Properties

Label 2100.2.bi.n.1601.8
Level $2100$
Weight $2$
Character 2100.1601
Analytic conductor $16.769$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,2,Mod(101,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.8
Character \(\chi\) \(=\) 2100.1601
Dual form 2100.2.bi.n.101.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0597684 + 1.73102i) q^{3} +(-0.567546 - 2.58416i) q^{7} +(-2.99286 - 0.206921i) q^{9} +(-0.793196 + 0.457952i) q^{11} +4.31153i q^{13} +(-0.268531 - 0.465109i) q^{17} +(1.12887 + 0.651755i) q^{19} +(4.50715 - 0.827982i) q^{21} +(6.91920 + 3.99480i) q^{23} +(0.537062 - 5.16832i) q^{27} -3.46154i q^{29} +(-5.56113 + 3.21072i) q^{31} +(-0.745316 - 1.40041i) q^{33} +(-2.52172 + 4.36775i) q^{37} +(-7.46334 - 0.257693i) q^{39} -9.89809 q^{41} -8.22096 q^{43} +(-2.17066 + 3.75969i) q^{47} +(-6.35578 + 2.93326i) q^{49} +(0.821162 - 0.437033i) q^{51} +(-1.70594 + 0.984927i) q^{53} +(-1.19567 + 1.91514i) q^{57} +(-7.15363 - 12.3904i) q^{59} +(-8.38395 - 4.84048i) q^{61} +(1.16387 + 7.85146i) q^{63} +(6.05349 + 10.4850i) q^{67} +(-7.32863 + 11.7385i) q^{69} +0.943900i q^{71} +(8.85442 - 5.11210i) q^{73} +(1.63360 + 1.78984i) q^{77} +(-5.71817 + 9.90416i) q^{79} +(8.91437 + 1.23857i) q^{81} -9.35240 q^{83} +(5.99199 + 0.206891i) q^{87} +(0.874507 - 1.51469i) q^{89} +(11.1417 - 2.44699i) q^{91} +(-5.22544 - 9.81833i) q^{93} +10.7844i q^{97} +(2.46868 - 1.20646i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 12 q^{19} - 8 q^{21} - 12 q^{31} - 24 q^{39} + 44 q^{49} - 10 q^{51} - 24 q^{61} + 28 q^{79} - 20 q^{81} + 16 q^{91} + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0597684 + 1.73102i −0.0345073 + 0.999404i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.567546 2.58416i −0.214512 0.976721i
\(8\) 0 0
\(9\) −2.99286 0.206921i −0.997618 0.0689735i
\(10\) 0 0
\(11\) −0.793196 + 0.457952i −0.239158 + 0.138078i −0.614790 0.788691i \(-0.710759\pi\)
0.375632 + 0.926769i \(0.377426\pi\)
\(12\) 0 0
\(13\) 4.31153i 1.19580i 0.801569 + 0.597902i \(0.203999\pi\)
−0.801569 + 0.597902i \(0.796001\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.268531 0.465109i −0.0651283 0.112805i 0.831623 0.555341i \(-0.187412\pi\)
−0.896751 + 0.442536i \(0.854079\pi\)
\(18\) 0 0
\(19\) 1.12887 + 0.651755i 0.258981 + 0.149523i 0.623870 0.781528i \(-0.285560\pi\)
−0.364889 + 0.931051i \(0.618893\pi\)
\(20\) 0 0
\(21\) 4.50715 0.827982i 0.983542 0.180681i
\(22\) 0 0
\(23\) 6.91920 + 3.99480i 1.44275 + 0.832974i 0.998033 0.0626950i \(-0.0199695\pi\)
0.444721 + 0.895669i \(0.353303\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.537062 5.16832i 0.103358 0.994644i
\(28\) 0 0
\(29\) 3.46154i 0.642791i −0.946945 0.321396i \(-0.895848\pi\)
0.946945 0.321396i \(-0.104152\pi\)
\(30\) 0 0
\(31\) −5.56113 + 3.21072i −0.998809 + 0.576663i −0.907896 0.419196i \(-0.862312\pi\)
−0.0909133 + 0.995859i \(0.528979\pi\)
\(32\) 0 0
\(33\) −0.745316 1.40041i −0.129743 0.243780i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.52172 + 4.36775i −0.414569 + 0.718054i −0.995383 0.0959820i \(-0.969401\pi\)
0.580814 + 0.814036i \(0.302734\pi\)
\(38\) 0 0
\(39\) −7.46334 0.257693i −1.19509 0.0412640i
\(40\) 0 0
\(41\) −9.89809 −1.54582 −0.772911 0.634515i \(-0.781200\pi\)
−0.772911 + 0.634515i \(0.781200\pi\)
\(42\) 0 0
\(43\) −8.22096 −1.25369 −0.626843 0.779146i \(-0.715653\pi\)
−0.626843 + 0.779146i \(0.715653\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.17066 + 3.75969i −0.316623 + 0.548407i −0.979781 0.200072i \(-0.935882\pi\)
0.663158 + 0.748479i \(0.269216\pi\)
\(48\) 0 0
\(49\) −6.35578 + 2.93326i −0.907969 + 0.419038i
\(50\) 0 0
\(51\) 0.821162 0.437033i 0.114986 0.0611969i
\(52\) 0 0
\(53\) −1.70594 + 0.984927i −0.234329 + 0.135290i −0.612568 0.790418i \(-0.709863\pi\)
0.378238 + 0.925708i \(0.376530\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.19567 + 1.91514i −0.158370 + 0.253667i
\(58\) 0 0
\(59\) −7.15363 12.3904i −0.931323 1.61310i −0.781063 0.624452i \(-0.785322\pi\)
−0.150260 0.988647i \(-0.548011\pi\)
\(60\) 0 0
\(61\) −8.38395 4.84048i −1.07345 0.619759i −0.144331 0.989529i \(-0.546103\pi\)
−0.929123 + 0.369770i \(0.879436\pi\)
\(62\) 0 0
\(63\) 1.16387 + 7.85146i 0.146634 + 0.989191i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.05349 + 10.4850i 0.739551 + 1.28094i 0.952697 + 0.303920i \(0.0982956\pi\)
−0.213146 + 0.977020i \(0.568371\pi\)
\(68\) 0 0
\(69\) −7.32863 + 11.7385i −0.882264 + 1.41315i
\(70\) 0 0
\(71\) 0.943900i 0.112020i 0.998430 + 0.0560102i \(0.0178379\pi\)
−0.998430 + 0.0560102i \(0.982162\pi\)
\(72\) 0 0
\(73\) 8.85442 5.11210i 1.03633 0.598326i 0.117540 0.993068i \(-0.462499\pi\)
0.918792 + 0.394742i \(0.129166\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.63360 + 1.78984i 0.186166 + 0.203971i
