Properties

Label 420.2.bn.a.269.16
Level $420$
Weight $2$
Character 420.269
Analytic conductor $3.354$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(89,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.16
Character \(\chi\) \(=\) 420.269
Dual form 420.2.bn.a.89.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73102 - 0.0597684i) q^{3} +(-2.14829 + 0.620379i) q^{5} +(2.58416 + 0.567546i) q^{7} +(2.99286 - 0.206921i) q^{9} +(-0.793196 - 0.457952i) q^{11} +4.31153 q^{13} +(-3.68164 + 1.20229i) q^{15} +(0.465109 + 0.268531i) q^{17} +(-1.12887 + 0.651755i) q^{19} +(4.50715 + 0.827982i) q^{21} +(3.99480 + 6.91920i) q^{23} +(4.23026 - 2.66550i) q^{25} +(5.16832 - 0.537062i) q^{27} -3.46154i q^{29} +(-5.56113 - 3.21072i) q^{31} +(-1.40041 - 0.745316i) q^{33} +(-5.90361 + 0.383907i) q^{35} +(-4.36775 + 2.52172i) q^{37} +(7.46334 - 0.257693i) q^{39} -9.89809 q^{41} -8.22096i q^{43} +(-6.30114 + 2.30123i) q^{45} +(-3.75969 + 2.17066i) q^{47} +(6.35578 + 2.93326i) q^{49} +(0.821162 + 0.437033i) q^{51} +(0.984927 - 1.70594i) q^{53} +(1.98812 + 0.491730i) q^{55} +(-1.91514 + 1.19567i) q^{57} +(7.15363 - 12.3904i) q^{59} +(-8.38395 + 4.84048i) q^{61} +(7.85146 + 1.16387i) q^{63} +(-9.26240 + 2.67478i) q^{65} +(-10.4850 - 6.05349i) q^{67} +(7.32863 + 11.7385i) q^{69} -0.943900i q^{71} +(-5.11210 + 8.85442i) q^{73} +(7.16335 - 4.86687i) q^{75} +(-1.78984 - 1.63360i) q^{77} +(5.71817 + 9.90416i) q^{79} +(8.91437 - 1.23857i) q^{81} -9.35240i q^{83} +(-1.16578 - 0.288337i) q^{85} +(-0.206891 - 5.99199i) q^{87} +(-0.874507 - 1.51469i) q^{89} +(11.1417 + 2.44699i) q^{91} +(-9.81833 - 5.22544i) q^{93} +(2.02080 - 2.10048i) q^{95} -10.7844 q^{97} +(-2.46868 - 1.20646i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73102 0.0597684i 0.999404 0.0345073i
\(4\) 0 0
\(5\) −2.14829 + 0.620379i −0.960742 + 0.277442i
\(6\) 0 0
\(7\) 2.58416 + 0.567546i 0.976721 + 0.214512i
\(8\) 0 0
\(9\) 2.99286 0.206921i 0.997618 0.0689735i
\(10\) 0 0
\(11\) −0.793196 0.457952i −0.239158 0.138078i 0.375632 0.926769i \(-0.377426\pi\)
−0.614790 + 0.788691i \(0.710759\pi\)
\(12\) 0 0
\(13\) 4.31153 1.19580 0.597902 0.801569i \(-0.296001\pi\)
0.597902 + 0.801569i \(0.296001\pi\)
\(14\) 0 0
\(15\) −3.68164 + 1.20229i −0.950597 + 0.310429i
\(16\) 0 0
\(17\) 0.465109 + 0.268531i 0.112805 + 0.0651283i 0.555341 0.831623i \(-0.312588\pi\)
−0.442536 + 0.896751i \(0.645921\pi\)
\(18\) 0 0
\(19\) −1.12887 + 0.651755i −0.258981 + 0.149523i −0.623870 0.781528i \(-0.714440\pi\)
0.364889 + 0.931051i \(0.381107\pi\)
\(20\) 0 0
\(21\) 4.50715 + 0.827982i 0.983542 + 0.180681i
\(22\) 0 0
\(23\) 3.99480 + 6.91920i 0.832974 + 1.44275i 0.895669 + 0.444721i \(0.146697\pi\)
−0.0626950 + 0.998033i \(0.519970\pi\)
\(24\) 0 0
\(25\) 4.23026 2.66550i 0.846052 0.533100i
\(26\) 0 0
\(27\) 5.16832 0.537062i 0.994644 0.103358i
\(28\) 0 0
\(29\) 3.46154i 0.642791i −0.946945 0.321396i \(-0.895848\pi\)
0.946945 0.321396i \(-0.104152\pi\)
\(30\) 0 0
\(31\) −5.56113 3.21072i −0.998809 0.576663i −0.0909133 0.995859i \(-0.528979\pi\)
−0.907896 + 0.419196i \(0.862312\pi\)
\(32\) 0 0
\(33\) −1.40041 0.745316i −0.243780 0.129743i
\(34\) 0 0
\(35\) −5.90361 + 0.383907i −0.997892 + 0.0648921i
\(36\) 0 0
\(37\) −4.36775 + 2.52172i −0.718054 + 0.414569i −0.814036 0.580814i \(-0.802734\pi\)
0.0959820 + 0.995383i \(0.469401\pi\)
\(38\) 0 0
\(39\) 7.46334 0.257693i 1.19509 0.0412640i
\(40\) 0 0
\(41\) −9.89809 −1.54582 −0.772911 0.634515i \(-0.781200\pi\)
−0.772911 + 0.634515i \(0.781200\pi\)
\(42\) 0 0
\(43\) 8.22096i 1.25369i −0.779146 0.626843i \(-0.784347\pi\)
0.779146 0.626843i \(-0.215653\pi\)
\(44\) 0 0
\(45\) −6.30114 + 2.30123i −0.939318 + 0.343047i
\(46\) 0 0
\(47\) −3.75969 + 2.17066i −0.548407 + 0.316623i −0.748479 0.663158i \(-0.769216\pi\)
0.200072 + 0.979781i \(0.435882\pi\)
\(48\) 0 0
\(49\) 6.35578 + 2.93326i 0.907969 + 0.419038i
\(50\) 0 0
\(51\) 0.821162 + 0.437033i 0.114986 + 0.0611969i
\(52\) 0 0
\(53\) 0.984927 1.70594i 0.135290 0.234329i −0.790418 0.612568i \(-0.790137\pi\)
0.925708 + 0.378238i \(0.123470\pi\)
\(54\) 0 0
\(55\) 1.98812 + 0.491730i 0.268077 + 0.0663048i
\(56\) 0 0
\(57\) −1.91514 + 1.19567i −0.253667 + 0.158370i
\(58\) 0 0
\(59\) 7.15363 12.3904i 0.931323 1.61310i 0.150260 0.988647i \(-0.451989\pi\)
0.781063 0.624452i \(-0.214678\pi\)
\(60\) 0 0
\(61\) −8.38395 + 4.84048i −1.07345 + 0.619759i −0.929123 0.369770i \(-0.879436\pi\)
−0.144331 + 0.989529i \(0.546103\pi\)
\(62\) 0 0
\(63\) 7.85146 + 1.16387i 0.989191 + 0.146634i
\(64\) 0 0
\(65\) −9.26240 + 2.67478i −1.14886 + 0.331766i
\(66\) 0 0
\(67\) −10.4850 6.05349i −1.28094 0.739551i −0.303920 0.952697i \(-0.598296\pi\)
−0.977020 + 0.213146i \(0.931629\pi\)
\(68\) 0 0
\(69\) 7.32863 + 11.7385i 0.882264 + 1.41315i
\(70\) 0 0
\(71\) 0.943900i 0.112020i −0.998430 0.0560102i \(-0.982162\pi\)
0.998430 0.0560102i \(-0.0178379\pi\)
\(72\) 0 0
\(73\) −5.11210 + 8.85442i −0.598326 + 1.03633i 0.394742 + 0.918792i \(0.370834\pi\)
−0.993068 + 0.117540i \(0.962499\pi\)
\(74\) 0 0
\(75\) 7.16335 4.86687i 0.827152 0.561978i
\(76\) 0 0
\(77\) −1.78984 1.63360i −0.203971 0.186166i
\(78\) 0 0
\(79\) 5.71817 + 9.90416i 0.643345 + 1.11431i 0.984681 + 0.174364i \(0.0557870\pi\)
−0.341337 + 0.939941i \(0.610880\pi\)
\(80\) 0 0
\(81\) 8.91437 1.23857i 0.990485 0.137618i
\(82\) 0 0
\(83\) 9.35240i 1.02656i −0.858222 0.513279i \(-0.828430\pi\)
0.858222 0.513279i \(-0.171570\pi\)
\(84\) 0 0
\(85\) −1.16578 0.288337i −0.126446 0.0312746i
\(86\) 0 0
