0
\(259\) 177.405 225.645i 0.684960 0.871216i
\(260\) 43.8980 + 43.6348i 0.168839 + 0.167826i
\(261\) 0 0
\(262\) −32.3355 13.3369i −0.123418 0.0509042i
\(263\) −36.4215 −0.138485 −0.0692424 0.997600i \(-0.522058\pi\)
−0.0692424 + 0.997600i \(0.522058\pi\)
\(264\) 0 0
\(265\) 102.557i 0.387009i
\(266\) −207.722 368.477i −0.780909 1.38525i
\(267\) 0 0
\(268\) 54.7935 55.1240i 0.204453 0.205687i
\(269\) −64.2746 −0.238939 −0.119470 0.992838i \(-0.538119\pi\)
−0.119470 + 0.992838i \(0.538119\pi\)
\(270\) 0 0
\(271\) 477.989i 1.76380i 0.471441 + 0.881898i \(0.343734\pi\)
−0.471441 + 0.881898i \(0.656266\pi\)
\(272\) −441.009 + 2.65224i −1.62136 + 0.00975087i
\(273\) 0 0
\(274\) 122.691 + 50.6044i 0.447779 + 0.184688i
\(275\) 278.868i 1.01407i
\(276\) 0 0
\(277\) 320.075i 1.15551i −0.816211 0.577753i \(-0.803930\pi\)
0.816211 0.577753i \(-0.196070\pi\)
\(278\) −252.479 104.136i −0.908198 0.374589i
\(279\) 0 0
\(280\) 32.5403 118.005i 0.116215 0.421446i
\(281\) −292.624 −1.04137 −0.520683 0.853750i \(-0.674323\pi\)
−0.520683 + 0.853750i \(0.674323\pi\)
\(282\) 0 0
\(283\) 262.188 0.926458 0.463229 0.886239i \(-0.346691\pi\)
0.463229 + 0.886239i \(0.346691\pi\)
\(284\) −13.7580 13.6755i −0.0484437 0.0481532i
\(285\) 0 0
\(286\) −74.4455 + 180.494i −0.260299 + 0.631099i
\(287\) −261.580 + 332.710i −0.911430 + 1.15927i
\(288\) 0 0
\(289\) −470.751 −1.62889
\(290\) −35.4479 + 85.9441i −0.122234 + 0.296359i
\(291\) 0 0
\(292\) −14.1586 + 14.2440i −0.0484883 + 0.0487807i
\(293\) −533.907 −1.82221 −0.911104 0.412175i \(-0.864769\pi\)
−0.911104 + 0.412175i \(0.864769\pi\)
\(294\) 0 0
\(295\) −209.011 −0.708513
\(296\) −302.498 + 126.900i −1.02195 + 0.428717i
\(297\) 0 0
\(298\) 109.631 265.801i 0.367888 0.891951i
\(299\) 205.473 0.687202
\(300\) 0 0
\(301\) −145.769 + 185.407i −0.484282 + 0.615969i
\(302\) 394.171 + 162.577i 1.30520 + 0.538335i
\(303\) 0 0
\(304\) 2.90725 + 483.413i 0.00956333 + 1.59017i
\(305\) −99.2476 −0.325402
\(306\) 0 0
\(307\) −72.1659 −0.235068 −0.117534 0.993069i \(-0.537499\pi\)
−0.117534 + 0.993069i \(0.537499\pi\)
\(308\) 383.255 47.0404i 1.24433 0.152729i
\(309\) 0 0
\(310\) 76.1867 184.716i 0.245764 0.595858i
\(311\) 243.116i 0.781725i 0.920449 + 0.390862i \(0.127823\pi\)
−0.920449 + 0.390862i \(0.872177\pi\)
\(312\) 0 0
\(313\) 170.316i 0.544142i 0.962277 + 0.272071i \(0.0877085\pi\)
−0.962277 + 0.272071i \(0.912292\pi\)
\(314\) 168.275 + 69.4057i 0.535909 + 0.221037i
\(315\) 0 0
\(316\) 313.950 + 312.067i 0.993512 + 0.987555i
\(317\) 70.0039i 0.220832i −0.993885 0.110416i \(-0.964782\pi\)
0.993885 0.110416i \(-0.0352184\pi\)
\(318\) 0 0
\(319\) −293.259 −0.919307
\(320\) −98.0252 + 99.8099i −0.306329 + 0.311906i
\(321\) 0 0
\(322\) −199.554 353.988i −0.619732 1.09934i
\(323\) 832.801i 2.57833i
\(324\) 0 0
\(325\) −143.151 −0.440465
\(326\) 153.726 372.713i 0.471554 1.14329i
\(327\) 0 0
\(328\) 446.029 187.113i 1.35984 0.570465i
\(329\) −41.2314 + 52.4431i −0.125323 + 0.159402i
\(330\) 0 0
\(331\) 138.345i 0.417960i 0.977920 + 0.208980i \(0.0670143\pi\)
−0.977920 + 0.208980i \(0.932986\pi\)
\(332\) 50.9238 + 50.6184i 0.153385 + 0.152465i
\(333\) 0 0
\(334\) 149.674 362.886i 0.448125 1.08649i
\(335\) 42.4737i 0.126787i
\(336\) 0 0
\(337\) −306.172 −0.908521 −0.454261 0.890869i \(-0.650097\pi\)
−0.454261 + 0.890869i \(0.650097\pi\)
\(338\) −219.812 90.6624i −0.650333 0.268232i
\(339\) 0 0
\(340\) −169.901 + 170.926i −0.499710 + 0.502724i
\(341\) 630.289 1.84835
\(342\) 0 0
\(343\) 142.373 312.056i 0.415083 0.909784i
\(344\) 248.555 104.271i 0.722543 0.303113i
\(345\) 0 0
\(346\) 20.1050 + 8.29239i 0.0581071 + 0.0239665i
\(347\) 350.108i 1.00896i −0.863424 0.504478i \(-0.831685\pi\)
0.863424 0.504478i \(-0.168315\pi\)
\(348\) 0 0
\(349\) 331.132 0.948803 0.474402 0.880308i \(-0.342664\pi\)
0.474402 + 0.880308i \(0.342664\pi\)
\(350\) 139.027 + 246.619i 0.397220 + 0.704627i
\(351\) 0 0
\(352\) −408.959 165.806i −1.16182 0.471039i