\(78\) 0 0
\(79\) −5.71817 + 9.90416i −0.643345 + 1.11431i 0.341337 + 0.939941i \(0.389120\pi\)
−0.984681 + 0.174364i \(0.944213\pi\)
\(80\) 0 0
\(81\) 8.91437 + 1.23857i 0.990485 + 0.137618i
\(82\) 0 0
\(83\) −9.35240 −1.02656 −0.513279 0.858222i \(-0.671570\pi\)
−0.513279 + 0.858222i \(0.671570\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.99199 + 0.206891i 0.642408 + 0.0221810i
\(88\) 0 0
\(89\) 0.874507 1.51469i 0.0926976 0.160557i −0.815948 0.578126i \(-0.803784\pi\)
0.908645 + 0.417569i \(0.137118\pi\)
\(90\) 0 0
\(91\) 11.1417 2.44699i 1.16797 0.256515i
\(92\) 0 0
\(93\) −5.22544 9.81833i −0.541853 1.01811i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.7844i 1.09499i 0.836809 + 0.547494i \(0.184418\pi\)
−0.836809 + 0.547494i \(0.815582\pi\)
\(98\) 0 0
\(99\) 2.46868 1.20646i 0.248112 0.121253i
\(100\) 0 0
\(101\) −4.92480 8.53000i −0.490036 0.848767i 0.509898 0.860235i \(-0.329683\pi\)
−0.999934 + 0.0114677i \(0.996350\pi\)
\(102\) 0 0
\(103\) 2.12863 + 1.22897i 0.209741 + 0.121094i 0.601191 0.799106i \(-0.294693\pi\)
−0.391450 + 0.920199i \(0.628026\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.29872 0.749815i −0.125552 0.0724873i 0.435909 0.899991i \(-0.356427\pi\)
−0.561461 + 0.827504i \(0.689760\pi\)
\(108\) 0 0
\(109\) −1.93226 3.34677i −0.185077 0.320563i 0.758525 0.651643i \(-0.225920\pi\)
−0.943602 + 0.331081i \(0.892587\pi\)
\(110\) 0 0
\(111\) −7.40994 4.62620i −0.703321 0.439100i
\(112\) 0 0
\(113\) 10.1791i 0.957567i −0.877933 0.478783i \(-0.841078\pi\)
0.877933 0.478783i \(-0.158922\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.892144 12.9038i 0.0824788 1.19296i
\(118\) 0 0
\(119\) −1.04951 + 0.957898i −0.0962087 + 0.0878104i
\(120\) 0 0
\(121\) −5.08056 + 8.79979i −0.461869 + 0.799981i
\(122\) 0 0
\(123\) 0.591593 17.1338i 0.0533421 1.54490i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −9.73798 −0.864106 −0.432053 0.901848i \(-0.642211\pi\)
−0.432053 + 0.901848i \(0.642211\pi\)
\(128\) 0 0
\(129\) 0.491354 14.2306i 0.0432613 1.25294i
\(130\) 0 0
\(131\) −8.80008 + 15.2422i −0.768867 + 1.33172i 0.169311 + 0.985563i \(0.445846\pi\)
−0.938178 + 0.346154i \(0.887488\pi\)
\(132\) 0 0
\(133\) 1.04355 3.28709i 0.0904874 0.285027i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.02351 5.20973i 0.770931 0.445097i −0.0622758 0.998059i \(-0.519836\pi\)
0.833207 + 0.552962i \(0.186503\pi\)
\(138\) 0 0
\(139\) 7.09182i 0.601520i 0.953700 + 0.300760i \(0.0972403\pi\)
−0.953700 + 0.300760i \(0.902760\pi\)
\(140\) 0 0
\(141\) −6.37836 3.98216i −0.537155 0.335359i
\(142\) 0 0
\(143\) −1.97447 3.41989i −0.165114 0.285986i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.69766 11.1773i −0.387456 0.921888i
\(148\) 0 0
\(149\) −5.42586 3.13262i −0.444504 0.256634i 0.261003 0.965338i \(-0.415947\pi\)
−0.705506 + 0.708704i \(0.749280\pi\)
\(150\) 0 0
\(151\) 8.85578 + 15.3387i 0.720673 + 1.24824i 0.960730 + 0.277484i \(0.0895006\pi\)
−0.240057 + 0.970759i \(0.577166\pi\)
\(152\) 0 0
\(153\) 0.707433 + 1.44757i 0.0571926 + 0.117029i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.670256 + 0.386973i −0.0534923 + 0.0308838i −0.526508 0.850170i \(-0.676499\pi\)
0.473015 + 0.881054i \(0.343166\pi\)
\(158\) 0 0
\(159\) −1.60297 3.01189i −0.127123 0.238858i
\(160\) 0 0
\(161\) 6.39625 20.1476i 0.504095 1.58785i
\(162\) 0 0
\(163\) −3.44352 + 5.96435i −0.269717 + 0.467164i −0.968789 0.247888i \(-0.920264\pi\)
0.699072 + 0.715052i \(0.253597\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.49709 −0.734907 −0.367453 0.930042i \(-0.619770\pi\)
−0.367453 + 0.930042i \(0.619770\pi\)
\(168\) 0 0
\(169\) −5.58930 −0.429946
\(170\) 0 0
\(171\) −3.24369 2.18419i −0.248051 0.167029i
\(172\) 0 0
\(173\) 5.97492 10.3489i 0.454264 0.786809i −0.544381 0.838838i \(-0.683235\pi\)
0.998646 + 0.0520289i \(0.0165688\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 21.8757 11.6425i 1.64428 0.875105i
\(178\) 0 0
\(179\) −16.2343 + 9.37286i −1.21341 + 0.700561i −0.963500 0.267709i \(-0.913733\pi\)
−0.249907 + 0.968270i \(0.580400\pi\)
\(180\) 0 0
\(181\) 16.1024i 1.19688i −0.801167 0.598441i \(-0.795787\pi\)
0.801167 0.598441i \(-0.204213\pi\)
\(182\) 0 0
\(183\) 8.88005 14.2235i 0.656432 1.05143i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.425995 + 0.245948i 0.0311519 + 0.0179855i
\(188\) 0 0
\(189\) −13.6606 + 1.54541i −0.993662 + 0.112412i
\(190\) 0 0
\(191\) 14.9979 + 8.65904i 1.08521 + 0.626546i 0.932297 0.361694i \(-0.117801\pi\)
0.152912 + 0.988240i \(0.451135\pi\)
\(192\) 0 0
\(193\) 7.56517 + 13.1033i 0.544553 + 0.943193i 0.998635 + 0.0522332i \(0.0166339\pi\)
−0.454082 + 0.890960i \(0.650033\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.6287i 1.32724i −0.748071 0.663619i \(-0.769020\pi\)
0.748071 0.663619i \(-0.230980\pi\)