\(87\) −0.206891 5.99199i −0.0221810 0.642408i
\(88\) 0 0
\(89\) −0.874507 1.51469i −0.0926976 0.160557i 0.815948 0.578126i \(-0.196216\pi\)
−0.908645 + 0.417569i \(0.862882\pi\)
\(90\) 0 0
\(91\) 11.1417 + 2.44699i 1.16797 + 0.256515i
\(92\) 0 0
\(93\) −9.81833 5.22544i −1.01811 0.541853i
\(94\) 0 0
\(95\) 2.02080 2.10048i 0.207330 0.215505i
\(96\) 0 0
\(97\) −10.7844 −1.09499 −0.547494 0.836809i \(-0.684418\pi\)
−0.547494 + 0.836809i \(0.684418\pi\)
\(98\) 0 0
\(99\) −2.46868 1.20646i −0.248112 0.121253i
\(100\) 0 0
\(101\) −4.92480 + 8.53000i −0.490036 + 0.848767i −0.999934 0.0114677i \(-0.996350\pi\)
0.509898 + 0.860235i \(0.329683\pi\)
\(102\) 0 0
\(103\) 1.22897 + 2.12863i 0.121094 + 0.209741i 0.920199 0.391450i \(-0.128026\pi\)
−0.799106 + 0.601191i \(0.794693\pi\)
\(104\) 0 0
\(105\) −10.1963 + 1.01740i −0.995059 + 0.0992881i
\(106\) 0 0
\(107\) 0.749815 + 1.29872i 0.0724873 + 0.125552i 0.899991 0.435909i \(-0.143573\pi\)
−0.827504 + 0.561461i \(0.810240\pi\)
\(108\) 0 0
\(109\) 1.93226 3.34677i 0.185077 0.320563i −0.758525 0.651643i \(-0.774080\pi\)
0.943602 + 0.331081i \(0.107413\pi\)
\(110\) 0 0
\(111\) −7.40994 + 4.62620i −0.703321 + 0.439100i
\(112\) 0 0
\(113\) −10.1791 −0.957567 −0.478783 0.877933i \(-0.658922\pi\)
−0.478783 + 0.877933i \(0.658922\pi\)
\(114\) 0 0
\(115\) −12.8745 12.3861i −1.20055 1.15501i
\(116\) 0 0
\(117\) 12.9038 0.892144i 1.19296 0.0824788i
\(118\) 0 0
\(119\) 1.04951 + 0.957898i 0.0962087 + 0.0878104i
\(120\) 0 0
\(121\) −5.08056 8.79979i −0.461869 0.799981i
\(122\) 0 0
\(123\) −17.1338 + 0.591593i −1.54490 + 0.0533421i
\(124\) 0 0
\(125\) −7.43419 + 8.35062i −0.664934 + 0.746902i
\(126\) 0 0
\(127\) 9.73798i 0.864106i 0.901848 + 0.432053i \(0.142211\pi\)
−0.901848 + 0.432053i \(0.857789\pi\)
\(128\) 0 0
\(129\) −0.491354 14.2306i −0.0432613 1.25294i
\(130\) 0 0
\(131\) −8.80008 15.2422i −0.768867 1.33172i −0.938178 0.346154i \(-0.887488\pi\)
0.169311 0.985563i \(-0.445846\pi\)
\(132\) 0 0
\(133\) −3.28709 + 1.04355i −0.285027 + 0.0904874i
\(134\) 0 0
\(135\) −10.7699 + 4.36008i −0.926921 + 0.375256i
\(136\) 0 0
\(137\) 5.20973 9.02351i 0.445097 0.770931i −0.552962 0.833207i \(-0.686503\pi\)
0.998059 + 0.0622758i \(0.0198358\pi\)
\(138\) 0 0
\(139\) 7.09182i 0.601520i 0.953700 + 0.300760i \(0.0972403\pi\)
−0.953700 + 0.300760i \(0.902760\pi\)
\(140\) 0 0
\(141\) −6.37836 + 3.98216i −0.537155 + 0.335359i
\(142\) 0 0
\(143\) −3.41989 1.97447i −0.285986 0.165114i
\(144\) 0 0
\(145\) 2.14746 + 7.43637i 0.178337 + 0.617557i
\(146\) 0 0
\(147\) 11.1773 + 4.69766i 0.921888 + 0.387456i
\(148\) 0 0
\(149\) 5.42586 3.13262i 0.444504 0.256634i −0.261003 0.965338i \(-0.584053\pi\)
0.705506 + 0.708704i \(0.250720\pi\)
\(150\) 0 0
\(151\) 8.85578 15.3387i 0.720673 1.24824i −0.240057 0.970759i \(-0.577166\pi\)
0.960730 0.277484i \(-0.0895006\pi\)
\(152\) 0 0
\(153\) 1.44757 + 0.707433i 0.117029 + 0.0571926i
\(154\) 0 0
\(155\) 13.9388 + 3.44754i 1.11959 + 0.276913i
\(156\) 0 0
\(157\) −0.386973 + 0.670256i −0.0308838 + 0.0534923i −0.881054 0.473015i \(-0.843166\pi\)
0.850170 + 0.526508i \(0.176499\pi\)
\(158\) 0 0
\(159\) 1.60297 3.01189i 0.127123 0.238858i
\(160\) 0 0
\(161\) 6.39625 + 20.1476i 0.504095 + 1.58785i
\(162\) 0 0
\(163\) 5.96435 3.44352i 0.467164 0.269717i −0.247888 0.968789i \(-0.579736\pi\)
0.715052 + 0.699072i \(0.246403\pi\)
\(164\) 0 0
\(165\) 3.47086 + 0.732367i 0.270206 + 0.0570147i
\(166\) 0 0
\(167\) 9.49709i 0.734907i 0.930042 + 0.367453i \(0.119770\pi\)
−0.930042 + 0.367453i \(0.880230\pi\)
\(168\) 0 0
\(169\) 5.58930 0.429946
\(170\) 0 0
\(171\) −3.24369 + 2.18419i −0.248051 + 0.167029i
\(172\) 0 0
\(173\) −10.3489 + 5.97492i −0.786809 + 0.454264i −0.838838 0.544381i \(-0.816765\pi\)
0.0520289 + 0.998646i \(0.483431\pi\)
\(174\) 0 0
\(175\) 12.4445 4.48722i 0.940714 0.339202i
\(176\) 0 0
\(177\) 11.6425 21.8757i 0.875105 1.64428i
\(178\) 0 0
\(179\) 16.2343 + 9.37286i 1.21341 + 0.700561i 0.963500 0.267709i \(-0.0862667\pi\)
0.249907 + 0.968270i \(0.419600\pi\)
\(180\) 0 0
\(181\) 16.1024i 1.19688i 0.801167 + 0.598441i \(0.204213\pi\)
−0.801167 + 0.598441i \(0.795787\pi\)
\(182\) 0 0
\(183\) −14.2235 + 8.88005i −1.05143 + 0.656432i
\(184\) 0 0
\(185\) 7.81876 8.12704i 0.574846 0.597512i
\(186\) 0 0
\(187\) −0.245948 0.425995i −0.0179855 0.0311519i
\(188\) 0 0
\(189\) 13.6606 + 1.54541i 0.993662 + 0.112412i
\(190\) 0 0
\(191\) 14.9979 8.65904i 1.08521 0.626546i 0.152912 0.988240i \(-0.451135\pi\)
0.932297 + 0.361694i \(0.117801\pi\)
\(192\) 0 0
\(193\) 13.1033 + 7.56517i 0.943193 + 0.544553i 0.890960 0.454082i \(-0.150033\pi\)
0.0522332 + 0.998635i \(0.483366\pi\)
\(194\) 0 0
\(195\) −15.8735 + 5.18370i −1.13673 + 0.371212i
\(196\) 0 0
\(197\) 18.6287 1.32724 0.663619 0.748071i \(-0.269020\pi\)
0.663619 + 0.748071i \(0.269020\pi\)
\(198\) 0 0
\(199\) −8.70283 5.02458i −0.616927 0.356183i 0.158745 0.987320i \(-0.449255\pi\)
−0.775672 + 0.631137i \(0.782589\pi\)
\(200\) 0 0
\(201\) −18.5115 9.85204i −1.30570 0.694909i
\(202\) 0 0
\(203\) 1.96458 8.94517i 0.137887 0.627828i
\(204\) 0 0
\(205\) 21.2639 6.14056i 1.48514 0.428875i
\(206\) 0 0
\(207\) 13.3876 + 19.8816i 0.930502 + 1.38186i
\(208\) 0 0
\(209\) 1.19389 0.0825830
\(210\) 0 0
\(211\) −1.68592 −0.116064 −0.0580319 0.998315i \(-0.518483\pi\)
−0.0580319 + 0.998315i \(0.518483\pi\)
\(212\) 0 0
\(213\) −0.0564154 1.63391i −0.00386552 0.111954i
\(214\) 0 0
\(215\) 5.10011 + 17.6610i 0.347825 + 1.20447i
\(216\) 0 0
\(217\) −12.5486 11.4532i −0.851857 0.777495i
\(218\) 0 0
