Defining parameters
Level: | \( N \) | \(=\) | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 490.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 25 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(490))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 268 | 41 | 227 |
Cusp forms | 236 | 41 | 195 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(6\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(6\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(6\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(23\) | ||
Minus space | \(-\) | \(18\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(490))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(490))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(490)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)