\(353\) 94.0398i 0.266402i −0.991089 0.133201i \(-0.957474\pi\)
0.991089 0.133201i \(-0.0425256\pi\)
\(354\) 0 0
\(355\) −10.6007 −0.0298612
\(356\) 30.0299 30.2110i 0.0843536 0.0848625i
\(357\) 0 0
\(358\) −86.7372 + 210.296i −0.242283 + 0.587418i
\(359\) 273.140 0.760835 0.380417 0.924815i \(-0.375780\pi\)
0.380417 + 0.924815i \(0.375780\pi\)
\(360\) 0 0
\(361\) 551.876 1.52874
\(362\) 462.057 + 190.577i 1.27640 + 0.526456i
\(363\) 0 0
\(364\) −24.1472 196.736i −0.0663385 0.540483i
\(365\) 10.9752i 0.0300689i
\(366\) 0 0
\(367\) 17.5525i 0.0478270i −0.999714 0.0239135i \(-0.992387\pi\)
0.999714 0.0239135i \(-0.00761263\pi\)
\(368\) 2.79293 + 464.404i 0.00758949 + 1.26197i
\(369\) 0 0
\(370\) −68.3518 + 165.720i −0.184735 + 0.447892i
\(371\) −202.988 + 258.186i −0.547139 + 0.695918i
\(372\) 0 0
\(373\) 282.579i 0.757584i 0.925482 + 0.378792i \(0.123660\pi\)
−0.925482 + 0.378792i \(0.876340\pi\)
\(374\) −702.793 289.869i −1.87912 0.775051i
\(375\) 0 0
\(376\) 70.3049 29.4935i 0.186981 0.0784401i
\(377\) 150.538i 0.399306i
\(378\) 0 0
\(379\) 712.398i 1.87968i 0.341618 + 0.939839i \(0.389025\pi\)
−0.341618 + 0.939839i \(0.610975\pi\)
\(380\) 187.361 + 186.237i 0.493055 + 0.490099i
\(381\) 0 0
\(382\) 54.5366 + 22.4938i 0.142766 + 0.0588842i
\(383\) 394.452i 1.02990i −0.857220 0.514950i \(-0.827810\pi\)
0.857220 0.514950i \(-0.172190\pi\)
\(384\) 0 0
\(385\) 130.417 165.880i 0.338745 0.430857i
\(386\) 8.81125 + 3.63423i 0.0228271 + 0.00941510i
\(387\) 0 0
\(388\) −24.4601 + 24.6076i −0.0630415 + 0.0634217i
\(389\) 365.323i 0.939133i −0.882897 0.469567i \(-0.844410\pi\)
0.882897 0.469567i \(-0.155590\pi\)
\(390\) 0 0
\(391\) 800.054i 2.04617i
\(392\) −315.483 + 232.668i −0.804803 + 0.593542i
\(393\) 0 0
\(394\) −283.625 + 687.654i −0.719861 + 1.74532i
\(395\) 241.902 0.612410
\(396\) 0 0
\(397\) −326.289 −0.821886 −0.410943 0.911661i \(-0.634800\pi\)
−0.410943 + 0.911661i \(0.634800\pi\)
\(398\) 186.982 453.341i 0.469804 1.13905i
\(399\) 0 0
\(400\) −1.94581 323.545i −0.00486451 0.808863i
\(401\) −554.438 −1.38264 −0.691319 0.722550i \(-0.742970\pi\)
−0.691319 + 0.722550i \(0.742970\pi\)
\(402\) 0 0
\(403\) 323.545i 0.802842i
\(404\) 7.14368 + 7.10084i 0.0176824 + 0.0175763i
\(405\) 0 0
\(406\) 259.346 146.201i 0.638783 0.360102i
\(407\) −565.471 −1.38936
\(408\) 0 0
\(409\) 149.560i 0.365671i 0.983143 + 0.182836i \(0.0585277\pi\)
−0.983143 + 0.182836i \(0.941472\pi\)
\(410\) 100.784 244.352i 0.245814 0.595980i
\(411\) 0 0
\(412\) 349.282 351.389i 0.847773 0.852887i
\(413\) 526.181 + 413.689i 1.27405 + 1.00167i
\(414\) 0 0
\(415\) 39.2374 0.0945478
\(416\) −85.1128 + 209.930i −0.204598 + 0.504640i
\(417\) 0 0
\(418\) −317.740 + 770.367i −0.760144 + 1.84298i
\(419\) −88.8842 −0.212134 −0.106067 0.994359i \(-0.533826\pi\)
−0.106067 + 0.994359i \(0.533826\pi\)
\(420\) 0 0
\(421\) 426.991i 1.01423i 0.861879 + 0.507115i \(0.169288\pi\)
−0.861879 + 0.507115i \(0.830712\pi\)
\(422\) −231.810 + 562.028i −0.549314 + 1.33182i
\(423\) 0 0
\(424\) 346.122 145.201i 0.816325 0.342455i
\(425\) 557.389i 1.31150i
\(426\) 0 0
\(427\) 249.853 + 196.438i 0.585137 + 0.460041i
\(428\) 285.284 287.005i 0.666552 0.670572i
\(429\) 0 0
\(430\) 56.1629 136.168i 0.130611 0.316670i
\(431\) −230.518 −0.534846 −0.267423 0.963579i \(-0.586172\pi\)
−0.267423 + 0.963579i \(0.586172\pi\)
\(432\) 0 0
\(433\) 104.206i 0.240661i 0.992734 + 0.120331i \(0.0383955\pi\)
−0.992734 + 0.120331i \(0.961605\pi\)
\(434\) −557.401 + 314.224i −1.28433 + 0.724019i
\(435\) 0 0
\(436\) −24.9502 + 25.1007i −0.0572252 + 0.0575703i
\(437\) 876.979 2.00682
\(438\) 0 0
\(439\) 23.9344i 0.0545203i −0.999628 0.0272601i \(-0.991322\pi\)
0.999628 0.0272601i \(-0.00867825\pi\)
\(440\) −222.378 + 93.2892i −0.505404 + 0.212021i
\(441\) 0 0
\(442\) −148.798 + 360.764i −0.336647 + 0.816207i
\(443\) 145.095i 0.327528i 0.986500 + 0.163764i \(0.0523635\pi\)
−0.986500 + 0.163764i \(0.947637\pi\)
\(444\) 0 0
\(445\) 23.2780i 0.0523100i