\(198\) 0 0
\(199\) 8.70283 5.02458i 0.616927 0.356183i −0.158745 0.987320i \(-0.550745\pi\)
0.775672 + 0.631137i \(0.217411\pi\)
\(200\) 0 0
\(201\) −18.5115 + 9.85204i −1.30570 + 0.694909i
\(202\) 0 0
\(203\) −8.94517 + 1.96458i −0.627828 + 0.137887i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −19.8816 13.3876i −1.38186 0.930502i
\(208\) 0 0
\(209\) −1.19389 −0.0825830
\(210\) 0 0
\(211\) −1.68592 −0.116064 −0.0580319 0.998315i \(-0.518483\pi\)
−0.0580319 + 0.998315i \(0.518483\pi\)
\(212\) 0 0
\(213\) −1.63391 0.0564154i −0.111954 0.00386552i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 11.4532 + 12.5486i 0.777495 + 0.851857i
\(218\) 0 0
\(219\) 8.31993 + 15.6327i 0.562209 + 1.05636i
\(220\) 0 0
\(221\) 2.00533 1.15778i 0.134893 0.0778806i
\(222\) 0 0
\(223\) 14.2095i 0.951541i 0.879570 + 0.475770i \(0.157831\pi\)
−0.879570 + 0.475770i \(0.842169\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.340877 + 0.590416i 0.0226248 + 0.0391873i 0.877116 0.480278i \(-0.159464\pi\)
−0.854491 + 0.519466i \(0.826131\pi\)
\(228\) 0 0
\(229\) 2.56113 + 1.47867i 0.169244 + 0.0977133i 0.582230 0.813024i \(-0.302181\pi\)
−0.412985 + 0.910738i \(0.635514\pi\)
\(230\) 0 0
\(231\) −3.19588 + 2.72081i −0.210274 + 0.179016i
\(232\) 0 0
\(233\) 23.3282 + 13.4685i 1.52828 + 0.882353i 0.999434 + 0.0336360i \(0.0107087\pi\)
0.528847 + 0.848717i \(0.322625\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −16.8025 10.4902i −1.09144 0.681413i
\(238\) 0 0
\(239\) 17.3461i 1.12202i −0.827808 0.561012i \(-0.810412\pi\)
0.827808 0.561012i \(-0.189588\pi\)
\(240\) 0 0
\(241\) 1.32282 0.763728i 0.0852101 0.0491961i −0.456790 0.889575i \(-0.651001\pi\)
0.542000 + 0.840379i \(0.317667\pi\)
\(242\) 0 0
\(243\) −2.67678 + 15.3569i −0.171716 + 0.985147i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.81006 + 4.86717i −0.178800 + 0.309690i
\(248\) 0 0
\(249\) 0.558978 16.1892i 0.0354238 1.02595i
\(250\) 0 0
\(251\) 6.56268 0.414233 0.207116 0.978316i \(-0.433592\pi\)
0.207116 + 0.978316i \(0.433592\pi\)
\(252\) 0 0
\(253\) −7.31771 −0.460061
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.48645 + 14.6990i −0.529370 + 0.916896i 0.470043 + 0.882644i \(0.344238\pi\)
−0.999413 + 0.0342527i \(0.989095\pi\)
\(258\) 0 0
\(259\) 12.7182 + 4.03764i 0.790269 + 0.250887i
\(260\) 0 0
\(261\) −0.716263 + 10.3599i −0.0443356 + 0.641260i
\(262\) 0 0
\(263\) −4.60699 + 2.65984i −0.284079 + 0.164013i −0.635269 0.772291i \(-0.719111\pi\)
0.351190 + 0.936304i \(0.385777\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.56969 + 1.60432i 0.157263 + 0.0981828i
\(268\) 0 0
\(269\) 3.27834 + 5.67825i 0.199884 + 0.346209i 0.948491 0.316805i \(-0.102610\pi\)
−0.748607 + 0.663014i \(0.769277\pi\)
\(270\) 0 0
\(271\) 4.54171 + 2.62216i 0.275889 + 0.159285i 0.631561 0.775326i \(-0.282415\pi\)
−0.355672 + 0.934611i \(0.615748\pi\)
\(272\) 0 0
\(273\) 3.56987 + 19.4327i 0.216058 + 1.17612i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.38663 + 2.40171i 0.0833145 + 0.144305i 0.904672 0.426109i \(-0.140116\pi\)
−0.821357 + 0.570414i \(0.806783\pi\)
\(278\) 0 0
\(279\) 17.3080 8.45851i 1.03620 0.506398i
\(280\) 0 0
\(281\) 22.4373i 1.33850i −0.743038 0.669250i \(-0.766616\pi\)
0.743038 0.669250i \(-0.233384\pi\)
\(282\) 0 0
\(283\) −6.27592 + 3.62340i −0.373064 + 0.215389i −0.674796 0.738004i \(-0.735769\pi\)
0.301732 + 0.953393i \(0.402435\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.61762 + 25.5783i 0.331598 + 1.50984i
\(288\) 0 0
\(289\) 8.35578 14.4726i 0.491517 0.851332i
\(290\) 0 0
\(291\) −18.6680 0.644566i −1.09434 0.0377851i
\(292\) 0 0
\(293\) −26.1686 −1.52879 −0.764393 0.644750i \(-0.776961\pi\)
−0.764393 + 0.644750i \(0.776961\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.94085 + 4.34544i 0.112619 + 0.252148i
\(298\) 0 0
\(299\) −17.2237 + 29.8324i −0.996073 + 1.72525i
\(300\) 0 0
\(301\) 4.66578 + 21.2443i 0.268931 + 1.22450i
\(302\) 0 0
\(303\) 15.0599 8.01510i 0.865171 0.460455i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.4144i 1.27926i 0.768683 + 0.639630i \(0.220912\pi\)
−0.768683 + 0.639630i \(0.779088\pi\)
\(308\) 0 0
\(309\) −2.25459 + 3.61125i −0.128259 + 0.205437i
\(310\) 0 0
\(311\) 9.81378 + 16.9980i 0.556488 + 0.963866i 0.997786 + 0.0665052i \(0.0211849\pi\)
−0.441298 + 0.897361i \(0.645482\pi\)
\(312\) 0 0
\(313\) −11.1139 6.41664i −0.628197 0.362690i 0.151856 0.988403i \(-0.451475\pi\)
−0.780054 + 0.625713i \(0.784808\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.8295 7.98449i −0.776745 0.448454i 0.0585306 0.998286i \(-0.481358\pi\)
−0.835275 + 0.549832i \(0.814692\pi\)
\(318\) 0 0
\(319\) 1.58522 + 2.74568i 0.0887552 + 0.153728i
\(320\) 0 0
\(321\) 1.37557 2.20329i 0.0767766 0.122976i
\(322\) 0 0