\(219\) −8.31993 + 15.6327i −0.562209 + 1.05636i
\(220\) 0 0
\(221\) 2.00533 + 1.15778i 0.134893 + 0.0778806i
\(222\) 0 0
\(223\) 14.2095 0.951541 0.475770 0.879570i \(-0.342169\pi\)
0.475770 + 0.879570i \(0.342169\pi\)
\(224\) 0 0
\(225\) 12.1090 8.85279i 0.807268 0.590186i
\(226\) 0 0
\(227\) −0.590416 0.340877i −0.0391873 0.0226248i 0.480278 0.877116i \(-0.340536\pi\)
−0.519466 + 0.854491i \(0.673869\pi\)
\(228\) 0 0
\(229\) −2.56113 + 1.47867i −0.169244 + 0.0977133i −0.582230 0.813024i \(-0.697819\pi\)
0.412985 + 0.910738i \(0.364486\pi\)
\(230\) 0 0
\(231\) −3.19588 2.72081i −0.210274 0.179016i
\(232\) 0 0
\(233\) 13.4685 + 23.3282i 0.882353 + 1.52828i 0.848717 + 0.528847i \(0.177375\pi\)
0.0336360 + 0.999434i \(0.489291\pi\)
\(234\) 0 0
\(235\) 6.73026 6.99563i 0.439034 0.456344i
\(236\) 0 0
\(237\) 10.4902 + 16.8025i 0.681413 + 1.09144i
\(238\) 0 0
\(239\) 17.3461i 1.12202i −0.827808 0.561012i \(-0.810412\pi\)
0.827808 0.561012i \(-0.189588\pi\)
\(240\) 0 0
\(241\) 1.32282 + 0.763728i 0.0852101 + 0.0491961i 0.542000 0.840379i \(-0.317667\pi\)
−0.456790 + 0.889575i \(0.651001\pi\)
\(242\) 0 0
\(243\) 15.3569 2.67678i 0.985147 0.171716i
\(244\) 0 0
\(245\) −15.4738 2.35849i −0.988583 0.150679i
\(246\) 0 0
\(247\) −4.86717 + 2.81006i −0.309690 + 0.178800i
\(248\) 0 0
\(249\) −0.558978 16.1892i −0.0354238 1.02595i
\(250\) 0 0
\(251\) 6.56268 0.414233 0.207116 0.978316i \(-0.433592\pi\)
0.207116 + 0.978316i \(0.433592\pi\)
\(252\) 0 0
\(253\) 7.31771i 0.460061i
\(254\) 0 0
\(255\) −2.03522 0.429441i −0.127450 0.0268926i
\(256\) 0 0
\(257\) −14.6990 + 8.48645i −0.916896 + 0.529370i −0.882644 0.470043i \(-0.844238\pi\)
−0.0342527 + 0.999413i \(0.510905\pi\)
\(258\) 0 0
\(259\) −12.7182 + 4.03764i −0.790269 + 0.250887i
\(260\) 0 0
\(261\) −0.716263 10.3599i −0.0443356 0.641260i
\(262\) 0 0
\(263\) 2.65984 4.60699i 0.164013 0.284079i −0.772291 0.635269i \(-0.780889\pi\)
0.936304 + 0.351190i \(0.114223\pi\)
\(264\) 0 0
\(265\) −1.05757 + 4.27588i −0.0649662 + 0.262665i
\(266\) 0 0
\(267\) −1.60432 2.56969i −0.0981828 0.157263i
\(268\) 0 0
\(269\) −3.27834 + 5.67825i −0.199884 + 0.346209i −0.948491 0.316805i \(-0.897390\pi\)
0.748607 + 0.663014i \(0.230723\pi\)
\(270\) 0 0
\(271\) 4.54171 2.62216i 0.275889 0.159285i −0.355672 0.934611i \(-0.615748\pi\)
0.631561 + 0.775326i \(0.282415\pi\)
\(272\) 0 0
\(273\) 19.4327 + 3.56987i 1.17612 + 0.216058i
\(274\) 0 0
\(275\) −4.57610 + 0.177008i −0.275949 + 0.0106740i
\(276\) 0 0
\(277\) −2.40171 1.38663i −0.144305 0.0833145i 0.426109 0.904672i \(-0.359884\pi\)
−0.570414 + 0.821357i \(0.693217\pi\)
\(278\) 0 0
\(279\) −17.3080 8.45851i −1.03620 0.506398i
\(280\) 0 0
\(281\) 22.4373i 1.33850i 0.743038 + 0.669250i \(0.233384\pi\)
−0.743038 + 0.669250i \(0.766616\pi\)
\(282\) 0 0
\(283\) 3.62340 6.27592i 0.215389 0.373064i −0.738004 0.674796i \(-0.764231\pi\)
0.953393 + 0.301732i \(0.0975648\pi\)
\(284\) 0 0
\(285\) 3.37251 3.75676i 0.199770 0.222531i
\(286\) 0 0
\(287\) −25.5783 5.61762i −1.50984 0.331598i
\(288\) 0 0
\(289\) −8.35578 14.4726i −0.491517 0.851332i
\(290\) 0 0
\(291\) −18.6680 + 0.644566i −1.09434 + 0.0377851i
\(292\) 0 0
\(293\) 26.1686i 1.52879i −0.644750 0.764393i \(-0.723039\pi\)
0.644750 0.764393i \(-0.276961\pi\)
\(294\) 0 0
\(295\) −7.68127 + 31.0562i −0.447221 + 1.80816i
\(296\) 0 0
\(297\) −4.34544 1.94085i −0.252148 0.112619i
\(298\) 0 0
\(299\) 17.2237 + 29.8324i 0.996073 + 1.72525i
\(300\) 0 0
\(301\) 4.66578 21.2443i 0.268931 1.22450i
\(302\) 0 0
\(303\) −8.01510 + 15.0599i −0.460455 + 0.865171i
\(304\) 0 0
\(305\) 15.0082 15.5999i 0.859366 0.893250i
\(306\) 0 0
\(307\) −22.4144 −1.27926 −0.639630 0.768683i \(-0.720912\pi\)
−0.639630 + 0.768683i \(0.720912\pi\)
\(308\) 0 0
\(309\) 2.25459 + 3.61125i 0.128259 + 0.205437i
\(310\) 0 0
\(311\) 9.81378 16.9980i 0.556488 0.963866i −0.441298 0.897361i \(-0.645482\pi\)
0.997786 0.0665052i \(-0.0211849\pi\)
\(312\) 0 0
\(313\) −6.41664 11.1139i −0.362690 0.628197i 0.625713 0.780054i \(-0.284808\pi\)
−0.988403 + 0.151856i \(0.951475\pi\)
\(314\) 0 0
\(315\) −17.5892 + 2.37056i −0.991040 + 0.133566i
\(316\) 0 0
\(317\) 7.98449 + 13.8295i 0.448454 + 0.776745i 0.998286 0.0585306i \(-0.0186415\pi\)
−0.549832 + 0.835275i \(0.685308\pi\)
\(318\) 0 0
\(319\) −1.58522 + 2.74568i −0.0887552 + 0.153728i
\(320\) 0 0
\(321\) 1.37557 + 2.20329i 0.0767766 + 0.122976i
\(322\) 0 0
\(323\) −0.700065 −0.0389526
\(324\) 0 0
\(325\) 18.2389 11.4924i 1.01171 0.637483i
\(326\) 0 0
\(327\) 3.14475 5.90882i 0.173905 0.326758i
\(328\) 0 0
\(329\) −10.9476 + 3.47553i −0.603561 + 0.191612i
\(330\) 0 0
\(331\) 9.81888 + 17.0068i 0.539694 + 0.934778i 0.998920 + 0.0464584i \(0.0147935\pi\)
−0.459226 + 0.888319i \(0.651873\pi\)
\(332\) 0 0
\(333\) −12.5503 + 8.45093i −0.687750 + 0.463108i
\(334\) 0 0
\(335\) 26.2801 + 6.49998i 1.43584 + 0.355132i
\(336\) 0 0
\(337\) 0.304237i 0.0165729i −0.999966 0.00828643i \(-0.997362\pi\)
0.999966 0.00828643i \(-0.00263768\pi\)
\(338\) 0 0
\(339\) −17.6202 + 0.608387i −0.956996 + 0.0330430i
\(340\) 0 0
\(341\) 2.94071 + 5.09346i 0.159249 + 0.275827i
\(342\) 0 0
\(343\) 14.7596 + 11.1872i 0.796944 + 0.604053i
\(344\) 0 0
\(345\) −23.0263 20.6711i −1.23970 1.11290i
\(346\) 0 0
\(347\) 14.2235 24.6358i 0.763556 1.32252i −0.177451 0.984130i \(-0.556785\pi\)
0.941007 0.338388i \(-0.109882\pi\)
\(348\) 0 0
\(349\) 13.9719i 0.747897i −0.927450 0.373948i \(-0.878004\pi\)
0.927450 0.373948i \(-0.121996\pi\)
\(350\) 0 0
\(351\) 22.2834 2.31556i 1.18940 0.123595i
\(352\) 0 0
