gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [1,2,8,4,-5,16,0,8,37,-10,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 − 8 T_{3} - 8 T 3 − 8
T3 - 8
T 11 − 12 T_{11} - 12 T 1 1 − 1 2
T11 - 12
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 2 T - 2 T − 2
T - 2
3 3 3
T − 8 T - 8 T − 8
T - 8
5 5 5
T + 5 T + 5 T + 5
T + 5
7 7 7
T T T
T
11 11 1 1
T − 12 T - 12 T − 1 2
T - 12
13 13 1 3
T − 58 T - 58 T − 5 8
T - 58
17 17 1 7
T + 66 T + 66 T + 6 6
T + 66
19 19 1 9
T − 100 T - 100 T − 1 0 0
T - 100
23 23 2 3
T − 132 T - 132 T − 1 3 2
T - 132
29 29 2 9
T + 90 T + 90 T + 9 0
T + 90
31 31 3 1
T + 152 T + 152 T + 1 5 2
T + 152
37 37 3 7
T + 34 T + 34 T + 3 4
T + 34
41 41 4 1
T − 438 T - 438 T − 4 3 8
T - 438
43 43 4 3
T − 32 T - 32 T − 3 2
T - 32
47 47 4 7
T − 204 T - 204 T − 2 0 4
T - 204
53 53 5 3
T − 222 T - 222 T − 2 2 2
T - 222
59 59 5 9
T + 420 T + 420 T + 4 2 0
T + 420
61 61 6 1
T + 902 T + 902 T + 9 0 2
T + 902
67 67 6 7
T + 1024 T + 1024 T + 1 0 2 4
T + 1024
71 71 7 1
T − 432 T - 432 T − 4 3 2
T - 432
73 73 7 3
T + 362 T + 362 T + 3 6 2
T + 362
79 79 7 9
T + 160 T + 160 T + 1 6 0
T + 160
83 83 8 3
T + 72 T + 72 T + 7 2
T + 72
89 89 8 9
T + 810 T + 810 T + 8 1 0
T + 810
97 97 9 7
T + 1106 T + 1106 T + 1 1 0 6
T + 1106
show more
show less