\(323\) 0.700065i 0.0389526i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.90882 3.14475i 0.326758 0.173905i
\(328\) 0 0
\(329\) 10.9476 + 3.47553i 0.603561 + 0.191612i
\(330\) 0 0
\(331\) 9.81888 17.0068i 0.539694 0.934778i −0.459226 0.888319i \(-0.651873\pi\)
0.998920 0.0464584i \(-0.0147935\pi\)
\(332\) 0 0
\(333\) 8.45093 12.5503i 0.463108 0.687750i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.304237 0.0165729 0.00828643 0.999966i \(-0.497362\pi\)
0.00828643 + 0.999966i \(0.497362\pi\)
\(338\) 0 0
\(339\) 17.6202 + 0.608387i 0.956996 + 0.0330430i
\(340\) 0 0
\(341\) 2.94071 5.09346i 0.159249 0.275827i
\(342\) 0 0
\(343\) 11.1872 + 14.7596i 0.604053 + 0.796944i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.6358 14.2235i 1.32252 0.763556i 0.338388 0.941007i \(-0.390118\pi\)
0.984130 + 0.177451i \(0.0567851\pi\)
\(348\) 0 0
\(349\) 13.9719i 0.747897i −0.927450 0.373948i \(-0.878004\pi\)
0.927450 0.373948i \(-0.121996\pi\)
\(350\) 0 0
\(351\) 22.2834 + 2.31556i 1.18940 + 0.123595i
\(352\) 0 0
\(353\) 17.3018 + 29.9676i 0.920881 + 1.59501i 0.798055 + 0.602585i \(0.205862\pi\)
0.122826 + 0.992428i \(0.460804\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.59541 1.87398i −0.0844382 0.0991815i
\(358\) 0 0
\(359\) 19.8260 + 11.4465i 1.04638 + 0.604126i 0.921633 0.388064i \(-0.126856\pi\)
0.124743 + 0.992189i \(0.460189\pi\)
\(360\) 0 0
\(361\) −8.65043 14.9830i −0.455286 0.788578i
\(362\) 0 0
\(363\) −14.9289 9.32050i −0.783566 0.489199i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −25.1145 + 14.4999i −1.31097 + 0.756887i −0.982256 0.187543i \(-0.939947\pi\)
−0.328711 + 0.944431i \(0.606614\pi\)
\(368\) 0 0
\(369\) 29.6235 + 2.04812i 1.54214 + 0.106621i
\(370\) 0 0
\(371\) 3.51341 + 3.84944i 0.182407 + 0.199853i
\(372\) 0 0
\(373\) 12.0154 20.8113i 0.622136 1.07757i −0.366952 0.930240i \(-0.619599\pi\)
0.989087 0.147331i \(-0.0470682\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.9245 0.768652
\(378\) 0 0
\(379\) 14.0820 0.723342 0.361671 0.932306i \(-0.382206\pi\)
0.361671 + 0.932306i \(0.382206\pi\)
\(380\) 0 0
\(381\) 0.582023 16.8566i 0.0298180 0.863591i
\(382\) 0 0
\(383\) 14.7015 25.4637i 0.751211 1.30114i −0.196025 0.980599i \(-0.562803\pi\)
0.947236 0.320537i \(-0.103863\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 24.6042 + 1.70109i 1.25070 + 0.0864711i
\(388\) 0 0
\(389\) 20.2730 11.7046i 1.02788 0.593448i 0.111504 0.993764i \(-0.464433\pi\)
0.916377 + 0.400316i \(0.131100\pi\)
\(390\) 0 0
\(391\) 4.29091i 0.217001i
\(392\) 0 0
\(393\) −25.8586 16.1441i −1.30439 0.814363i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10.3384 + 5.96889i 0.518871 + 0.299570i 0.736473 0.676467i \(-0.236490\pi\)
−0.217602 + 0.976038i \(0.569823\pi\)
\(398\) 0 0
\(399\) 5.62764 + 2.00287i 0.281734 + 0.100269i
\(400\) 0 0
\(401\) 21.6844 + 12.5195i 1.08287 + 0.625193i 0.931668 0.363311i \(-0.118354\pi\)
0.151198 + 0.988504i \(0.451687\pi\)
\(402\) 0 0
\(403\) −13.8431 23.9770i −0.689575 1.19438i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.61931i 0.228971i
\(408\) 0 0
\(409\) −26.1378 + 15.0906i −1.29243 + 0.746184i −0.979084 0.203455i \(-0.934783\pi\)
−0.313345 + 0.949640i \(0.601449\pi\)
\(410\) 0 0
\(411\) 8.47882 + 15.9313i 0.418229 + 0.785831i
\(412\) 0 0
\(413\) −27.9589 + 25.5183i −1.37577 + 1.25567i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.2761 0.423867i −0.601162 0.0207568i
\(418\) 0 0
\(419\) 9.85560 0.481477 0.240739 0.970590i \(-0.422610\pi\)
0.240739 + 0.970590i \(0.422610\pi\)
\(420\) 0 0
\(421\) −8.16112 −0.397749 −0.198874 0.980025i \(-0.563729\pi\)
−0.198874 + 0.980025i \(0.563729\pi\)
\(422\) 0 0
\(423\) 7.27443 10.8031i 0.353695 0.525263i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.75029 + 24.4127i −0.375063 + 1.18141i
\(428\) 0 0
\(429\) 6.03791 3.21345i 0.291513 0.155147i
\(430\) 0 0
\(431\) −2.84702 + 1.64373i −0.137136 + 0.0791755i −0.566998 0.823719i \(-0.691895\pi\)
0.429862 + 0.902894i \(0.358562\pi\)
\(432\) 0 0
\(433\) 31.9717i 1.53646i 0.640173 + 0.768231i \(0.278863\pi\)
−0.640173 + 0.768231i \(0.721137\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.20726 + 9.01924i 0.249097 + 0.431449i
\(438\) 0 0
\(439\) −36.1217 20.8549i −1.72399 0.995349i −0.910167 0.414242i \(-0.864047\pi\)
−0.813827 0.581107i \(-0.802620\pi\)
\(440\) 0 0
\(441\) 19.6289 7.46369i 0.934709 0.355414i
\(442\) 0 0
\(443\) 16.4179 + 9.47885i 0.780036 + 0.450354i 0.836443 0.548054i \(-0.184631\pi\)
−0.0564073 + 0.998408i \(0.517965\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.74692 9.20503i 0.271820 0.435383i
\(448\) 0 0
\(449\) 40.0091i 1.88815i 0.329737 + 0.944073i \(0.393040\pi\)
−0.329737 + 0.944073i \(0.606960\pi\)
\(450\) 0 0
\(451\) 7.85112 4.53285i 0.369695 0.213444i
\(452\) 0 0