\(446\) 261.278 633.474i 0.585826 1.42035i
\(447\) 0 0
\(448\) 444.327 57.2508i 0.991801 0.127792i
\(449\) −188.122 −0.418981 −0.209490 0.977811i \(-0.567181\pi\)
−0.209490 + 0.977811i \(0.567181\pi\)
\(450\) 0 0
\(451\) 833.779 1.84873
\(452\) −148.869 147.976i −0.329355 0.327381i
\(453\) 0 0
\(454\) −624.339 257.511i −1.37520 0.567204i
\(455\) −85.1510 66.9467i −0.187145 0.147136i
\(456\) 0 0
\(457\) 725.123 1.58670 0.793351 0.608765i \(-0.208335\pi\)
0.793351 + 0.608765i \(0.208335\pi\)
\(458\) 606.048 + 249.966i 1.32325 + 0.545778i
\(459\) 0 0
\(460\) 179.993 + 178.914i 0.391290 + 0.388944i
\(461\) 104.422 0.226511 0.113256 0.993566i \(-0.463872\pi\)
0.113256 + 0.993566i \(0.463872\pi\)
\(462\) 0 0
\(463\) −68.1610 −0.147216 −0.0736080 0.997287i \(-0.523451\pi\)
−0.0736080 + 0.997287i \(0.523451\pi\)
\(464\) −340.241 + 2.04622i −0.733279 + 0.00440995i
\(465\) 0 0
\(466\) 417.912 + 172.369i 0.896806 + 0.369891i
\(467\) −8.55407 −0.0183171 −0.00915853 0.999958i \(-0.502915\pi\)
−0.00915853 + 0.999958i \(0.502915\pi\)
\(468\) 0 0
\(469\) −84.0669 + 106.927i −0.179247 + 0.227988i
\(470\) 15.8860 38.5158i 0.0337999 0.0819484i
\(471\) 0 0
\(472\) −295.919 705.395i −0.626946 1.49448i
\(473\) 464.633 0.982311
\(474\) 0 0
\(475\) −610.982 −1.28628
\(476\) 766.032 94.0222i 1.60931 0.197526i
\(477\) 0 0
\(478\) 24.1191 + 9.94800i 0.0504584 + 0.0208117i
\(479\) 210.356i 0.439156i 0.975595 + 0.219578i \(0.0704681\pi\)
−0.975595 + 0.219578i \(0.929532\pi\)
\(480\) 0 0
\(481\) 290.273i 0.603477i
\(482\) 27.6322 66.9948i 0.0573283 0.138993i
\(483\) 0 0
\(484\) −196.243 195.067i −0.405461 0.403030i
\(485\) 18.9605i 0.0390937i
\(486\) 0 0
\(487\) −844.714 −1.73453 −0.867263 0.497850i \(-0.834123\pi\)
−0.867263 + 0.497850i \(0.834123\pi\)
\(488\) −140.515 334.952i −0.287941 0.686377i
\(489\) 0 0
\(490\) −32.6373 + 211.715i −0.0666067 + 0.432072i
\(491\) 399.255i 0.813146i 0.913618 + 0.406573i \(0.133276\pi\)
−0.913618 + 0.406573i \(0.866724\pi\)
\(492\) 0 0
\(493\) −586.152 −1.18895
\(494\) 395.451 + 163.105i 0.800509 + 0.330172i
\(495\) 0 0
\(496\) 731.266 4.39785i 1.47433 0.00886663i
\(497\) 26.6870 + 20.9817i 0.0536962 + 0.0422166i
\(498\) 0 0
\(499\) 453.416i 0.908650i −0.890836 0.454325i \(-0.849881\pi\)
0.890836 0.454325i \(-0.150119\pi\)
\(500\) −280.429 278.747i −0.560857 0.557494i
\(501\) 0 0
\(502\) 905.661 + 373.543i 1.80411 + 0.744109i
\(503\) 424.590i 0.844116i 0.906569 + 0.422058i \(0.138692\pi\)
−0.906569 + 0.422058i \(0.861308\pi\)
\(504\) 0 0
\(505\) 5.50429 0.0108996
\(506\) −305.246 + 740.074i −0.603253 + 1.46260i
\(507\) 0 0
\(508\) −35.5655 35.3523i −0.0700109 0.0695911i
\(509\) −869.875 −1.70899 −0.854495 0.519460i \(-0.826133\pi\)
−0.854495 + 0.519460i \(0.826133\pi\)
\(510\) 0 0
\(511\) 21.7228 27.6297i 0.0425103 0.0540698i
\(512\) −475.634 189.515i −0.928973 0.370147i
\(513\) 0 0
\(514\) −58.7101 + 142.344i −0.114222 + 0.276933i
\(515\) 270.750i 0.525727i
\(516\) 0 0
\(517\) 131.424 0.254204
\(518\) 500.079 281.910i 0.965403 0.544228i
\(519\) 0 0
\(520\) 47.8880 + 114.153i 0.0920924 + 0.219525i
\(521\) 216.686i 0.415905i −0.978139 0.207952i \(-0.933320\pi\)
0.978139 0.207952i \(-0.0666799\pi\)
\(522\) 0 0
\(523\) 96.1102 0.183767 0.0918836 0.995770i \(-0.470711\pi\)
0.0918836 + 0.995770i \(0.470711\pi\)
\(524\) −49.6148 49.3174i −0.0946848 0.0941171i
\(525\) 0 0
\(526\) −67.3400 27.7746i −0.128023 0.0528034i
\(527\) 1259.79 2.39050
\(528\) 0 0
\(529\) 313.495 0.592618
\(530\) 78.2090 189.619i 0.147564 0.357772i
\(531\) 0 0
\(532\) −103.063 839.686i −0.193727 1.57836i
\(533\) 428.002i 0.803006i
\(534\) 0 0
\(535\) 221.141i 0.413347i
\(536\) 143.345 60.1344i 0.267435 0.112191i
\(537\) 0 0
\(538\) −118.838 49.0150i −0.220888 0.0911060i
\(539\) −656.642 + 159.469i −1.21826 + 0.295861i
\(540\) 0 0
\(541\) 34.2281i 0.0632681i 0.999500 + 0.0316341i \(0.0100711\pi\)
−0.999500 + 0.0316341i \(0.989929\pi\)
\(542\) −364.508 + 883.757i −0.672525 + 1.63055i
\(543\) 0 0
