Properties

Label 490.4.a.o
Level $490$
Weight $4$
Character orbit 490.a
Self dual yes
Analytic conductor $28.911$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,4,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 8 q^{3} + 4 q^{4} - 5 q^{5} + 16 q^{6} + 8 q^{8} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 8 q^{3} + 4 q^{4} - 5 q^{5} + 16 q^{6} + 8 q^{8} + 37 q^{9} - 10 q^{10} + 12 q^{11} + 32 q^{12} + 58 q^{13} - 40 q^{15} + 16 q^{16} - 66 q^{17} + 74 q^{18} + 100 q^{19} - 20 q^{20} + 24 q^{22} + 132 q^{23} + 64 q^{24} + 25 q^{25} + 116 q^{26} + 80 q^{27} - 90 q^{29} - 80 q^{30} - 152 q^{31} + 32 q^{32} + 96 q^{33} - 132 q^{34} + 148 q^{36} - 34 q^{37} + 200 q^{38} + 464 q^{39} - 40 q^{40} + 438 q^{41} + 32 q^{43} + 48 q^{44} - 185 q^{45} + 264 q^{46} + 204 q^{47} + 128 q^{48} + 50 q^{50} - 528 q^{51} + 232 q^{52} + 222 q^{53} + 160 q^{54} - 60 q^{55} + 800 q^{57} - 180 q^{58} - 420 q^{59} - 160 q^{60} - 902 q^{61} - 304 q^{62} + 64 q^{64} - 290 q^{65} + 192 q^{66} - 1024 q^{67} - 264 q^{68} + 1056 q^{69} + 432 q^{71} + 296 q^{72} - 362 q^{73} - 68 q^{74} + 200 q^{75} + 400 q^{76} + 928 q^{78} - 160 q^{79} - 80 q^{80} - 359 q^{81} + 876 q^{82} - 72 q^{83} + 330 q^{85} + 64 q^{86} - 720 q^{87} + 96 q^{88} - 810 q^{89} - 370 q^{90} + 528 q^{92} - 1216 q^{93} + 408 q^{94} - 500 q^{95} + 256 q^{96} - 1106 q^{97} + 444 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 8.00000 4.00000 −5.00000 16.0000 0 8.00000 37.0000 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.a.o 1
5.b even 2 1 2450.4.a.b 1
7.b odd 2 1 10.4.a.a 1
7.c even 3 2 490.4.e.a 2
7.d odd 6 2 490.4.e.i 2
21.c even 2 1 90.4.a.a 1
28.d even 2 1 80.4.a.f 1
35.c odd 2 1 50.4.a.c 1
35.f even 4 2 50.4.b.a 2
56.e even 2 1 320.4.a.b 1
56.h odd 2 1 320.4.a.m 1
63.l odd 6 2 810.4.e.c 2
63.o even 6 2 810.4.e.w 2
77.b even 2 1 1210.4.a.b 1
84.h odd 2 1 720.4.a.j 1
91.b odd 2 1 1690.4.a.a 1
105.g even 2 1 450.4.a.q 1
105.k odd 4 2 450.4.c.d 2
112.j even 4 2 1280.4.d.g 2
112.l odd 4 2 1280.4.d.j 2
140.c even 2 1 400.4.a.b 1
140.j odd 4 2 400.4.c.c 2
280.c odd 2 1 1600.4.a.d 1
280.n even 2 1 1600.4.a.bx 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 7.b odd 2 1
50.4.a.c 1 35.c odd 2 1
50.4.b.a 2 35.f even 4 2
80.4.a.f 1 28.d even 2 1
90.4.a.a 1 21.c even 2 1
320.4.a.b 1 56.e even 2 1
320.4.a.m 1 56.h odd 2 1
400.4.a.b 1 140.c even 2 1
400.4.c.c 2 140.j odd 4 2
450.4.a.q 1 105.g even 2 1
450.4.c.d 2 105.k odd 4 2
490.4.a.o 1 1.a even 1 1 trivial
490.4.e.a 2 7.c even 3 2
490.4.e.i 2 7.d odd 6 2
720.4.a.j 1 84.h odd 2 1
810.4.e.c 2 63.l odd 6 2
810.4.e.w 2 63.o even 6 2
1210.4.a.b 1 77.b even 2 1
1280.4.d.g 2 112.j even 4 2
1280.4.d.j 2 112.l odd 4 2
1600.4.a.d 1 280.c odd 2 1
1600.4.a.bx 1 280.n even 2 1
1690.4.a.a 1 91.b odd 2 1
2450.4.a.b 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(490))\):

\( T_{3} - 8 \) Copy content Toggle raw display
\( T_{11} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 12 \) Copy content Toggle raw display
$13$ \( T - 58 \) Copy content Toggle raw display
$17$ \( T + 66 \) Copy content Toggle raw display
$19$ \( T - 100 \) Copy content Toggle raw display
$23$ \( T - 132 \) Copy content Toggle raw display
$29$ \( T + 90 \) Copy content Toggle raw display
$31$ \( T + 152 \) Copy content Toggle raw display
$37$ \( T + 34 \) Copy content Toggle raw display
$41$ \( T - 438 \) Copy content Toggle raw display
$43$ \( T - 32 \) Copy content Toggle raw display
$47$ \( T - 204 \) Copy content Toggle raw display
$53$ \( T - 222 \) Copy content Toggle raw display
$59$ \( T + 420 \) Copy content Toggle raw display
$61$ \( T + 902 \) Copy content Toggle raw display
$67$ \( T + 1024 \) Copy content Toggle raw display
$71$ \( T - 432 \) Copy content Toggle raw display
$73$ \( T + 362 \) Copy content Toggle raw display
$79$ \( T + 160 \) Copy content Toggle raw display
$83$ \( T + 72 \) Copy content Toggle raw display
$89$ \( T + 810 \) Copy content Toggle raw display
$97$ \( T + 1106 \) Copy content Toggle raw display
show more
show less