Properties

Label 490.4.a.o
Level 490490
Weight 44
Character orbit 490.a
Self dual yes
Analytic conductor 28.91128.911
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,4,Mod(1,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 490=2572 490 = 2 \cdot 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,8,4,-5,16,0,8,37,-10,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.910935902828.9109359028
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 10)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+8q3+4q45q5+16q6+8q8+37q910q10+12q11+32q12+58q1340q15+16q1666q17+74q18+100q1920q20+24q22++444q99+O(q100) q + 2 q^{2} + 8 q^{3} + 4 q^{4} - 5 q^{5} + 16 q^{6} + 8 q^{8} + 37 q^{9} - 10 q^{10} + 12 q^{11} + 32 q^{12} + 58 q^{13} - 40 q^{15} + 16 q^{16} - 66 q^{17} + 74 q^{18} + 100 q^{19} - 20 q^{20} + 24 q^{22}+ \cdots + 444 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 8.00000 4.00000 −5.00000 16.0000 0 8.00000 37.0000 −10.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.a.o 1
5.b even 2 1 2450.4.a.b 1
7.b odd 2 1 10.4.a.a 1
7.c even 3 2 490.4.e.a 2
7.d odd 6 2 490.4.e.i 2
21.c even 2 1 90.4.a.a 1
28.d even 2 1 80.4.a.f 1
35.c odd 2 1 50.4.a.c 1
35.f even 4 2 50.4.b.a 2
56.e even 2 1 320.4.a.b 1
56.h odd 2 1 320.4.a.m 1
63.l odd 6 2 810.4.e.c 2
63.o even 6 2 810.4.e.w 2
77.b even 2 1 1210.4.a.b 1
84.h odd 2 1 720.4.a.j 1
91.b odd 2 1 1690.4.a.a 1
105.g even 2 1 450.4.a.q 1
105.k odd 4 2 450.4.c.d 2
112.j even 4 2 1280.4.d.g 2
112.l odd 4 2 1280.4.d.j 2
140.c even 2 1 400.4.a.b 1
140.j odd 4 2 400.4.c.c 2
280.c odd 2 1 1600.4.a.d 1
280.n even 2 1 1600.4.a.bx 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 7.b odd 2 1
50.4.a.c 1 35.c odd 2 1
50.4.b.a 2 35.f even 4 2
80.4.a.f 1 28.d even 2 1
90.4.a.a 1 21.c even 2 1
320.4.a.b 1 56.e even 2 1
320.4.a.m 1 56.h odd 2 1
400.4.a.b 1 140.c even 2 1
400.4.c.c 2 140.j odd 4 2
450.4.a.q 1 105.g even 2 1
450.4.c.d 2 105.k odd 4 2
490.4.a.o 1 1.a even 1 1 trivial
490.4.e.a 2 7.c even 3 2
490.4.e.i 2 7.d odd 6 2
720.4.a.j 1 84.h odd 2 1
810.4.e.c 2 63.l odd 6 2
810.4.e.w 2 63.o even 6 2
1210.4.a.b 1 77.b even 2 1
1280.4.d.g 2 112.j even 4 2
1280.4.d.j 2 112.l odd 4 2
1600.4.a.d 1 280.c odd 2 1
1600.4.a.bx 1 280.n even 2 1
1690.4.a.a 1 91.b odd 2 1
2450.4.a.b 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(490))S_{4}^{\mathrm{new}}(\Gamma_0(490)):

T38 T_{3} - 8 Copy content Toggle raw display
T1112 T_{11} - 12 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T8 T - 8 Copy content Toggle raw display
55 T+5 T + 5 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T12 T - 12 Copy content Toggle raw display
1313 T58 T - 58 Copy content Toggle raw display
1717 T+66 T + 66 Copy content Toggle raw display
1919 T100 T - 100 Copy content Toggle raw display
2323 T132 T - 132 Copy content Toggle raw display
2929 T+90 T + 90 Copy content Toggle raw display
3131 T+152 T + 152 Copy content Toggle raw display
3737 T+34 T + 34 Copy content Toggle raw display
4141 T438 T - 438 Copy content Toggle raw display
4343 T32 T - 32 Copy content Toggle raw display
4747 T204 T - 204 Copy content Toggle raw display
5353 T222 T - 222 Copy content Toggle raw display
5959 T+420 T + 420 Copy content Toggle raw display
6161 T+902 T + 902 Copy content Toggle raw display
6767 T+1024 T + 1024 Copy content Toggle raw display
7171 T432 T - 432 Copy content Toggle raw display
7373 T+362 T + 362 Copy content Toggle raw display
7979 T+160 T + 160 Copy content Toggle raw display
8383 T+72 T + 72 Copy content Toggle raw display
8989 T+810 T + 810 Copy content Toggle raw display
9797 T+1106 T + 1106 Copy content Toggle raw display
show more
show less