\(544\) −817.408 331.405i −1.50259 0.609200i
\(545\) 19.3404i 0.0354869i
\(546\) 0 0
\(547\) 642.135i 1.17392i −0.809616 0.586960i \(-0.800324\pi\)
0.809616 0.586960i \(-0.199676\pi\)
\(548\) 188.255 + 187.126i 0.343530 + 0.341471i
\(549\) 0 0
\(550\) 212.662 515.602i 0.386657 0.937458i
\(551\) 642.511i 1.16608i
\(552\) 0 0
\(553\) −608.982 478.789i −1.10123 0.865803i
\(554\) 244.086 591.790i 0.440588 1.06821i
\(555\) 0 0
\(556\) −387.398 385.075i −0.696759 0.692581i
\(557\) 656.595i 1.17881i −0.807839 0.589403i \(-0.799363\pi\)
0.807839 0.589403i \(-0.200637\pi\)
\(558\) 0 0
\(559\) 238.509i 0.426672i
\(560\) 150.153 193.365i 0.268131 0.345295i
\(561\) 0 0
\(562\) −541.034 223.151i −0.962694 0.397066i
\(563\) −1031.16 −1.83154 −0.915771 0.401701i \(-0.868419\pi\)
−0.915771 + 0.401701i \(0.868419\pi\)
\(564\) 0 0
\(565\) −114.705 −0.203018
\(566\) 484.761 + 199.941i 0.856468 + 0.353253i
\(567\) 0 0
\(568\) −15.0085 35.7765i −0.0264234 0.0629867i
\(569\) 909.436 1.59831 0.799153 0.601128i \(-0.205282\pi\)
0.799153 + 0.601128i \(0.205282\pi\)
\(570\) 0 0
\(571\) 9.05964i 0.0158663i −0.999969 0.00793314i \(-0.997475\pi\)
0.999969 0.00793314i \(-0.00252522\pi\)
\(572\) −275.286 + 276.946i −0.481269 + 0.484172i
\(573\) 0 0
\(574\) −737.359 + 415.672i −1.28460 + 0.724167i
\(575\) −586.957 −1.02079
\(576\) 0 0
\(577\) 283.128i 0.490691i 0.969436 + 0.245345i \(0.0789013\pi\)
−0.969436 + 0.245345i \(0.921099\pi\)
\(578\) −870.374 358.989i −1.50584 0.621088i
\(579\) 0 0
\(580\) −131.080 + 131.871i −0.226000 + 0.227363i
\(581\) −98.7791 77.6613i −0.170016 0.133668i
\(582\) 0 0
\(583\) 647.019 1.10981
\(584\) −37.0402 + 15.5386i −0.0634250 + 0.0266073i
\(585\) 0 0
\(586\) −987.145 407.151i −1.68455 0.694797i
\(587\) 540.935 0.921525 0.460762 0.887524i \(-0.347576\pi\)
0.460762 + 0.887524i \(0.347576\pi\)
\(588\) 0 0
\(589\) 1380.92i 2.34452i
\(590\) −386.443 159.389i −0.654987 0.270152i
\(591\) 0 0
\(592\) −656.064 + 3.94558i −1.10822 + 0.00666483i
\(593\) 292.924i 0.493969i 0.969019 + 0.246984i \(0.0794397\pi\)
−0.969019 + 0.246984i \(0.920560\pi\)
\(594\) 0 0
\(595\) 260.671 331.553i 0.438102 0.557232i
\(596\) 405.394 407.839i 0.680191 0.684294i
\(597\) 0 0
\(598\) 379.901 + 156.692i 0.635286 + 0.262026i
\(599\) 155.121 0.258966 0.129483 0.991582i \(-0.458668\pi\)
0.129483 + 0.991582i \(0.458668\pi\)
\(600\) 0 0
\(601\) 1073.77i 1.78665i −0.449415 0.893323i \(-0.648368\pi\)
0.449415 0.893323i \(-0.351632\pi\)
\(602\) −410.902 + 231.638i −0.682561 + 0.384781i
\(603\) 0 0
\(604\) 604.807 + 601.181i 1.00134 + 0.995332i
\(605\) −151.208 −0.249930
\(606\) 0 0
\(607\) 547.872i 0.902590i −0.892375 0.451295i \(-0.850962\pi\)
0.892375 0.451295i \(-0.149038\pi\)
\(608\) −363.269 + 896.002i −0.597482 + 1.47369i
\(609\) 0 0
\(610\) −183.500 75.6850i −0.300819 0.124074i
\(611\) 67.4635i 0.110415i
\(612\) 0 0
\(613\) 1015.32i 1.65632i −0.560495 0.828158i \(-0.689389\pi\)
0.560495 0.828158i \(-0.310611\pi\)
\(614\) −133.428 55.0329i −0.217310 0.0896301i
\(615\) 0 0
\(616\) 744.475 + 205.292i 1.20856 + 0.333266i
\(617\) 172.568 0.279688 0.139844 0.990174i \(-0.455340\pi\)
0.139844 + 0.990174i \(0.455340\pi\)
\(618\) 0 0
\(619\) −699.885 −1.13067 −0.565335 0.824862i \(-0.691253\pi\)
−0.565335 + 0.824862i \(0.691253\pi\)
\(620\) 281.724 283.424i 0.454394 0.457135i
\(621\) 0 0
\(622\) −185.398 + 449.500i −0.298067 + 0.722669i
\(623\) −46.0733 + 58.6017i −0.0739540 + 0.0940637i
\(624\) 0 0
\(625\) 289.475 0.463160
\(626\) −129.881 + 314.899i −0.207478 + 0.503034i
\(627\) 0 0
\(628\) 258.198 + 256.649i 0.411143 + 0.408677i
\(629\) −1130.24 −1.79688
\(630\) 0 0
\(631\) −948.786 −1.50362 −0.751811 0.659378i \(-0.770820\pi\)
−0.751811 + 0.659378i \(0.770820\pi\)
\(632\) 342.485 + 816.398i 0.541907 + 1.29177i
\(633\) 0 0
\(634\) 53.3841 129.431i 0.0842021 0.204149i
\(635\) −27.4037 −0.0431554
\(636\) 0 0
\(637\) 81.8601 + 337.073i 0.128509 + 0.529158i
\(638\) −542.209 223.636i −0.849857 0.350526i