\(453\) −27.0808 + 14.4128i −1.27237 + 0.677171i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.69340 + 9.86127i −0.266326 + 0.461291i −0.967910 0.251296i \(-0.919143\pi\)
0.701584 + 0.712587i \(0.252477\pi\)
\(458\) 0 0
\(459\) −2.54805 + 1.13806i −0.118933 + 0.0531202i
\(460\) 0 0
\(461\) −8.71020 −0.405674 −0.202837 0.979212i \(-0.565016\pi\)
−0.202837 + 0.979212i \(0.565016\pi\)
\(462\) 0 0
\(463\) −16.1154 −0.748944 −0.374472 0.927238i \(-0.622176\pi\)
−0.374472 + 0.927238i \(0.622176\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.55236 7.88492i 0.210658 0.364870i −0.741263 0.671215i \(-0.765773\pi\)
0.951921 + 0.306345i \(0.0991060\pi\)
\(468\) 0 0
\(469\) 23.6592 21.5939i 1.09248 0.997113i
\(470\) 0 0
\(471\) −0.629797 1.18336i −0.0290195 0.0545261i
\(472\) 0 0
\(473\) 6.52084 3.76481i 0.299828 0.173106i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.30944 2.59475i 0.243103 0.118805i
\(478\) 0 0
\(479\) 13.2092 + 22.8791i 0.603546 + 1.04537i 0.992279 + 0.124022i \(0.0395794\pi\)
−0.388733 + 0.921350i \(0.627087\pi\)
\(480\) 0 0
\(481\) −18.8317 10.8725i −0.858652 0.495743i
\(482\) 0 0
\(483\) 34.4935 + 12.2762i 1.56951 + 0.558587i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4.58065 7.93392i −0.207569 0.359520i 0.743379 0.668870i \(-0.233222\pi\)
−0.950948 + 0.309350i \(0.899889\pi\)
\(488\) 0 0
\(489\) −10.1186 6.31727i −0.457578 0.285677i
\(490\) 0 0
\(491\) 33.0800i 1.49288i 0.665453 + 0.746440i \(0.268239\pi\)
−0.665453 + 0.746440i \(0.731761\pi\)
\(492\) 0 0
\(493\) −1.60999 + 0.929529i −0.0725104 + 0.0418639i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.43919 0.535707i 0.109413 0.0240297i
\(498\) 0 0
\(499\) 8.54365 14.7980i 0.382466 0.662451i −0.608948 0.793210i \(-0.708408\pi\)
0.991414 + 0.130759i \(0.0417414\pi\)
\(500\) 0 0
\(501\) 0.567626 16.4396i 0.0253597 0.734469i
\(502\) 0 0
\(503\) −21.1753 −0.944158 −0.472079 0.881556i \(-0.656496\pi\)
−0.472079 + 0.881556i \(0.656496\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.334063 9.67518i 0.0148363 0.429690i
\(508\) 0 0
\(509\) 15.5918 27.0059i 0.691096 1.19701i −0.280383 0.959888i \(-0.590461\pi\)
0.971479 0.237125i \(-0.0762052\pi\)
\(510\) 0 0
\(511\) −18.2358 19.9799i −0.806704 0.883859i
\(512\) 0 0
\(513\) 3.97475 5.48434i 0.175490 0.242140i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.97623i 0.174874i
\(518\) 0 0
\(519\) 17.5570 + 10.9612i 0.770665 + 0.481145i
\(520\) 0 0
\(521\) −19.4555 33.6980i −0.852363 1.47634i −0.879070 0.476693i \(-0.841835\pi\)
0.0267070 0.999643i \(-0.491498\pi\)
\(522\) 0 0
\(523\) 3.25839 + 1.88123i 0.142480 + 0.0822606i 0.569545 0.821960i \(-0.307119\pi\)
−0.427066 + 0.904221i \(0.640453\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.98667 + 1.72436i 0.130101 + 0.0751141i
\(528\) 0 0
\(529\) 20.4169 + 35.3631i 0.887692 + 1.53753i
\(530\) 0 0
\(531\) 18.8459 + 38.5630i 0.817844 + 1.67349i
\(532\) 0 0
\(533\) 42.6759i 1.84850i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −15.2543 28.6620i −0.658272 1.23686i
\(538\) 0 0
\(539\) 3.69809 5.23730i 0.159288 0.225586i
\(540\) 0 0
\(541\) −13.6223 + 23.5945i −0.585667 + 1.01440i 0.409125 + 0.912478i \(0.365834\pi\)
−0.994792 + 0.101927i \(0.967499\pi\)
\(542\) 0 0
\(543\) 27.8736 + 0.962414i 1.19617 + 0.0413012i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.4516 0.575148 0.287574 0.957758i \(-0.407151\pi\)
0.287574 + 0.957758i \(0.407151\pi\)
\(548\) 0 0
\(549\) 24.0904 + 16.2217i 1.02815 + 0.692323i
\(550\) 0 0
\(551\) 2.25607 3.90763i 0.0961119 0.166471i
\(552\) 0 0
\(553\) 28.8393 + 9.15561i 1.22637 + 0.389336i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −32.5776 + 18.8087i −1.38036 + 0.796950i −0.992202 0.124644i \(-0.960221\pi\)
−0.388156 + 0.921594i \(0.626888\pi\)
\(558\) 0 0
\(559\) 35.4449i 1.49916i
\(560\) 0 0
\(561\) −0.451203 + 0.722706i −0.0190498 + 0.0305127i
\(562\) 0 0
\(563\) 5.08942 + 8.81514i 0.214494 + 0.371514i 0.953116 0.302606i \(-0.0978566\pi\)
−0.738622 + 0.674120i \(0.764523\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.85866 23.7391i −0.0780564 0.996949i
\(568\) 0 0
\(569\) 0.744706 + 0.429956i 0.0312197 + 0.0180247i 0.515529 0.856872i \(-0.327596\pi\)
−0.484309 + 0.874897i \(0.660929\pi\)
\(570\) 0 0
\(571\) −1.71817 2.97596i −0.0719032 0.124540i 0.827832 0.560976i \(-0.189574\pi\)
−0.899735 + 0.436436i \(0.856241\pi\)
\(572\) 0 0
\(573\) −15.8854 + 25.4441i −0.663620 + 1.06294i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 22.2565 12.8498i 0.926550 0.534944i 0.0408310 0.999166i \(-0.486999\pi\)
0.885719 + 0.464222i \(0.153666\pi\)
\(578\) 0 0
\(579\) −23.1341 + 12.3123i −0.961422 + 0.511681i
\(580\) 0 0
\(581\) 5.30792 + 24.1681i 0.220210 + 1.00266i
\(582\) 0 0
