Properties

Label 1210.4.a.b
Level $1210$
Weight $4$
Character orbit 1210.a
Self dual yes
Analytic conductor $71.392$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,4,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,-8,4,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.3923111069\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} - 8 q^{3} + 4 q^{4} + 5 q^{5} + 16 q^{6} + 4 q^{7} - 8 q^{8} + 37 q^{9} - 10 q^{10} - 32 q^{12} + 58 q^{13} - 8 q^{14} - 40 q^{15} + 16 q^{16} - 66 q^{17} - 74 q^{18} + 100 q^{19} + 20 q^{20}+ \cdots + 654 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 −8.00000 4.00000 5.00000 16.0000 4.00000 −8.00000 37.0000 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.4.a.b 1
11.b odd 2 1 10.4.a.a 1
33.d even 2 1 90.4.a.a 1
44.c even 2 1 80.4.a.f 1
55.d odd 2 1 50.4.a.c 1
55.e even 4 2 50.4.b.a 2
77.b even 2 1 490.4.a.o 1
77.h odd 6 2 490.4.e.i 2
77.i even 6 2 490.4.e.a 2
88.b odd 2 1 320.4.a.m 1
88.g even 2 1 320.4.a.b 1
99.g even 6 2 810.4.e.w 2
99.h odd 6 2 810.4.e.c 2
132.d odd 2 1 720.4.a.j 1
143.d odd 2 1 1690.4.a.a 1
165.d even 2 1 450.4.a.q 1
165.l odd 4 2 450.4.c.d 2
176.i even 4 2 1280.4.d.g 2
176.l odd 4 2 1280.4.d.j 2
220.g even 2 1 400.4.a.b 1
220.i odd 4 2 400.4.c.c 2
385.h even 2 1 2450.4.a.b 1
440.c even 2 1 1600.4.a.bx 1
440.o odd 2 1 1600.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 11.b odd 2 1
50.4.a.c 1 55.d odd 2 1
50.4.b.a 2 55.e even 4 2
80.4.a.f 1 44.c even 2 1
90.4.a.a 1 33.d even 2 1
320.4.a.b 1 88.g even 2 1
320.4.a.m 1 88.b odd 2 1
400.4.a.b 1 220.g even 2 1
400.4.c.c 2 220.i odd 4 2
450.4.a.q 1 165.d even 2 1
450.4.c.d 2 165.l odd 4 2
490.4.a.o 1 77.b even 2 1
490.4.e.a 2 77.i even 6 2
490.4.e.i 2 77.h odd 6 2
720.4.a.j 1 132.d odd 2 1
810.4.e.c 2 99.h odd 6 2
810.4.e.w 2 99.g even 6 2
1210.4.a.b 1 1.a even 1 1 trivial
1280.4.d.g 2 176.i even 4 2
1280.4.d.j 2 176.l odd 4 2
1600.4.a.d 1 440.o odd 2 1
1600.4.a.bx 1 440.c even 2 1
1690.4.a.a 1 143.d odd 2 1
2450.4.a.b 1 385.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3} + 8 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T + 8 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 58 \) Copy content Toggle raw display
$17$ \( T + 66 \) Copy content Toggle raw display
$19$ \( T - 100 \) Copy content Toggle raw display
$23$ \( T - 132 \) Copy content Toggle raw display
$29$ \( T - 90 \) Copy content Toggle raw display
$31$ \( T - 152 \) Copy content Toggle raw display
$37$ \( T + 34 \) Copy content Toggle raw display
$41$ \( T - 438 \) Copy content Toggle raw display
$43$ \( T + 32 \) Copy content Toggle raw display
$47$ \( T + 204 \) Copy content Toggle raw display
$53$ \( T - 222 \) Copy content Toggle raw display
$59$ \( T - 420 \) Copy content Toggle raw display
$61$ \( T + 902 \) Copy content Toggle raw display
$67$ \( T + 1024 \) Copy content Toggle raw display
$71$ \( T - 432 \) Copy content Toggle raw display
$73$ \( T + 362 \) Copy content Toggle raw display
$79$ \( T - 160 \) Copy content Toggle raw display
$83$ \( T + 72 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T - 1106 \) Copy content Toggle raw display
show more
show less