\(639\) 0 0
\(640\) −257.353 + 109.786i −0.402115 + 0.171541i
\(641\) 1059.07 1.65222 0.826111 0.563508i \(-0.190549\pi\)
0.826111 + 0.563508i \(0.190549\pi\)
\(642\) 0 0
\(643\) −303.428 −0.471894 −0.235947 0.971766i \(-0.575819\pi\)
−0.235947 + 0.971766i \(0.575819\pi\)
\(644\) −99.0099 806.668i −0.153742 1.25259i
\(645\) 0 0
\(646\) −635.084 + 1539.77i −0.983102 + 2.38355i
\(647\) 845.076i 1.30615i −0.757295 0.653073i \(-0.773480\pi\)
0.757295 0.653073i \(-0.226520\pi\)
\(648\) 0 0
\(649\) 1318.62i 2.03177i
\(650\) −264.673 109.165i −0.407189 0.167947i
\(651\) 0 0
\(652\) 568.452 571.881i 0.871859 0.877118i
\(653\) 513.012i 0.785623i −0.919619 0.392811i \(-0.871503\pi\)
0.919619 0.392811i \(-0.128497\pi\)
\(654\) 0 0
\(655\) −38.2288 −0.0583646
\(656\) 967.356 5.81770i 1.47463 0.00886844i
\(657\) 0 0
\(658\) −116.226 + 65.5199i −0.176635 + 0.0995744i
\(659\) 369.080i 0.560061i −0.959991 0.280030i \(-0.909655\pi\)
0.959991 0.280030i \(-0.0903445\pi\)
\(660\) 0 0
\(661\) −705.924 −1.06796 −0.533982 0.845496i \(-0.679305\pi\)
−0.533982 + 0.845496i \(0.679305\pi\)
\(662\) −105.500 + 255.786i −0.159365 + 0.386384i
\(663\) 0 0
\(664\) 55.5523 + 132.423i 0.0836632 + 0.199432i
\(665\) −363.432 285.735i −0.546515 0.429676i
\(666\) 0 0
\(667\) 617.246i 0.925407i
\(668\) 553.465 556.804i 0.828541 0.833539i
\(669\) 0 0
\(670\) 32.3899 78.5300i 0.0483432 0.117209i
\(671\) 626.138i 0.933142i
\(672\) 0 0
\(673\) 767.660 1.14065 0.570327 0.821418i \(-0.306817\pi\)
0.570327 + 0.821418i \(0.306817\pi\)
\(674\) −566.083 233.483i −0.839886 0.346414i
\(675\) 0 0
\(676\) −337.275 335.253i −0.498927 0.495936i
\(677\) −797.530 −1.17804 −0.589018 0.808120i \(-0.700485\pi\)
−0.589018 + 0.808120i \(0.700485\pi\)
\(678\) 0 0
\(679\) 37.5279 47.7325i 0.0552693 0.0702983i
\(680\) −444.478 + 186.462i −0.653644 + 0.274209i
\(681\) 0 0
\(682\) 1165.35 + 480.651i 1.70872 + 0.704766i
\(683\) 538.501i 0.788435i −0.919017 0.394217i \(-0.871016\pi\)
0.919017 0.394217i \(-0.128984\pi\)
\(684\) 0 0
\(685\) 145.052 0.211755
\(686\) 501.205 468.390i 0.730620 0.682785i
\(687\) 0 0
\(688\) 539.071 3.24198i 0.783533 0.00471218i
\(689\) 332.133i 0.482051i
\(690\) 0 0
\(691\) 833.516 1.20625 0.603123 0.797648i \(-0.293923\pi\)
0.603123 + 0.797648i \(0.293923\pi\)
\(692\) 30.8487 + 30.6637i 0.0445791 + 0.0443118i
\(693\) 0 0
\(694\) 266.988 647.317i 0.384709 0.932734i
\(695\) −298.494 −0.429488
\(696\) 0 0
\(697\) 1666.52 2.39099
\(698\) 612.233 + 252.518i 0.877125 + 0.361773i
\(699\) 0 0
\(700\) 68.9791 + 561.997i 0.0985416 + 0.802852i
\(701\) 375.441i 0.535578i 0.963478 + 0.267789i \(0.0862931\pi\)
−0.963478 + 0.267789i \(0.913707\pi\)
\(702\) 0 0
\(703\) 1238.91i 1.76232i
\(704\) −629.686 618.427i −0.894440 0.878447i
\(705\) 0 0
\(706\) 71.7136 173.871i 0.101577 0.246276i
\(707\) −13.8569 10.8945i −0.0195996 0.0154094i
\(708\) 0 0
\(709\) 1106.91i 1.56123i −0.625013 0.780614i \(-0.714906\pi\)
0.625013 0.780614i \(-0.285094\pi\)
\(710\) −19.5997 8.08397i −0.0276053 0.0113859i
\(711\) 0 0
\(712\) 78.5611 32.9570i 0.110339 0.0462879i
\(713\) 1326.62i 1.86062i
\(714\) 0 0
\(715\) 213.390i 0.298448i
\(716\) −320.738 + 322.673i −0.447958 + 0.450660i
\(717\) 0 0
\(718\) 505.010 + 208.293i 0.703357 + 0.290102i
\(719\) 257.047i 0.357506i 0.983894 + 0.178753i \(0.0572063\pi\)
−0.983894 + 0.178753i \(0.942794\pi\)
\(720\) 0 0
\(721\) −535.886 + 681.605i −0.743254 + 0.945361i
\(722\) 1020.37 + 420.854i 1.41325 + 0.582900i
\(723\) 0 0
\(724\) 708.970 + 704.719i 0.979240 + 0.973368i
\(725\) 430.029i 0.593143i
\(726\) 0 0
\(727\) 849.134i 1.16800i 0.811755 + 0.583998i \(0.198513\pi\)
−0.811755 + 0.583998i \(0.801487\pi\)
\(728\) 105.382 382.160i 0.144756 0.524946i
\(729\) 0 0
\(730\) −8.36952 + 20.2920i −0.0114651 + 0.0277973i
\(731\) 928.687 1.27043
\(732\) 0 0
\(733\) 329.912 0.450085 0.225042 0.974349i \(-0.427748\pi\)
0.225042 + 0.974349i \(0.427748\pi\)
\(734\) 13.3853 32.4530i 0.0182361 0.0442138i