\(583\) 0.902098 1.56248i 0.0373611 0.0647113i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.5090 −0.929048 −0.464524 0.885561i \(-0.653775\pi\)
−0.464524 + 0.885561i \(0.653775\pi\)
\(588\) 0 0
\(589\) −8.37041 −0.344897
\(590\) 0 0
\(591\) 32.2466 + 1.11341i 1.32645 + 0.0457994i
\(592\) 0 0
\(593\) 11.8863 20.5878i 0.488114 0.845438i −0.511793 0.859109i \(-0.671018\pi\)
0.999907 + 0.0136712i \(0.00435181\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.17749 + 15.3651i 0.334682 + 0.628850i
\(598\) 0 0
\(599\) 37.6990 21.7655i 1.54034 0.889314i 0.541521 0.840687i \(-0.317849\pi\)
0.998817 0.0486270i \(-0.0154846\pi\)
\(600\) 0 0
\(601\) 19.9347i 0.813153i 0.913617 + 0.406577i \(0.133278\pi\)
−0.913617 + 0.406577i \(0.866722\pi\)
\(602\) 0 0
\(603\) −15.9477 32.6325i −0.649439 1.32890i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.20867 + 5.31663i 0.373768 + 0.215795i 0.675103 0.737723i \(-0.264099\pi\)
−0.301335 + 0.953518i \(0.597432\pi\)
\(608\) 0 0
\(609\) −2.86609 15.6017i −0.116140 0.632212i
\(610\) 0 0
\(611\) −16.2100 9.35886i −0.655788 0.378619i
\(612\) 0 0
\(613\) −7.56721 13.1068i −0.305637 0.529378i 0.671766 0.740763i \(-0.265536\pi\)
−0.977403 + 0.211385i \(0.932203\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.39865i 0.297858i −0.988848 0.148929i \(-0.952417\pi\)
0.988848 0.148929i \(-0.0475826\pi\)
\(618\) 0 0
\(619\) −16.0456 + 9.26396i −0.644929 + 0.372350i −0.786511 0.617577i \(-0.788115\pi\)
0.141582 + 0.989927i \(0.454781\pi\)
\(620\) 0 0
\(621\) 24.3625 33.6152i 0.977632 1.34893i
\(622\) 0 0
\(623\) −4.41053 1.40021i −0.176704 0.0560983i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.0713568 2.06665i 0.00284972 0.0825339i
\(628\) 0 0
\(629\) 2.70864 0.108001
\(630\) 0 0
\(631\) 13.1786 0.524632 0.262316 0.964982i \(-0.415514\pi\)
0.262316 + 0.964982i \(0.415514\pi\)
\(632\) 0 0
\(633\) 0.100765 2.91837i 0.00400505 0.115995i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.6469 27.4032i −0.501087 1.08575i
\(638\) 0 0
\(639\) 0.195312 2.82496i 0.00772643 0.111754i
\(640\) 0 0
\(641\) −12.2389 + 7.06611i −0.483406 + 0.279094i −0.721835 0.692065i \(-0.756701\pi\)
0.238429 + 0.971160i \(0.423368\pi\)
\(642\) 0 0
\(643\) 17.9278i 0.707005i 0.935434 + 0.353503i \(0.115009\pi\)
−0.935434 + 0.353503i \(0.884991\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.0026 20.7892i −0.471872 0.817306i 0.527610 0.849487i \(-0.323088\pi\)
−0.999482 + 0.0321804i \(0.989755\pi\)
\(648\) 0 0
\(649\) 11.3485 + 6.55204i 0.445466 + 0.257190i
\(650\) 0 0
\(651\) −22.4065 + 19.0757i −0.878179 + 0.747637i
\(652\) 0 0
\(653\) 25.0705 + 14.4745i 0.981085 + 0.566430i 0.902598 0.430485i \(-0.141658\pi\)
0.0784876 + 0.996915i \(0.474991\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −27.5578 + 13.4676i −1.07513 + 0.525422i
\(658\) 0 0
\(659\) 5.09127i 0.198328i −0.995071 0.0991638i \(-0.968383\pi\)
0.995071 0.0991638i \(-0.0316168\pi\)
\(660\) 0 0
\(661\) 25.1768 14.5358i 0.979264 0.565378i 0.0772160 0.997014i \(-0.475397\pi\)
0.902048 + 0.431636i \(0.142064\pi\)
\(662\) 0 0
\(663\) 1.88428 + 3.54047i 0.0731794 + 0.137500i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.8282 23.9511i 0.535429 0.927389i
\(668\) 0 0
\(669\) −24.5970 0.849281i −0.950974 0.0328351i
\(670\) 0 0
\(671\) 8.86682 0.342300
\(672\) 0 0
\(673\) −8.51862 −0.328369 −0.164184 0.986430i \(-0.552499\pi\)
−0.164184 + 0.986430i \(0.552499\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.48823 + 16.4341i −0.364662 + 0.631614i −0.988722 0.149763i \(-0.952149\pi\)
0.624060 + 0.781377i \(0.285482\pi\)
\(678\) 0 0
\(679\) 27.8686 6.12064i 1.06950 0.234889i
\(680\) 0 0
\(681\) −1.04239 + 0.554776i −0.0399447 + 0.0212591i
\(682\) 0 0
\(683\) 18.1149 10.4587i 0.693149 0.400190i −0.111642 0.993749i \(-0.535611\pi\)
0.804791 + 0.593559i \(0.202278\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.71268 + 4.34499i −0.103495 + 0.165772i
\(688\) 0 0
\(689\) −4.24654 7.35523i −0.161780 0.280212i
\(690\) 0 0
\(691\) 29.4902 + 17.0261i 1.12186 + 0.647705i 0.941875 0.335964i \(-0.109062\pi\)
0.179984 + 0.983670i \(0.442396\pi\)
\(692\) 0 0
\(693\) −4.51877 5.69475i −0.171654 0.216326i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.65794 + 4.60369i 0.100677 + 0.174377i
\(698\) 0 0
\(699\) −24.7086 + 39.5766i −0.934565 + 1.49692i
\(700\) 0 0
\(701\) 18.9758i 0.716706i 0.933586 + 0.358353i \(0.116662\pi\)
−0.933586 + 0.358353i \(0.883338\pi\)
\(702\) 0 0
\(703\) −5.69340 + 3.28709i −0.214731 + 0.123975i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.2479 + 17.5676i −0.723890 + 0.660699i
\(708\) 0 0
\(709\) 1.53691 2.66200i 0.0577197 0.0999735i −0.835722 0.549153i \(-0.814950\pi\)
0.893441 + 0.449180i \(0.148284\pi\)
\(710\) 0 0
\(711\) 19.1630 28.4585i 0.718670 1.06728i
\(712\) 0 0
\(713\) −51.3048 −1.92138