\(353\) 29.9676 + 17.3018i 1.59501 + 0.920881i 0.992428 + 0.122826i \(0.0391958\pi\)
0.602585 + 0.798055i \(0.294138\pi\)
\(354\) 0 0
\(355\) 0.585575 + 2.02777i 0.0310791 + 0.107623i
\(356\) 0 0
\(357\) 1.87398 + 1.59541i 0.0991815 + 0.0844382i
\(358\) 0 0
\(359\) −19.8260 + 11.4465i −1.04638 + 0.604126i −0.921633 0.388064i \(-0.873144\pi\)
−0.124743 + 0.992189i \(0.539811\pi\)
\(360\) 0 0
\(361\) −8.65043 + 14.9830i −0.455286 + 0.788578i
\(362\) 0 0
\(363\) −9.32050 14.9289i −0.489199 0.783566i
\(364\) 0 0
\(365\) 5.48916 22.1933i 0.287316 1.16165i
\(366\) 0 0
\(367\) −14.4999 + 25.1145i −0.756887 + 1.31097i 0.187543 + 0.982256i \(0.439947\pi\)
−0.944431 + 0.328711i \(0.893386\pi\)
\(368\) 0 0
\(369\) −29.6235 + 2.04812i −1.54214 + 0.106621i
\(370\) 0 0
\(371\) 3.51341 3.84944i 0.182407 0.199853i
\(372\) 0 0
\(373\) −20.8113 + 12.0154i −1.07757 + 0.622136i −0.930240 0.366952i \(-0.880401\pi\)
−0.147331 + 0.989087i \(0.547068\pi\)
\(374\) 0 0
\(375\) −12.3696 + 14.8994i −0.638764 + 0.769402i
\(376\) 0 0
\(377\) 14.9245i 0.768652i
\(378\) 0 0
\(379\) −14.0820 −0.723342 −0.361671 0.932306i \(-0.617794\pi\)
−0.361671 + 0.932306i \(0.617794\pi\)
\(380\) 0 0
\(381\) 0.582023 + 16.8566i 0.0298180 + 0.863591i
\(382\) 0 0
\(383\) −25.4637 + 14.7015i −1.30114 + 0.751211i −0.980599 0.196025i \(-0.937197\pi\)
−0.320537 + 0.947236i \(0.603863\pi\)
\(384\) 0 0
\(385\) 4.85853 + 2.39906i 0.247614 + 0.122267i
\(386\) 0 0
\(387\) −1.70109 24.6042i −0.0864711 1.25070i
\(388\) 0 0
\(389\) −20.2730 11.7046i −1.02788 0.593448i −0.111504 0.993764i \(-0.535567\pi\)
−0.916377 + 0.400316i \(0.868900\pi\)
\(390\) 0 0
\(391\) 4.29091i 0.217001i
\(392\) 0 0
\(393\) −16.1441 25.8586i −0.814363 1.30439i
\(394\) 0 0
\(395\) −18.4286 17.7295i −0.927243 0.892070i
\(396\) 0 0
\(397\) −5.96889 10.3384i −0.299570 0.518871i 0.676467 0.736473i \(-0.263510\pi\)
−0.976038 + 0.217602i \(0.930177\pi\)
\(398\) 0 0
\(399\) −5.62764 + 2.00287i −0.281734 + 0.100269i
\(400\) 0 0
\(401\) 21.6844 12.5195i 1.08287 0.625193i 0.151198 0.988504i \(-0.451687\pi\)
0.931668 + 0.363311i \(0.118354\pi\)
\(402\) 0 0
\(403\) −23.9770 13.8431i −1.19438 0.689575i
\(404\) 0 0
\(405\) −18.3822 + 8.19108i −0.913420 + 0.407018i
\(406\) 0 0
\(407\) 4.61931 0.228971
\(408\) 0 0
\(409\) 26.1378 + 15.0906i 1.29243 + 0.746184i 0.979084 0.203455i \(-0.0652172\pi\)
0.313345 + 0.949640i \(0.398551\pi\)
\(410\) 0 0
\(411\) 8.47882 15.9313i 0.418229 0.785831i
\(412\) 0 0
\(413\) 25.5183 27.9589i 1.25567 1.37577i
\(414\) 0 0
\(415\) 5.80203 + 20.0916i 0.284810 + 0.986259i
\(416\) 0 0
\(417\) 0.423867 + 12.2761i 0.0207568 + 0.601162i
\(418\) 0 0
\(419\) −9.85560 −0.481477 −0.240739 0.970590i \(-0.577390\pi\)
−0.240739 + 0.970590i \(0.577390\pi\)
\(420\) 0 0
\(421\) −8.16112 −0.397749 −0.198874 0.980025i \(-0.563729\pi\)
−0.198874 + 0.980025i \(0.563729\pi\)
\(422\) 0 0
\(423\) −10.8031 + 7.27443i −0.525263 + 0.353695i
\(424\) 0 0
\(425\) 2.68330 0.103793i 0.130159 0.00503470i
\(426\) 0 0
\(427\) −24.4127 + 7.75029i −1.18141 + 0.375063i
\(428\) 0 0
\(429\) −6.03791 3.21345i −0.291513 0.155147i
\(430\) 0 0
\(431\) −2.84702 1.64373i −0.137136 0.0791755i 0.429862 0.902894i \(-0.358562\pi\)
−0.566998 + 0.823719i \(0.691895\pi\)
\(432\) 0 0
\(433\) 31.9717 1.53646 0.768231 0.640173i \(-0.221137\pi\)
0.768231 + 0.640173i \(0.221137\pi\)
\(434\) 0 0
\(435\) 4.16176 + 12.7441i 0.199541 + 0.611035i
\(436\) 0 0
\(437\) −9.01924 5.20726i −0.431449 0.249097i
\(438\) 0 0
\(439\) 36.1217 20.8549i 1.72399 0.995349i 0.813827 0.581107i \(-0.197380\pi\)
0.910167 0.414242i \(-0.135953\pi\)
\(440\) 0 0
\(441\) 19.6289 + 7.46369i 0.934709 + 0.355414i
\(442\) 0 0
\(443\) 9.47885 + 16.4179i 0.450354 + 0.780036i 0.998408 0.0564073i \(-0.0179645\pi\)
−0.548054 + 0.836443i \(0.684631\pi\)
\(444\) 0 0
\(445\) 2.81837 + 2.71146i 0.133604 + 0.128536i
\(446\) 0 0
\(447\) 9.20503 5.74692i 0.435383 0.271820i
\(448\) 0 0
\(449\) 40.0091i 1.88815i 0.329737 + 0.944073i \(0.393040\pi\)
−0.329737 + 0.944073i \(0.606960\pi\)
\(450\) 0 0
\(451\) 7.85112 + 4.53285i 0.369695 + 0.213444i
\(452\) 0 0
\(453\) 14.4128 27.0808i 0.677171 1.27237i
\(454\) 0 0
\(455\) −25.4536 + 1.65523i −1.19328 + 0.0775982i
\(456\) 0 0
\(457\) −9.86127 + 5.69340i −0.461291 + 0.266326i −0.712587 0.701584i \(-0.752477\pi\)
0.251296 + 0.967910i \(0.419143\pi\)
\(458\) 0 0
\(459\) 2.54805 + 1.13806i 0.118933 + 0.0531202i
\(460\) 0 0
\(461\) −8.71020 −0.405674 −0.202837 0.979212i \(-0.565016\pi\)
−0.202837 + 0.979212i \(0.565016\pi\)
\(462\) 0 0
\(463\) 16.1154i 0.748944i −0.927238 0.374472i \(-0.877824\pi\)
0.927238 0.374472i \(-0.122176\pi\)
\(464\) 0 0
\(465\) 24.3343 + 5.13466i 1.12848 + 0.238114i
\(466\) 0 0
\(467\) 7.88492 4.55236i 0.364870 0.210658i −0.306345 0.951921i \(-0.599106\pi\)
0.671215 + 0.741263i \(0.265773\pi\)
\(468\) 0 0
\(469\) −23.6592 21.5939i −1.09248 0.997113i
\(470\) 0 0
\(471\) −0.629797 + 1.18336i −0.0290195 + 0.0545261i
\(472\) 0 0
\(473\) −3.76481 + 6.52084i −0.173106 + 0.299828i
\(474\) 0 0
\(475\) −3.03817 + 5.76610i −0.139401 + 0.264567i
\(476\) 0 0
\(477\) 2.59475 5.30944i 0.118805 0.243103i
\(478\) 0 0
\(479\) −13.2092 + 22.8791i −0.603546 + 1.04537i 0.388733 + 0.921350i \(0.372913\pi\)
−0.992279 + 0.124022i \(0.960421\pi\)
\(480\) 0 0
\(481\) −18.8317 + 10.8725i −0.858652 + 0.495743i
\(482\) 0 0
\(483\) 12.2762 + 34.4935i 0.558587 + 1.56951i
\(484\) 0 0
\(485\) 23.1679 6.69040i 1.05200 0.303796i
\(486\) 0 0
\(487\) 7.93392 + 4.58065i 0.359520 + 0.207569i 0.668870 0.743379i \(-0.266778\pi\)