\(735\) 0 0
\(736\) −348.985 + 860.770i −0.474164 + 1.16952i
\(737\) 267.960 0.363583
\(738\) 0 0
\(739\) 623.097i 0.843162i 0.906791 + 0.421581i \(0.138525\pi\)
−0.906791 + 0.421581i \(0.861475\pi\)
\(740\) −252.752 + 254.277i −0.341557 + 0.343618i
\(741\) 0 0
\(742\) −572.196 + 322.565i −0.771154 + 0.434723i
\(743\) 226.053 0.304244 0.152122 0.988362i \(-0.451389\pi\)
0.152122 + 0.988362i \(0.451389\pi\)
\(744\) 0 0
\(745\) 314.245i 0.421805i
\(746\) −215.491 + 522.462i −0.288862 + 0.700352i
\(747\) 0 0
\(748\) −1078.35 1071.88i −1.44164 1.43300i
\(749\) −437.697 + 556.716i −0.584375 + 0.743279i
\(750\) 0 0
\(751\) −580.772 −0.773331 −0.386666 0.922220i \(-0.626373\pi\)
−0.386666 + 0.922220i \(0.626373\pi\)
\(752\) 152.479 0.917010i 0.202764 0.00121943i
\(753\) 0 0
\(754\) −114.799 + 278.331i −0.152253 + 0.369140i
\(755\) 466.011 0.617233
\(756\) 0 0
\(757\) 1280.71i 1.69182i 0.533323 + 0.845911i \(0.320943\pi\)
−0.533323 + 0.845911i \(0.679057\pi\)
\(758\) −543.266 + 1317.16i −0.716710 + 1.73768i
\(759\) 0 0
\(760\) 204.391 + 487.215i 0.268935 + 0.641073i
\(761\) 1072.13i 1.40884i 0.709785 + 0.704419i \(0.248792\pi\)
−0.709785 + 0.704419i \(0.751208\pi\)
\(762\) 0 0
\(763\) 38.2798 48.6889i 0.0501701 0.0638124i
\(764\) 83.6796 + 83.1778i 0.109528 + 0.108872i
\(765\) 0 0
\(766\) 300.804 729.305i 0.392695 0.952095i
\(767\) −676.886 −0.882511
\(768\) 0 0
\(769\) 143.146i 0.186145i −0.995659 0.0930725i \(-0.970331\pi\)
0.995659 0.0930725i \(-0.0296688\pi\)
\(770\) 367.627 207.243i 0.477437 0.269146i
\(771\) 0 0
\(772\) 13.5198 + 13.4387i 0.0175127 + 0.0174076i
\(773\) 159.665 0.206553 0.103276 0.994653i \(-0.467067\pi\)
0.103276 + 0.994653i \(0.467067\pi\)
\(774\) 0 0
\(775\) 924.242i 1.19257i
\(776\) −63.9899 + 26.8443i −0.0824612 + 0.0345931i
\(777\) 0 0
\(778\) 278.591 675.448i 0.358086 0.868185i
\(779\) 1826.75i 2.34500i
\(780\) 0 0
\(781\) 66.8783i 0.0856316i
\(782\) −610.111 + 1479.23i −0.780193 + 1.89159i
\(783\) 0 0
\(784\) −760.729 + 189.599i −0.970317 + 0.241835i
\(785\) 198.944 0.253432
\(786\) 0 0
\(787\) −794.871 −1.01000 −0.505000 0.863119i \(-0.668508\pi\)
−0.505000 + 0.863119i \(0.668508\pi\)
\(788\) −1048.79 + 1055.12i −1.33096 + 1.33899i
\(789\) 0 0
\(790\) 447.254 + 184.471i 0.566145 + 0.233508i
\(791\) 288.767 + 227.032i 0.365066 + 0.287019i
\(792\) 0 0
\(793\) −321.415 −0.405315
\(794\) −603.278 248.824i −0.759796 0.313380i
\(795\) 0 0
\(796\) 691.424 695.595i 0.868624 0.873863i
\(797\) 999.284 1.25381 0.626903 0.779097i \(-0.284322\pi\)
0.626903 + 0.779097i \(0.284322\pi\)
\(798\) 0 0
\(799\) 262.683 0.328765
\(800\) 243.134 599.689i 0.303917 0.749611i
\(801\) 0 0
\(802\) −1025.10 422.807i −1.27818 0.527191i
\(803\) −69.2406 −0.0862274
\(804\) 0 0
\(805\) −349.141 274.499i −0.433716 0.340993i
\(806\) 246.732 598.206i 0.306119 0.742191i
\(807\) 0 0
\(808\) 7.79298 + 18.5765i 0.00964478 + 0.0229907i
\(809\) 578.890 0.715562 0.357781 0.933805i \(-0.383533\pi\)
0.357781 + 0.933805i \(0.383533\pi\)
\(810\) 0 0
\(811\) −88.8234 −0.109523 −0.0547617 0.998499i \(-0.517440\pi\)
−0.0547617 + 0.998499i \(0.517440\pi\)
\(812\) 590.998 72.5387i 0.727830 0.0893334i
\(813\) 0 0
\(814\) −1045.50 431.221i −1.28440 0.529756i
\(815\) 440.641i 0.540664i
\(816\) 0 0
\(817\) 1017.98i 1.24600i
\(818\) −114.052 + 276.522i −0.139428 + 0.338046i
\(819\) 0 0
\(820\) 372.680 374.928i 0.454487 0.457229i
\(821\) 165.701i 0.201828i 0.994895 + 0.100914i \(0.0321767\pi\)
−0.994895 + 0.100914i \(0.967823\pi\)
\(822\) 0 0
\(823\) −565.754 −0.687430 −0.343715 0.939074i \(-0.611685\pi\)
−0.343715 + 0.939074i \(0.611685\pi\)
\(824\) 913.756 383.328i 1.10893 0.465204i
\(825\) 0 0
\(826\) 657.385 + 1166.13i 0.795866 + 1.41178i
\(827\) 287.050i 0.347098i −0.984825 0.173549i \(-0.944476\pi\)
0.984825 0.173549i \(-0.0555236\pi\)
\(828\) 0 0
\(829\) 409.212 0.493622 0.246811 0.969064i \(-0.420617\pi\)
0.246811 + 0.969064i \(0.420617\pi\)
\(830\) 72.5462 + 29.9219i 0.0874051 + 0.0360505i