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 30.0264 + 1.03675i 1.12136 + 0.0387180i
\(718\) 0 0
\(719\) −6.70106 + 11.6066i −0.249907 + 0.432852i −0.963500 0.267709i \(-0.913733\pi\)
0.713593 + 0.700561i \(0.247067\pi\)
\(720\) 0 0
\(721\) 1.96775 6.19823i 0.0732829 0.230834i
\(722\) 0 0
\(723\) 1.24297 + 2.33547i 0.0462264 + 0.0868569i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 4.88627i 0.181222i 0.995886 + 0.0906109i \(0.0288820\pi\)
−0.995886 + 0.0906109i \(0.971118\pi\)
\(728\) 0 0
\(729\) −26.4231 5.55142i −0.978634 0.205608i
\(730\) 0 0
\(731\) 2.20758 + 3.82364i 0.0816504 + 0.141423i
\(732\) 0 0
\(733\) 32.0351 + 18.4955i 1.18324 + 0.683145i 0.956762 0.290871i \(-0.0939450\pi\)
0.226480 + 0.974016i \(0.427278\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.60321 5.54441i −0.353739 0.204231i
\(738\) 0 0
\(739\) 18.9759 + 32.8672i 0.698040 + 1.20904i 0.969145 + 0.246491i \(0.0792777\pi\)
−0.271105 + 0.962550i \(0.587389\pi\)
\(740\) 0 0
\(741\) −8.25721 5.15517i −0.303336 0.189380i
\(742\) 0 0
\(743\) 14.0878i 0.516830i −0.966034 0.258415i \(-0.916800\pi\)
0.966034 0.258415i \(-0.0832003\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 27.9904 + 1.93520i 1.02411 + 0.0708054i
\(748\) 0 0
\(749\) −1.20056 + 3.78165i −0.0438675 + 0.138178i
\(750\) 0 0
\(751\) 12.8752 22.3005i 0.469823 0.813757i −0.529582 0.848259i \(-0.677651\pi\)
0.999405 + 0.0345016i \(0.0109844\pi\)
\(752\) 0 0
\(753\) −0.392241 + 11.3601i −0.0142941 + 0.413986i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −40.3111 −1.46513 −0.732565 0.680697i \(-0.761677\pi\)
−0.732565 + 0.680697i \(0.761677\pi\)
\(758\) 0 0
\(759\) 0.437368 12.6671i 0.0158755 0.459787i
\(760\) 0 0
\(761\) 9.76529 16.9140i 0.353991 0.613131i −0.632953 0.774190i \(-0.718158\pi\)
0.986945 + 0.161059i \(0.0514909\pi\)
\(762\) 0 0
\(763\) −7.55196 + 6.89272i −0.273399 + 0.249533i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 53.4218 30.8431i 1.92895 1.11368i
\(768\) 0 0
\(769\) 47.6475i 1.71821i −0.511797 0.859107i \(-0.671020\pi\)
0.511797 0.859107i \(-0.328980\pi\)
\(770\) 0 0
\(771\) −24.9370 15.5687i −0.898083 0.560695i
\(772\) 0 0
\(773\) −10.5624 18.2945i −0.379901 0.658009i 0.611146 0.791518i \(-0.290709\pi\)
−0.991048 + 0.133509i \(0.957375\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −7.74937 + 21.7741i −0.278007 + 0.781141i
\(778\) 0 0
\(779\) −11.1737 6.45112i −0.400338 0.231135i
\(780\) 0 0
\(781\) −0.432261 0.748698i −0.0154675 0.0267905i
\(782\) 0 0
\(783\) −17.8903 1.85906i −0.639349 0.0664373i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 5.66953 3.27330i 0.202097 0.116681i −0.395536 0.918450i \(-0.629441\pi\)
0.597633 + 0.801770i \(0.296108\pi\)
\(788\) 0 0
\(789\) −4.32889 8.13376i −0.154113 0.289569i
\(790\) 0 0
\(791\) −26.3044 + 5.77709i −0.935276 + 0.205410i
\(792\) 0 0
\(793\) 20.8699 36.1477i 0.741110 1.28364i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.50728 −0.230500 −0.115250 0.993337i \(-0.536767\pi\)
−0.115250 + 0.993337i \(0.536767\pi\)
\(798\) 0 0
\(799\) 2.33156 0.0824845
\(800\) 0 0
\(801\) −2.93069 + 4.35230i −0.103551 + 0.153781i
\(802\) 0 0
\(803\) −4.68219 + 8.10980i −0.165231 + 0.286189i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.0251 + 5.33549i −0.352900 + 0.187818i
\(808\) 0 0
\(809\) −1.41519 + 0.817063i −0.0497556 + 0.0287264i −0.524671 0.851305i \(-0.675812\pi\)
0.474916 + 0.880031i \(0.342478\pi\)
\(810\) 0 0
\(811\) 29.4411i 1.03382i 0.856041 + 0.516909i \(0.172917\pi\)
−0.856041 + 0.516909i \(0.827083\pi\)
\(812\) 0 0
\(813\) −4.81045 + 7.70506i −0.168710 + 0.270228i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −9.28042 5.35805i −0.324681 0.187454i
\(818\) 0 0
\(819\) −33.8518 + 5.01805i −1.18288 + 0.175345i
\(820\) 0 0
\(821\) −19.6357 11.3367i −0.685292 0.395654i 0.116554 0.993184i \(-0.462815\pi\)
−0.801846 + 0.597531i \(0.796149\pi\)
\(822\) 0 0
\(823\) 9.59438 + 16.6180i 0.334439 + 0.579266i 0.983377 0.181576i \(-0.0581198\pi\)
−0.648938 + 0.760841i \(0.724786\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.5074i 1.13039i −0.824957 0.565196i \(-0.808800\pi\)
0.824957 0.565196i \(-0.191200\pi\)
\(828\) 0 0
\(829\) −44.7613 + 25.8429i −1.55462 + 0.897563i −0.556868 + 0.830601i \(0.687997\pi\)
−0.997756 + 0.0669618i \(0.978669\pi\)
\(830\) 0 0
\(831\) −4.24029 + 2.25674i −0.147094 + 0.0782853i
\(832\) 0 0
\(833\) 3.07101 + 2.16846i 0.106404 + 0.0751327i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 13.6074 + 30.4661i 0.470340 + 1.05306i
\(838\) 0 0
\(839\) 2.88841 0.0997192 0.0498596 0.998756i \(-0.484123\pi\)
0.0498596 + 0.998756i \(0.484123\pi\)
\(840\) 0 0
\(841\) 17.0178 0.586819
\(842\) 0 0
\(843\) 38.8395 + 1.34104i 1.33770 + 0.0461880i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 25.6235 + 8.13470i 0.880435 + 0.279512i