−0.309350 + 0.950948i \(0.600111\pi\)
\(488\) 0 0
\(489\) 10.1186 6.31727i 0.457578 0.285677i
\(490\) 0 0
\(491\) 33.0800i 1.49288i −0.665453 0.746440i \(-0.731761\pi\)
0.665453 0.746440i \(-0.268239\pi\)
\(492\) 0 0
\(493\) 0.929529 1.60999i 0.0418639 0.0725104i
\(494\) 0 0
\(495\) 6.05189 + 1.06029i 0.272012 + 0.0476567i
\(496\) 0 0
\(497\) 0.535707 2.43919i 0.0240297 0.109413i
\(498\) 0 0
\(499\) −8.54365 14.7980i −0.382466 0.662451i 0.608948 0.793210i \(-0.291592\pi\)
−0.991414 + 0.130759i \(0.958259\pi\)
\(500\) 0 0
\(501\) 0.567626 + 16.4396i 0.0253597 + 0.734469i
\(502\) 0 0
\(503\) 21.1753i 0.944158i −0.881556 0.472079i \(-0.843504\pi\)
0.881556 0.472079i \(-0.156496\pi\)
\(504\) 0 0
\(505\) 5.28804 21.3801i 0.235315 0.951403i
\(506\) 0 0
\(507\) 9.67518 0.334063i 0.429690 0.0148363i
\(508\) 0 0
\(509\) −15.5918 27.0059i −0.691096 1.19701i −0.971479 0.237125i \(-0.923795\pi\)
0.280383 0.959888i \(-0.409539\pi\)
\(510\) 0 0
\(511\) −18.2358 + 19.9799i −0.806704 + 0.883859i
\(512\) 0 0
\(513\) −5.48434 + 3.97475i −0.242140 + 0.175490i
\(514\) 0 0
\(515\) −3.96073 3.81049i −0.174531 0.167910i
\(516\) 0 0
\(517\) 3.97623 0.174874
\(518\) 0 0
\(519\) −17.5570 + 10.9612i −0.770665 + 0.481145i
\(520\) 0 0
\(521\) −19.4555 + 33.6980i −0.852363 + 1.47634i 0.0267070 + 0.999643i \(0.491498\pi\)
−0.879070 + 0.476693i \(0.841835\pi\)
\(522\) 0 0
\(523\) 1.88123 + 3.25839i 0.0822606 + 0.142480i 0.904221 0.427066i \(-0.140453\pi\)
−0.821960 + 0.569545i \(0.807119\pi\)
\(524\) 0 0
\(525\) 21.2734 8.51124i 0.928449 0.371461i
\(526\) 0 0
\(527\) −1.72436 2.98667i −0.0751141 0.130101i
\(528\) 0 0
\(529\) −20.4169 + 35.3631i −0.887692 + 1.53753i
\(530\) 0 0
\(531\) 18.8459 38.5630i 0.817844 1.67349i
\(532\) 0 0
\(533\) −42.6759 −1.84850
\(534\) 0 0
\(535\) −2.41651 2.32485i −0.104475 0.100512i
\(536\) 0 0
\(537\) 28.6620 + 15.2543i 1.23686 + 0.658272i
\(538\) 0 0
\(539\) −3.69809 5.23730i −0.159288 0.225586i
\(540\) 0 0
\(541\) −13.6223 23.5945i −0.585667 1.01440i −0.994792 0.101927i \(-0.967499\pi\)
0.409125 0.912478i \(-0.365834\pi\)
\(542\) 0 0
\(543\) 0.962414 + 27.8736i 0.0413012 + 1.19617i
\(544\) 0 0
\(545\) −2.07478 + 8.38856i −0.0888739 + 0.359326i
\(546\) 0 0
\(547\) 13.4516i 0.575148i −0.957758 0.287574i \(-0.907151\pi\)
0.957758 0.287574i \(-0.0928487\pi\)
\(548\) 0 0
\(549\) −24.0904 + 16.2217i −1.02815 + 0.692323i
\(550\) 0 0
\(551\) 2.25607 + 3.90763i 0.0961119 + 0.166471i
\(552\) 0 0
\(553\) 9.15561 + 28.8393i 0.389336 + 1.22637i
\(554\) 0 0
\(555\) 13.0487 14.5354i 0.553885 0.616992i
\(556\) 0 0
\(557\) −18.8087 + 32.5776i −0.796950 + 1.38036i 0.124644 + 0.992202i \(0.460221\pi\)
−0.921594 + 0.388156i \(0.873112\pi\)
\(558\) 0 0
\(559\) 35.4449i 1.49916i
\(560\) 0 0
\(561\) −0.451203 0.722706i −0.0190498 0.0305127i
\(562\) 0 0
\(563\) 8.81514 + 5.08942i 0.371514 + 0.214494i 0.674120 0.738622i \(-0.264523\pi\)
−0.302606 + 0.953116i \(0.597857\pi\)
\(564\) 0 0
\(565\) 21.8676 6.31488i 0.919975 0.265669i
\(566\) 0 0
\(567\) 23.7391 + 1.85866i 0.996949 + 0.0780564i
\(568\) 0 0
\(569\) −0.744706 + 0.429956i −0.0312197 + 0.0180247i −0.515529 0.856872i \(-0.672404\pi\)
0.484309 + 0.874897i \(0.339071\pi\)
\(570\) 0 0
\(571\) −1.71817 + 2.97596i −0.0719032 + 0.124540i −0.899735 0.436436i \(-0.856241\pi\)
0.827832 + 0.560976i \(0.189574\pi\)
\(572\) 0 0
\(573\) 25.4441 15.8854i 1.06294 0.663620i
\(574\) 0 0
\(575\) 35.3422 + 18.6219i 1.47387 + 0.776586i
\(576\) 0 0
\(577\) 12.8498 22.2565i 0.534944 0.926550i −0.464222 0.885719i \(-0.653666\pi\)
0.999166 0.0408310i \(-0.0130005\pi\)
\(578\) 0 0
\(579\) 23.1341 + 12.3123i 0.961422 + 0.511681i
\(580\) 0 0
\(581\) 5.30792 24.1681i 0.220210 1.00266i
\(582\) 0 0
\(583\) −1.56248 + 0.902098i −0.0647113 + 0.0373611i
\(584\) 0 0
\(585\) −27.1676 + 9.92181i −1.12324 + 0.410217i
\(586\) 0 0
\(587\) 22.5090i 0.929048i 0.885561 + 0.464524i \(0.153775\pi\)
−0.885561 + 0.464524i \(0.846225\pi\)
\(588\) 0 0
\(589\) 8.37041 0.344897
\(590\) 0 0
\(591\) 32.2466 1.11341i 1.32645 0.0457994i
\(592\) 0 0
\(593\) −20.5878 + 11.8863i −0.845438 + 0.488114i −0.859109 0.511793i \(-0.828982\pi\)
0.0136712 + 0.999907i \(0.495648\pi\)
\(594\) 0 0
\(595\) −2.84891 1.40674i −0.116794 0.0576708i
\(596\) 0 0
\(597\) −15.3651 8.17749i −0.628850 0.334682i
\(598\) 0 0
\(599\) −37.6990 21.7655i −1.54034 0.889314i −0.998817 0.0486270i \(-0.984515\pi\)
−0.541521 0.840687i \(-0.682151\pi\)
\(600\) 0 0
\(601\) 19.9347i 0.813153i −0.913617 0.406577i \(-0.866722\pi\)
0.913617 0.406577i \(-0.133278\pi\)
\(602\) 0 0
\(603\) −32.6325 15.9477i −1.32890 0.649439i
\(604\) 0 0
\(605\) 16.3737 + 15.7526i 0.665685 + 0.640434i
\(606\) 0 0
\(607\) −5.31663 9.20867i −0.215795 0.373768i 0.737723 0.675103i \(-0.235901\pi\)
−0.953518 + 0.301335i \(0.902568\pi\)
\(608\) 0 0
\(609\) 2.86609 15.6017i 0.116140 0.632212i
\(610\) 0 0
\(611\) −16.2100 + 9.35886i −0.655788 + 0.378619i
\(612\) 0 0
\(613\) −13.1068 7.56721i −0.529378 0.305637i 0.211385 0.977403i \(-0.432203\pi\)
−0.740763 + 0.671766i \(0.765536\pi\)
\(614\) 0 0
\(615\) 36.4412 11.9003i 1.46945 0.479868i
\(616\) 0 0
\(617\) 7.39865 0.297858 0.148929 0.988848i \(-0.452417\pi\)
0.148929 + 0.988848i \(0.452417\pi\)
\(618\) 0 0
\(619\) 16.0456 + 9.26396i 0.644929 + 0.372350i 0.786511 0.617577i \(-0.211885\pi\)
−0.141582 + 0.989927i \(0.545219\pi\)
\(620\) 0 0
\(621\) 24.3625 + 33.6152i 0.977632 + 1.34893i
\(622\) 0 0
\(623\) −1.40021 4.41053i −0.0560983 0.176704i
\(624\) 0 0
