Defining parameters
Level: | \( N \) | \(=\) | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 490.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 25 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(490))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 268 | 41 | 227 |
Cusp forms | 236 | 41 | 195 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(36\) | \(4\) | \(32\) | \(32\) | \(4\) | \(28\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(32\) | \(6\) | \(26\) | \(28\) | \(6\) | \(22\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(32\) | \(4\) | \(28\) | \(28\) | \(4\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(34\) | \(6\) | \(28\) | \(30\) | \(6\) | \(24\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(34\) | \(5\) | \(29\) | \(30\) | \(5\) | \(25\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(33\) | \(6\) | \(27\) | \(29\) | \(6\) | \(23\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(34\) | \(7\) | \(27\) | \(30\) | \(7\) | \(23\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(33\) | \(3\) | \(30\) | \(29\) | \(3\) | \(26\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(137\) | \(23\) | \(114\) | \(121\) | \(23\) | \(98\) | \(16\) | \(0\) | \(16\) | |||||
Minus space | \(-\) | \(131\) | \(18\) | \(113\) | \(115\) | \(18\) | \(97\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(490))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(490))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(490)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)