\(831\) 0 0
\(832\) −317.456 + 323.236i −0.381558 + 0.388505i
\(833\) −1312.47 + 318.739i −1.57559 + 0.382640i
\(834\) 0 0
\(835\) 429.024i 0.513801i
\(836\) −1174.94 + 1182.03i −1.40544 + 1.41391i
\(837\) 0 0
\(838\) −164.339 67.7820i −0.196108 0.0808855i
\(839\) 276.923i 0.330064i 0.986288 + 0.165032i \(0.0527727\pi\)
−0.986288 + 0.165032i \(0.947227\pi\)
\(840\) 0 0
\(841\) 388.780 0.462283
\(842\) −325.618 + 789.466i −0.386720 + 0.937608i
\(843\) 0 0
\(844\) −857.192 + 862.363i −1.01563 + 1.02176i
\(845\) −259.874 −0.307544
\(846\) 0 0
\(847\) 380.662 + 299.281i 0.449423 + 0.353342i
\(848\) 750.676 4.51458i 0.885231 0.00532380i
\(849\) 0 0
\(850\) 425.058 1030.56i 0.500068 1.21242i
\(851\) 1190.19i 1.39858i
\(852\) 0 0
\(853\) −301.813 −0.353825 −0.176913 0.984227i \(-0.556611\pi\)
−0.176913 + 0.984227i \(0.556611\pi\)
\(854\) 312.155 + 553.730i 0.365521 + 0.648396i
\(855\) 0 0
\(856\) 746.330 313.091i 0.871881 0.365761i
\(857\) 1401.15i 1.63495i −0.575967 0.817473i \(-0.695374\pi\)
0.575967 0.817473i \(-0.304626\pi\)
\(858\) 0 0
\(859\) −632.275 −0.736059 −0.368029 0.929814i \(-0.619967\pi\)
−0.368029 + 0.929814i \(0.619967\pi\)
\(860\) 207.680 208.933i 0.241489 0.242945i
\(861\) 0 0
\(862\) −426.207 175.791i −0.494440 0.203933i
\(863\) 460.776 0.533924 0.266962 0.963707i \(-0.413980\pi\)
0.266962 + 0.963707i \(0.413980\pi\)
\(864\) 0 0
\(865\) 23.7693 0.0274789
\(866\) −79.4665 + 192.668i −0.0917627 + 0.222480i
\(867\) 0 0
\(868\) −1270.21 + 155.904i −1.46337 + 0.179613i
\(869\) 1526.12i 1.75618i
\(870\) 0 0
\(871\) 137.552i 0.157924i
\(872\) −65.2720 + 27.3821i −0.0748532 + 0.0314015i
\(873\) 0 0
\(874\) 1621.45 + 668.774i 1.85521 + 0.765188i
\(875\) 543.960 + 427.667i 0.621668 + 0.488763i
\(876\) 0 0
\(877\) 800.621i 0.912909i 0.889747 + 0.456455i \(0.150881\pi\)
−0.889747 + 0.456455i \(0.849119\pi\)
\(878\) 18.2521 44.2525i 0.0207883 0.0504015i
\(879\) 0 0
\(880\) −482.297 + 2.90054i −0.548065 + 0.00329607i
\(881\) 467.366i 0.530495i 0.964180 + 0.265247i \(0.0854537\pi\)
−0.964180 + 0.265247i \(0.914546\pi\)
\(882\) 0 0
\(883\) 798.280i 0.904054i 0.892004 + 0.452027i \(0.149299\pi\)
−0.892004 + 0.452027i \(0.850701\pi\)
\(884\) −550.228 + 553.547i −0.622430 + 0.626184i
\(885\) 0 0
\(886\) −110.647 + 268.267i −0.124884 + 0.302784i
\(887\) 51.5357i 0.0581011i −0.999578 0.0290505i \(-0.990752\pi\)
0.999578 0.0290505i \(-0.00924838\pi\)
\(888\) 0 0
\(889\) 68.9880 + 54.2392i 0.0776018 + 0.0610115i
\(890\) 17.7515 43.0388i 0.0199455 0.0483582i
\(891\) 0 0
\(892\) 966.160 971.988i 1.08314 1.08967i
\(893\) 287.941i 0.322442i
\(894\) 0 0
\(895\) 248.623i 0.277791i
\(896\) 865.178 + 232.987i 0.965601 + 0.260030i
\(897\) 0 0
\(898\) −347.821 143.460i −0.387328 0.159755i
\(899\) 971.937 1.08113
\(900\) 0 0
\(901\) 1293.23 1.43533
\(902\) 1541.58 + 635.829i 1.70907 + 0.704911i
\(903\) 0 0
\(904\) −162.400 387.120i −0.179646 0.428230i
\(905\) 546.269 0.603613
\(906\) 0 0
\(907\) 1539.21i 1.69703i 0.529168 + 0.848517i \(0.322504\pi\)
−0.529168 + 0.848517i \(0.677496\pi\)
\(908\) −957.970 952.226i −1.05503 1.04871i
\(909\) 0 0
\(910\) −106.384 188.713i −0.116905 0.207377i
\(911\) −750.377 −0.823685 −0.411842 0.911255i \(-0.635115\pi\)
−0.411842 + 0.911255i \(0.635115\pi\)
\(912\) 0 0
\(913\) 247.543i 0.271131i
\(914\) 1340.68 + 552.970i 1.46683 + 0.605000i
\(915\) 0 0
\(916\) 929.905 + 924.330i 1.01518 + 1.00909i
\(917\) 96.2401 + 75.6651i 0.104951 + 0.0825137i
\(918\) 0 0
\(919\) 1526.32 1.66085 0.830423 0.557134i \(-0.188099\pi\)
0.830423 + 0.557134i \(0.188099\pi\)
\(920\) 196.353 + 468.057i 0.213428 + 0.508757i
\(921\) 0 0
\(922\) 193.066 + 79.6308i 0.209399 + 0.0863675i
\(923\) −34.3305 −0.0371945
\(924\) 0 0
\(925\) 829.195i 0.896427i
\(926\) −126.023 51.9788i −0.136094 0.0561326i
\(927\) 0 0
\(928\) −630.635 255.681i −0.679564 0.275518i
\(929\) 610.738i 0.657414i 0.944432 + 0.328707i \(0.106613\pi\)
−0.944432 + 0.328707i \(0.893387\pi\)
\(930\) 0 0