\(625\) 10.7902 22.5515i 0.431609 0.902061i
\(626\) 0 0
\(627\) 2.06665 0.0713568i 0.0825339 0.00284972i
\(628\) 0 0
\(629\) −2.70864 −0.108001
\(630\) 0 0
\(631\) 13.1786 0.524632 0.262316 0.964982i \(-0.415514\pi\)
0.262316 + 0.964982i \(0.415514\pi\)
\(632\) 0 0
\(633\) −2.91837 + 0.100765i −0.115995 + 0.00400505i
\(634\) 0 0
\(635\) −6.04123 20.9200i −0.239739 0.830183i
\(636\) 0 0
\(637\) 27.4032 + 12.6469i 1.08575 + 0.501087i
\(638\) 0 0
\(639\) −0.195312 2.82496i −0.00772643 0.111754i
\(640\) 0 0
\(641\) −12.2389 7.06611i −0.483406 0.279094i 0.238429 0.971160i \(-0.423368\pi\)
−0.721835 + 0.692065i \(0.756701\pi\)
\(642\) 0 0
\(643\) 17.9278 0.707005 0.353503 0.935434i \(-0.384991\pi\)
0.353503 + 0.935434i \(0.384991\pi\)
\(644\) 0 0
\(645\) 9.88396 + 30.2667i 0.389180 + 1.19175i
\(646\) 0 0
\(647\) 20.7892 + 12.0026i 0.817306 + 0.471872i 0.849487 0.527610i \(-0.176912\pi\)
−0.0321804 + 0.999482i \(0.510245\pi\)
\(648\) 0 0
\(649\) −11.3485 + 6.55204i −0.445466 + 0.257190i
\(650\) 0 0
\(651\) −22.4065 19.0757i −0.878179 0.747637i
\(652\) 0 0
\(653\) 14.4745 + 25.0705i 0.566430 + 0.981085i 0.996915 + 0.0784876i \(0.0250091\pi\)
−0.430485 + 0.902598i \(0.641658\pi\)
\(654\) 0 0
\(655\) 28.3610 + 27.2852i 1.10816 + 1.06612i
\(656\) 0 0
\(657\) −13.4676 + 27.5578i −0.525422 + 1.07513i
\(658\) 0 0
\(659\) 5.09127i 0.198328i −0.995071 0.0991638i \(-0.968383\pi\)
0.995071 0.0991638i \(-0.0316168\pi\)
\(660\) 0 0
\(661\) 25.1768 + 14.5358i 0.979264 + 0.565378i 0.902048 0.431636i \(-0.142064\pi\)
0.0772160 + 0.997014i \(0.475397\pi\)
\(662\) 0 0
\(663\) 3.54047 + 1.88428i 0.137500 + 0.0731794i
\(664\) 0 0
\(665\) 6.41421 4.28109i 0.248732 0.166013i
\(666\) 0 0
\(667\) 23.9511 13.8282i 0.927389 0.535429i
\(668\) 0 0
\(669\) 24.5970 0.849281i 0.950974 0.0328351i
\(670\) 0 0
\(671\) 8.86682 0.342300
\(672\) 0 0
\(673\) 8.51862i 0.328369i −0.986430 0.164184i \(-0.947501\pi\)
0.986430 0.164184i \(-0.0524992\pi\)
\(674\) 0 0
\(675\) 20.4318 16.0481i 0.786421 0.617691i
\(676\) 0 0
\(677\) −16.4341 + 9.48823i −0.631614 + 0.364662i −0.781377 0.624060i \(-0.785482\pi\)
0.149763 + 0.988722i \(0.452149\pi\)
\(678\) 0 0
\(679\) −27.8686 6.12064i −1.06950 0.234889i
\(680\) 0 0
\(681\) −1.04239 0.554776i −0.0399447 0.0212591i
\(682\) 0 0
\(683\) −10.4587 + 18.1149i −0.400190 + 0.693149i −0.993749 0.111642i \(-0.964389\pi\)
0.593559 + 0.804791i \(0.297722\pi\)
\(684\) 0 0
\(685\) −5.59399 + 22.6171i −0.213735 + 0.864154i
\(686\) 0 0
\(687\) −4.34499 + 2.71268i −0.165772 + 0.103495i
\(688\) 0 0
\(689\) 4.24654 7.35523i 0.161780 0.280212i
\(690\) 0 0
\(691\) 29.4902 17.0261i 1.12186 0.647705i 0.179984 0.983670i \(-0.442396\pi\)
0.941875 + 0.335964i \(0.109062\pi\)
\(692\) 0 0
\(693\) −5.69475 4.51877i −0.216326 0.171654i
\(694\) 0 0
\(695\) −4.39961 15.2352i −0.166887 0.577906i
\(696\) 0 0
\(697\) −4.60369 2.65794i −0.174377 0.100677i
\(698\) 0 0
\(699\) 24.7086 + 39.5766i 0.934565 + 1.49692i
\(700\) 0 0
\(701\) 18.9758i 0.716706i −0.933586 0.358353i \(-0.883338\pi\)
0.933586 0.358353i \(-0.116662\pi\)
\(702\) 0 0
\(703\) 3.28709 5.69340i 0.123975 0.214731i
\(704\) 0 0
\(705\) 11.2321 12.5118i 0.423025 0.471223i
\(706\) 0 0
\(707\) −17.5676 + 19.2479i −0.660699 + 0.723890i
\(708\) 0 0
\(709\) −1.53691 2.66200i −0.0577197 0.0999735i 0.835722 0.549153i \(-0.185050\pi\)
−0.893441 + 0.449180i \(0.851716\pi\)
\(710\) 0 0
\(711\) 19.1630 + 28.4585i 0.718670 + 1.06728i
\(712\) 0 0
\(713\) 51.3048i 1.92138i
\(714\) 0 0
\(715\) 8.57182 + 2.12011i 0.320568 + 0.0792875i
\(716\) 0 0
\(717\) −1.03675 30.0264i −0.0387180 1.12136i
\(718\) 0 0
\(719\) 6.70106 + 11.6066i 0.249907 + 0.432852i 0.963500 0.267709i \(-0.0862665\pi\)
−0.713593 + 0.700561i \(0.752933\pi\)
\(720\) 0 0
\(721\) 1.96775 + 6.19823i 0.0732829 + 0.230834i
\(722\) 0 0
\(723\) 2.33547 + 1.24297i 0.0868569 + 0.0462264i
\(724\) 0 0
\(725\) −9.22673 14.6432i −0.342672 0.543835i
\(726\) 0 0
\(727\) −4.88627 −0.181222 −0.0906109 0.995886i \(-0.528882\pi\)
−0.0906109 + 0.995886i \(0.528882\pi\)
\(728\) 0 0
\(729\) 26.4231 5.55142i 0.978634 0.205608i
\(730\) 0 0
\(731\) 2.20758 3.82364i 0.0816504 0.141423i
\(732\) 0 0
\(733\) 18.4955 + 32.0351i 0.683145 + 1.18324i 0.974016 + 0.226480i \(0.0727217\pi\)
−0.290871 + 0.956762i \(0.593945\pi\)
\(734\) 0 0
\(735\) −26.9264 3.15776i −0.993194 0.116476i
\(736\) 0 0
\(737\) 5.54441 + 9.60321i 0.204231 + 0.353739i
\(738\) 0 0
\(739\) −18.9759 + 32.8672i −0.698040 + 1.20904i 0.271105 + 0.962550i \(0.412611\pi\)
−0.969145 + 0.246491i \(0.920722\pi\)
\(740\) 0 0
\(741\) −8.25721 + 5.15517i −0.303336 + 0.189380i
\(742\) 0 0
\(743\) −14.0878 −0.516830 −0.258415 0.966034i \(-0.583200\pi\)
−0.258415 + 0.966034i \(0.583200\pi\)
\(744\) 0 0
\(745\) −9.71288 + 10.0958i −0.355852 + 0.369883i
\(746\) 0 0
\(747\) −1.93520 27.9904i −0.0708054 1.02411i
\(748\) 0 0
\(749\) 1.20056 + 3.78165i 0.0438675 + 0.138178i
\(750\) 0 0
\(751\) 12.8752 + 22.3005i 0.469823 + 0.813757i 0.999405 0.0345016i \(-0.0109844\pi\)
−0.529582 + 0.848259i \(0.677651\pi\)
\(752\) 0 0
\(753\) 11.3601 0.392241i 0.413986 0.0142941i
\(754\) 0 0
\(755\) −9.50897 + 38.4458i −0.346067 + 1.39918i
\(756\) 0 0
\(757\) 40.3111i 1.46513i 0.680697 + 0.732565i \(0.261677\pi\)
−0.680697 + 0.732565i \(0.738323\pi\)
\(758\) 0 0
\(759\) −0.437368 12.6671i −0.0158755 0.459787i
\(760\) 0 0
\(761\) 9.76529 + 16.9140i 0.353991 + 0.613131i 0.986945 0.161059i \(-0.0514909\pi\)
−0.632953 + 0.774190i \(0.718158\pi\)
\(762\) 0 0
\(763\) 6.89272 7.55196i 0.249533 0.273399i