\(931\) 349.386 + 1438.66i 0.375281 + 1.54528i
\(932\) 641.234 + 637.389i 0.688019 + 0.683894i
\(933\) 0 0
\(934\) −15.8157 6.52323i −0.0169333 0.00698418i
\(935\) −830.880 −0.888641
\(936\) 0 0
\(937\) 1670.35i 1.78266i 0.453354 + 0.891330i \(0.350227\pi\)
−0.453354 + 0.891330i \(0.649773\pi\)
\(938\) −236.973 + 133.589i −0.252636 + 0.142419i
\(939\) 0 0
\(940\) 58.7433 59.0977i 0.0624929 0.0628698i
\(941\) 114.242 0.121405 0.0607026 0.998156i \(-0.480666\pi\)
0.0607026 + 0.998156i \(0.480666\pi\)
\(942\) 0 0
\(943\) 1754.92i 1.86100i
\(944\) −9.20069 1529.87i −0.00974649 1.62063i
\(945\) 0 0
\(946\) 859.064 + 354.324i 0.908101 + 0.374549i
\(947\) 450.692i 0.475915i 0.971276 + 0.237958i \(0.0764779\pi\)
−0.971276 + 0.237958i \(0.923522\pi\)
\(948\) 0 0
\(949\) 35.5432i 0.0374533i
\(950\) −1129.65 465.928i −1.18910 0.490450i
\(951\) 0 0
\(952\) 1488.02 + 410.328i 1.56305 + 0.431017i
\(953\) 1045.92 1.09750 0.548750 0.835987i \(-0.315104\pi\)
0.548750 + 0.835987i \(0.315104\pi\)
\(954\) 0 0
\(955\) 64.4761 0.0675142
\(956\) 37.0078 + 36.7859i 0.0387111 + 0.0384789i
\(957\) 0 0
\(958\) −160.415 + 388.929i −0.167448 + 0.405980i
\(959\) −365.166 287.098i −0.380778 0.299372i
\(960\) 0 0
\(961\) −1127.94 −1.17372
\(962\) −221.358 + 536.687i −0.230102 + 0.557887i
\(963\) 0 0
\(964\) 102.179 102.795i 0.105995 0.106634i
\(965\) 10.4171 0.0107950
\(966\) 0 0
\(967\) −315.609 −0.326379 −0.163190 0.986595i \(-0.552178\pi\)
−0.163190 + 0.986595i \(0.552178\pi\)
\(968\) −214.080 510.313i −0.221157 0.527183i
\(969\) 0 0
\(970\) −14.4590 + 35.0562i −0.0149062 + 0.0361404i
\(971\) −499.109 −0.514015 −0.257008 0.966409i \(-0.582737\pi\)
−0.257008 + 0.966409i \(0.582737\pi\)
\(972\) 0 0
\(973\) 751.453 + 590.801i 0.772305 + 0.607195i
\(974\) −1561.80 644.169i −1.60349 0.661364i
\(975\) 0 0
\(976\) −4.36889 726.450i −0.00447632 0.744314i
\(977\) −1071.53 −1.09676 −0.548379 0.836230i \(-0.684755\pi\)
−0.548379 + 0.836230i \(0.684755\pi\)
\(978\) 0 0
\(979\) 146.857 0.150007
\(980\) −221.795 + 366.553i −0.226321 + 0.374034i
\(981\) 0 0
\(982\) −304.467 + 738.186i −0.310048 + 0.751716i
\(983\) 808.263i 0.822241i 0.911581 + 0.411121i \(0.134863\pi\)
−0.911581 + 0.411121i \(0.865137\pi\)
\(984\) 0 0
\(985\) 812.982i 0.825363i
\(986\) −1083.74 446.993i −1.09913 0.453339i
\(987\) 0 0
\(988\) 606.771 + 603.133i 0.614141 + 0.610458i
\(989\) 977.951i 0.988828i
\(990\) 0 0
\(991\) −1848.16 −1.86494 −0.932470 0.361247i \(-0.882351\pi\)
−0.932470 + 0.361247i \(0.882351\pi\)
\(992\) 1355.40 + 549.523i 1.36633 + 0.553955i
\(993\) 0 0
\(994\) 33.3415 + 59.1443i 0.0335428 + 0.0595014i
\(995\) 535.964i 0.538657i
\(996\) 0 0
\(997\) 238.170 0.238886 0.119443 0.992841i \(-0.461889\pi\)
0.119443 + 0.992841i \(0.461889\pi\)
\(998\) 345.770 838.325i 0.346463 0.840005i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.3.l.h.181.32 32
3.2 odd 2 168.3.l.a.13.2 yes 32
4.3 odd 2 2016.3.l.h.433.21 32
7.6 odd 2 inner 504.3.l.h.181.31 32
8.3 odd 2 2016.3.l.h.433.12 32
8.5 even 2 inner 504.3.l.h.181.29 32
12.11 even 2 672.3.l.a.433.4 32
21.20 even 2 168.3.l.a.13.1 32
24.5 odd 2 168.3.l.a.13.3 yes 32
24.11 even 2 672.3.l.a.433.29 32
28.27 even 2 2016.3.l.h.433.11 32
56.13 odd 2 inner 504.3.l.h.181.30 32
56.27 even 2 2016.3.l.h.433.22 32
84.83 odd 2 672.3.l.a.433.20 32
168.83 odd 2 672.3.l.a.433.13 32
168.125 even 2 168.3.l.a.13.4 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.l.a.13.1 32 21.20 even 2
168.3.l.a.13.2 yes 32 3.2 odd 2
168.3.l.a.13.3 yes 32 24.5 odd 2
168.3.l.a.13.4 yes 32 168.125 even 2
504.3.l.h.181.29 32 8.5 even 2 inner
504.3.l.h.181.30 32 56.13 odd 2 inner
504.3.l.h.181.31 32 7.6 odd 2 inner
504.3.l.h.181.32 32 1.1 even 1 trivial
672.3.l.a.433.4 32 12.11 even 2
672.3.l.a.433.13 32 168.83 odd 2
672.3.l.a.433.20 32 84.83 odd 2
672.3.l.a.433.29 32 24.11 even 2
2016.3.l.h.433.11 32 28.27 even 2
2016.3.l.h.433.12 32 8.3 odd 2
2016.3.l.h.433.21 32 4.3 odd 2
2016.3.l.h.433.22 32 56.27 even 2