\(764\) 0 0
\(765\) −3.54867 0.621728i −0.128302 0.0224786i
\(766\) 0 0
\(767\) 30.8431 53.4218i 1.11368 1.92895i
\(768\) 0 0
\(769\) 47.6475i 1.71821i −0.511797 0.859107i \(-0.671020\pi\)
0.511797 0.859107i \(-0.328980\pi\)
\(770\) 0 0
\(771\) −24.9370 + 15.5687i −0.898083 + 0.560695i
\(772\) 0 0
\(773\) −18.2945 10.5624i −0.658009 0.379901i 0.133509 0.991048i \(-0.457375\pi\)
−0.791518 + 0.611146i \(0.790709\pi\)
\(774\) 0 0
\(775\) −32.0832 + 1.24101i −1.15246 + 0.0445785i
\(776\) 0 0
\(777\) −21.7741 + 7.74937i −0.781141 + 0.278007i
\(778\) 0 0
\(779\) 11.1737 6.45112i 0.400338 0.231135i
\(780\) 0 0
\(781\) −0.432261 + 0.748698i −0.0154675 + 0.0267905i
\(782\) 0 0
\(783\) −1.85906 17.8903i −0.0664373 0.639349i
\(784\) 0 0
\(785\) 0.415515 1.67997i 0.0148304 0.0599608i
\(786\) 0 0
\(787\) 3.27330 5.66953i 0.116681 0.202097i −0.801770 0.597633i \(-0.796108\pi\)
0.918450 + 0.395536i \(0.129441\pi\)
\(788\) 0 0
\(789\) 4.32889 8.13376i 0.154113 0.289569i
\(790\) 0 0
\(791\) −26.3044 5.77709i −0.935276 0.205410i
\(792\) 0 0
\(793\) −36.1477 + 20.8699i −1.28364 + 0.741110i
\(794\) 0 0
\(795\) −1.57512 + 7.46484i −0.0558637 + 0.264751i
\(796\) 0 0
\(797\) 6.50728i 0.230500i 0.993337 + 0.115250i \(0.0367669\pi\)
−0.993337 + 0.115250i \(0.963233\pi\)
\(798\) 0 0
\(799\) −2.33156 −0.0824845
\(800\) 0 0
\(801\) −2.93069 4.35230i −0.103551 0.153781i
\(802\) 0 0
\(803\) 8.10980 4.68219i 0.286189 0.165231i
\(804\) 0 0
\(805\) −26.2401 39.3146i −0.924842 1.38566i
\(806\) 0 0
\(807\) −5.33549 + 10.0251i −0.187818 + 0.352900i
\(808\) 0 0
\(809\) 1.41519 + 0.817063i 0.0497556 + 0.0287264i 0.524671 0.851305i \(-0.324188\pi\)
−0.474916 + 0.880031i \(0.657522\pi\)
\(810\) 0 0
\(811\) 29.4411i 1.03382i −0.856041 0.516909i \(-0.827083\pi\)
0.856041 0.516909i \(-0.172917\pi\)
\(812\) 0 0
\(813\) 7.70506 4.81045i 0.270228 0.168710i
\(814\) 0 0
\(815\) −10.6768 + 11.0978i −0.373993 + 0.388739i
\(816\) 0 0
\(817\) 5.35805 + 9.28042i 0.187454 + 0.324681i
\(818\) 0 0
\(819\) 33.8518 + 5.01805i 1.18288 + 0.175345i
\(820\) 0 0
\(821\) −19.6357 + 11.3367i −0.685292 + 0.395654i −0.801846 0.597531i \(-0.796149\pi\)
0.116554 + 0.993184i \(0.462815\pi\)
\(822\) 0 0
\(823\) 16.6180 + 9.59438i 0.579266 + 0.334439i 0.760841 0.648938i \(-0.224786\pi\)
−0.181576 + 0.983377i \(0.558120\pi\)
\(824\) 0 0
\(825\) −7.91073 + 0.579911i −0.275416 + 0.0201899i
\(826\) 0 0
\(827\) 32.5074 1.13039 0.565196 0.824957i \(-0.308800\pi\)
0.565196 + 0.824957i \(0.308800\pi\)
\(828\) 0 0
\(829\) 44.7613 + 25.8429i 1.55462 + 0.897563i 0.997756 + 0.0669618i \(0.0213306\pi\)
0.556868 + 0.830601i \(0.312003\pi\)
\(830\) 0 0
\(831\) −4.24029 2.25674i −0.147094 0.0782853i
\(832\) 0 0
\(833\) 2.16846 + 3.07101i 0.0751327 + 0.106404i
\(834\) 0 0
\(835\) −5.89179 20.4025i −0.203894 0.706056i
\(836\) 0 0
\(837\) −30.4661 13.6074i −1.05306 0.470340i
\(838\) 0 0
\(839\) −2.88841 −0.0997192 −0.0498596 0.998756i \(-0.515877\pi\)
−0.0498596 + 0.998756i \(0.515877\pi\)
\(840\) 0 0
\(841\) 17.0178 0.586819
\(842\) 0 0
\(843\) 1.34104 + 38.8395i 0.0461880 + 1.33770i
\(844\) 0 0
\(845\) −12.0074 + 3.46748i −0.413067 + 0.119285i
\(846\) 0 0
\(847\) −8.13470 25.6235i −0.279512 0.880435i
\(848\) 0 0
\(849\) 5.89708 11.0803i 0.202387 0.380275i
\(850\) 0 0
\(851\) −34.8966 20.1476i −1.19624 0.690650i
\(852\) 0 0
\(853\) −49.3673 −1.69031 −0.845153 0.534525i \(-0.820491\pi\)
−0.845153 + 0.534525i \(0.820491\pi\)
\(854\) 0 0
\(855\) 5.61334 6.70459i 0.191972 0.229292i
\(856\) 0 0
\(857\) −15.1586 8.75185i −0.517809 0.298957i 0.218228 0.975898i \(-0.429972\pi\)
−0.736038 + 0.676940i \(0.763306\pi\)
\(858\) 0 0
\(859\) −5.23153 + 3.02042i −0.178497 + 0.103056i −0.586586 0.809887i \(-0.699529\pi\)
0.408089 + 0.912942i \(0.366195\pi\)
\(860\) 0 0
\(861\) −44.6122 8.19544i −1.52038 0.279300i
\(862\) 0 0
\(863\) 17.0085 + 29.4595i 0.578975 + 1.00281i 0.995597 + 0.0937342i \(0.0298804\pi\)
−0.416622 + 0.909080i \(0.636786\pi\)
\(864\) 0 0
\(865\) 18.5256 19.2560i 0.629889 0.654725i
\(866\) 0 0
\(867\) −15.3290 24.5530i −0.520601 0.833864i
\(868\) 0 0
\(869\) 10.4746i 0.355326i
\(870\) 0 0
\(871\) −45.2062 26.0998i −1.53175 0.884358i
\(872\) 0 0
\(873\) −32.2761 + 2.23151i −1.09238 + 0.0755252i
\(874\) 0 0
\(875\) −23.9505 + 17.3601i −0.809675 + 0.586879i
\(876\) 0 0
\(877\) −6.27005 + 3.62002i −0.211725 + 0.122239i −0.602113 0.798411i \(-0.705674\pi\)
0.390388 + 0.920650i \(0.372341\pi\)
\(878\) 0 0
\(879\) −1.56406 45.2984i −0.0527543 1.52788i
\(880\) 0 0
\(881\) 25.9119 0.872993 0.436496 0.899706i \(-0.356219\pi\)
0.436496 + 0.899706i \(0.356219\pi\)
\(882\) 0 0
\(883\) 17.5664i 0.591155i −0.955319 0.295577i \(-0.904488\pi\)
0.955319 0.295577i \(-0.0955120\pi\)
\(884\) 0 0
\(885\) −11.4402 + 54.2179i −0.384560 + 1.82252i
\(886\) 0 0
\(887\) −12.7893 + 7.38392i −0.429423 + 0.247928i −0.699101 0.715023i \(-0.746416\pi\)
0.269678 + 0.962951i \(0.413083\pi\)
\(888\) 0 0
\(889\) −5.52675 + 25.1645i −0.185361 + 0.843990i
\(890\) 0 0
\(891\) −7.63805 3.09993i −0.255884 0.103851i
\(892\) 0 0
\(893\) 2.82947 4.90079i 0.0946847 0.163999i
\(894\) 0 0
\(895\) −40.6906 10.0642i −1.36014 0.336409i
\(896\) 0 0
\(897\) 31.5976 + 50.6110i 1.05501 + 1.68985i
\(898\) 0 0
\(899\) −11.1140 + 19.2501i −0.370674 + 0.642026i
\(900\) 0 0
\(901\) 0.916197 0.528966i 0.0305229 0.0176224i
\(902\) 0 0
\(903\) 6.80681 37.0532i 0.226517 1.23305i
\(904\) 0 0
\(905\) −9.98958 34.5925i −0.332065 1.14989i
\(906\) 0 0
\(907\) 25.3957 + 14.6622i 0.843250 + 0.486851i 0.858368 0.513035i \(-0.171479\pi\)
−0.0151176 + 0.999886i \(0.504812\pi\)
\(908\) 0 0
\(909\) −12.9742 + 26.5481i −0.430326 + 0.880545i
\(910\) 0 0
\(911\) 30.3043i 1.00403i 0.864860 + 0.502013i \(0.167407\pi\)
−0.864860 + 0.502013i \(0.832593\pi\)
\(912\) 0 0
\(913\) −4.28295 + 7.41828i −0.141745 + 0.245509i
\(914\) 0 0
\(915\) 25.0471 27.9008i 0.828031 0.922373i
\(916\) 0 0
\(917\) −14.0902 44.3827i −0.465299 1.46565i
\(918\) 0 0
\(919\) 3.81888 + 6.61449i 0.125973 + 0.218192i 0.922113 0.386921i \(-0.126461\pi\)
−0.796140 + 0.605113i \(0.793128\pi\)
\(920\) 0 0
\(921\) −38.7998 + 1.33968i −1.27850 + 0.0441438i
\(922\) 0 0
\(923\) 4.06965i 0.133954i
\(924\) 0 0
\(925\) −11.7551 + 22.3098i −0.386505 + 0.733541i
\(926\) 0 0
\(927\) 4.11858 + 6.11640i 0.135272 + 0.200889i
\(928\) 0 0
\(929\) −8.62508 14.9391i −0.282980 0.490135i 0.689138 0.724631i \(-0.257990\pi\)
−0.972117 + 0.234495i \(0.924656\pi\)
\(930\) 0 0
\(931\) −9.08663 + 0.831132i −0.297802 + 0.0272393i
\(932\) 0 0
\(933\) 15.9719 30.0104i 0.522896 0.982495i
\(934\) 0 0
\(935\) 0.792646 + 0.762578i 0.0259223 + 0.0249390i
\(936\) 0 0
\(937\) −36.0492 −1.17768 −0.588839 0.808251i \(-0.700415\pi\)
−0.588839 + 0.808251i \(0.700415\pi\)
\(938\) 0 0
\(939\) −11.7716 18.8549i −0.384151 0.615308i
\(940\) 0 0
\(941\) 15.8153 27.3930i 0.515565 0.892985i −0.484272 0.874918i \(-0.660915\pi\)
0.999837 0.0180673i \(-0.00575131\pi\)
\(942\) 0 0
\(943\) −39.5409 68.4869i −1.28763 2.23024i
\(944\) 0 0
\(945\) −30.3056 + 5.15476i −0.985841 + 0.167684i
\(946\) 0 0
\(947\) −20.3087 35.1757i −0.659944 1.14306i −0.980630 0.195871i \(-0.937247\pi\)
0.320685 0.947186i \(-0.396087\pi\)
\(948\) 0 0
\(949\) −22.0410 + 38.1761i −0.715481 + 1.23925i
\(950\) 0 0
\(951\) 14.6479 + 23.4620i 0.474990 + 0.760807i
\(952\) 0 0
\(953\) −5.31938 −0.172312 −0.0861558 0.996282i \(-0.527458\pi\)
−0.0861558 + 0.996282i \(0.527458\pi\)
\(954\) 0 0
\(955\) −26.8479 + 27.9065i −0.868777 + 0.903032i
\(956\) 0 0
\(957\) −2.57994 + 4.84757i −0.0833975 + 0.156700i
\(958\) 0 0
\(959\) 18.5840 20.3615i 0.600110 0.657506i
\(960\) 0 0
\(961\) 5.11747 + 8.86371i 0.165080 + 0.285926i
\(962\) 0 0
\(963\) 2.51282 + 3.73172i 0.0809745 + 0.120253i
\(964\) 0 0
\(965\) −32.8428 8.12316i −1.05725 0.261494i
\(966\) 0 0
\(967\) 6.75930i 0.217364i −0.994077 0.108682i \(-0.965337\pi\)
0.994077 0.108682i \(-0.0346631\pi\)
\(968\) 0 0
\(969\) −1.21183 + 0.0418417i −0.0389294 + 0.00134415i
\(970\) 0 0
\(971\) 21.9851 + 38.0793i 0.705535 + 1.22202i 0.966498 + 0.256674i \(0.0826266\pi\)
−0.260963 + 0.965349i \(0.584040\pi\)
\(972\) 0 0
\(973\) −4.02493 + 18.3264i −0.129033 + 0.587517i
\(974\) 0 0
\(975\) 30.8850 20.9837i 0.989112 0.672015i
\(976\) 0 0
\(977\) −4.62443 + 8.00974i −0.147949 + 0.256254i −0.930469 0.366370i \(-0.880600\pi\)
0.782521 + 0.622625i \(0.213934\pi\)
\(978\) 0 0
\(979\) 1.60193i 0.0511979i
\(980\) 0 0
\(981\) 5.09046 10.4162i 0.162526 0.332565i
\(982\) 0 0
\(983\) 11.3787 + 6.56947i 0.362923 + 0.209533i 0.670362 0.742034i \(-0.266139\pi\)
−0.307439 + 0.951568i \(0.599472\pi\)
\(984\) 0 0
\(985\) −40.0197 + 11.5568i −1.27513 + 0.368231i
\(986\) 0 0
\(987\) −18.7428 + 6.67054i −0.596589 + 0.212326i
\(988\) 0 0
\(989\) 56.8825 32.8411i 1.80876 1.04429i
\(990\) 0 0
\(991\) 3.18520 5.51694i 0.101181 0.175251i −0.810990 0.585060i \(-0.801071\pi\)
0.912172 + 0.409808i \(0.134404\pi\)
\(992\) 0 0
\(993\) 18.0131 + 28.8522i 0.571630 + 0.915598i
\(994\) 0 0
\(995\) 21.8133 + 5.39518i 0.691528 + 0.171039i
\(996\) 0 0
\(997\) 11.7546 20.3595i 0.372271 0.644792i −0.617644 0.786458i \(-0.711913\pi\)
0.989915 + 0.141666i \(0.0452459\pi\)
\(998\) 0 0
\(999\) −21.2196 + 15.3788i −0.671359 + 0.486565i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bn.a.269.16 yes 32
3.2 odd 2 inner 420.2.bn.a.269.6 yes 32
5.2 odd 4 2100.2.bi.n.101.8 32
5.3 odd 4 2100.2.bi.n.101.9 32
5.4 even 2 inner 420.2.bn.a.269.1 yes 32
7.3 odd 6 2940.2.f.a.1469.23 32
7.4 even 3 2940.2.f.a.1469.10 32
7.5 odd 6 inner 420.2.bn.a.89.11 yes 32
15.2 even 4 2100.2.bi.n.101.3 32
15.8 even 4 2100.2.bi.n.101.14 32
15.14 odd 2 inner 420.2.bn.a.269.11 yes 32
21.5 even 6 inner 420.2.bn.a.89.1 32
21.11 odd 6 2940.2.f.a.1469.11 32
21.17 even 6 2940.2.f.a.1469.22 32
35.4 even 6 2940.2.f.a.1469.24 32
35.12 even 12 2100.2.bi.n.1601.3 32
35.19 odd 6 inner 420.2.bn.a.89.6 yes 32
35.24 odd 6 2940.2.f.a.1469.9 32
35.33 even 12 2100.2.bi.n.1601.14 32
105.47 odd 12 2100.2.bi.n.1601.8 32
105.59 even 6 2940.2.f.a.1469.12 32
105.68 odd 12 2100.2.bi.n.1601.9 32
105.74 odd 6 2940.2.f.a.1469.21 32
105.89 even 6 inner 420.2.bn.a.89.16 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.1 32 21.5 even 6 inner
420.2.bn.a.89.6 yes 32 35.19 odd 6 inner
420.2.bn.a.89.11 yes 32 7.5 odd 6 inner
420.2.bn.a.89.16 yes 32 105.89 even 6 inner
420.2.bn.a.269.1 yes 32 5.4 even 2 inner
420.2.bn.a.269.6 yes 32 3.2 odd 2 inner
420.2.bn.a.269.11 yes 32 15.14 odd 2 inner
420.2.bn.a.269.16 yes 32 1.1 even 1 trivial
2100.2.bi.n.101.3 32 15.2 even 4
2100.2.bi.n.101.8 32 5.2 odd 4
2100.2.bi.n.101.9 32 5.3 odd 4
2100.2.bi.n.101.14 32 15.8 even 4
2100.2.bi.n.1601.3 32 35.12 even 12
2100.2.bi.n.1601.8 32 105.47 odd 12
2100.2.bi.n.1601.9 32 105.68 odd 12
2100.2.bi.n.1601.14 32 35.33 even 12
2940.2.f.a.1469.9 32 35.24 odd 6
2940.2.f.a.1469.10 32 7.4 even 3
2940.2.f.a.1469.11 32 21.11 odd 6
2940.2.f.a.1469.12 32 105.59 even 6
2940.2.f.a.1469.21 32 105.74 odd 6
2940.2.f.a.1469.22 32 21.17 even 6
2940.2.f.a.1469.23 32 7.3 odd 6
2940.2.f.a.1469.24 32 35.4 even 6