\(848\) 0 0
\(849\) −5.89708 11.0803i −0.202387 0.380275i
\(850\) 0 0
\(851\) −34.8966 + 20.1476i −1.19624 + 0.690650i
\(852\) 0 0
\(853\) 49.3673i 1.69031i −0.534525 0.845153i \(-0.679509\pi\)
0.534525 0.845153i \(-0.320491\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.75185 + 15.1586i 0.298957 + 0.517809i 0.975898 0.218228i \(-0.0700278\pi\)
−0.676940 + 0.736038i \(0.736694\pi\)
\(858\) 0 0
\(859\) 5.23153 + 3.02042i 0.178497 + 0.103056i 0.586586 0.809887i \(-0.300471\pi\)
−0.408089 + 0.912942i \(0.633805\pi\)
\(860\) 0 0
\(861\) −44.6122 + 8.19544i −1.52038 + 0.279300i
\(862\) 0 0
\(863\) 29.4595 + 17.0085i 1.00281 + 0.578975i 0.909080 0.416622i \(-0.136786\pi\)
0.0937342 + 0.995597i \(0.470120\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 24.5530 + 15.3290i 0.833864 + 0.520601i
\(868\) 0 0
\(869\) 10.4746i 0.355326i
\(870\) 0 0
\(871\) −45.2062 + 26.0998i −1.53175 + 0.884358i
\(872\) 0 0
\(873\) 2.23151 32.2761i 0.0755252 1.09238i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.62002 + 6.27005i −0.122239 + 0.211725i −0.920650 0.390388i \(-0.872341\pi\)
0.798411 + 0.602113i \(0.205674\pi\)
\(878\) 0 0
\(879\) 1.56406 45.2984i 0.0527543 1.52788i
\(880\) 0 0
\(881\) 25.9119 0.872993 0.436496 0.899706i \(-0.356219\pi\)
0.436496 + 0.899706i \(0.356219\pi\)
\(882\) 0 0
\(883\) −17.5664 −0.591155 −0.295577 0.955319i \(-0.595512\pi\)
−0.295577 + 0.955319i \(0.595512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.38392 + 12.7893i −0.247928 + 0.429423i −0.962951 0.269678i \(-0.913083\pi\)
0.715023 + 0.699101i \(0.246416\pi\)
\(888\) 0 0
\(889\) 5.52675 + 25.1645i 0.185361 + 0.843990i
\(890\) 0 0
\(891\) −7.63805 + 3.09993i −0.255884 + 0.103851i
\(892\) 0 0
\(893\) −4.90079 + 2.82947i −0.163999 + 0.0946847i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −50.6110 31.5976i −1.68985 1.05501i
\(898\) 0 0
\(899\) 11.1140 + 19.2501i 0.370674 + 0.642026i
\(900\) 0 0
\(901\) 0.916197 + 0.528966i 0.0305229 + 0.0176224i
\(902\) 0 0
\(903\) −37.0532 + 6.80681i −1.23305 + 0.226517i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −14.6622 25.3957i −0.486851 0.843250i 0.513035 0.858368i \(-0.328521\pi\)
−0.999886 + 0.0151176i \(0.995188\pi\)
\(908\) 0 0
\(909\) 12.9742 + 26.5481i 0.430326 + 0.880545i
\(910\) 0 0
\(911\) 30.3043i 1.00403i −0.864860 0.502013i \(-0.832593\pi\)
0.864860 0.502013i \(-0.167407\pi\)
\(912\) 0 0
\(913\) 7.41828 4.28295i 0.245509 0.141745i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.3827 + 14.0902i 1.46565 + 0.465299i
\(918\) 0 0
\(919\) −3.81888 + 6.61449i −0.125973 + 0.218192i −0.922113 0.386921i \(-0.873539\pi\)
0.796140 + 0.605113i \(0.206872\pi\)
\(920\) 0 0
\(921\) −38.7998 1.33968i −1.27850 0.0441438i
\(922\) 0 0
\(923\) −4.06965 −0.133954
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6.11640 4.11858i −0.200889 0.135272i
\(928\) 0 0
\(929\) 8.62508 14.9391i 0.282980 0.490135i −0.689138 0.724631i \(-0.742010\pi\)
0.972117 + 0.234495i \(0.0753438\pi\)
\(930\) 0 0
\(931\) −9.08663 0.831132i −0.297802 0.0272393i
\(932\) 0 0
\(933\) −30.0104 + 15.9719i −0.982495 + 0.522896i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 36.0492i 1.17768i 0.808251 + 0.588839i \(0.200415\pi\)
−0.808251 + 0.588839i \(0.799585\pi\)
\(938\) 0 0
\(939\) 11.7716 18.8549i 0.384151 0.615308i
\(940\) 0 0
\(941\) 15.8153 + 27.3930i 0.515565 + 0.892985i 0.999837 + 0.0180673i \(0.00575131\pi\)
−0.484272 + 0.874918i \(0.660915\pi\)
\(942\) 0 0
\(943\) −68.4869 39.5409i −2.23024 1.28763i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.1757 + 20.3087i 1.14306 + 0.659944i 0.947186 0.320685i \(-0.103913\pi\)
0.195871 + 0.980630i \(0.437247\pi\)
\(948\) 0 0
\(949\) 22.0410 + 38.1761i 0.715481 + 1.23925i
\(950\) 0 0
\(951\) 14.6479 23.4620i 0.474990 0.760807i
\(952\) 0 0
\(953\) 5.31938i 0.172312i −0.996282 0.0861558i \(-0.972542\pi\)
0.996282 0.0861558i \(-0.0274583\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4.84757 + 2.57994i −0.156700 + 0.0833975i
\(958\) 0 0
\(959\) −18.5840 20.3615i −0.600110 0.657506i
\(960\) 0 0
\(961\) 5.11747 8.86371i 0.165080 0.285926i
\(962\) 0 0
\(963\) 3.73172 + 2.51282i 0.120253 + 0.0809745i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 6.75930 0.217364 0.108682 0.994077i \(-0.465337\pi\)
0.108682 + 0.994077i \(0.465337\pi\)
\(968\) 0 0
\(969\) 1.21183 + 0.0418417i 0.0389294 + 0.00134415i
\(970\) 0 0
\(971\) 21.9851 38.0793i 0.705535 1.22202i −0.260963 0.965349i \(-0.584040\pi\)
0.966498 0.256674i \(-0.0826266\pi\)
\(972\) 0 0
\(973\) 18.3264 4.02493i 0.587517 0.129033i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.00974 + 4.62443i −0.256254 + 0.147949i −0.622625 0.782521i \(-0.713934\pi\)
0.366370 + 0.930469i \(0.380600\pi\)
\(978\) 0 0
\(979\) 1.60193i 0.0511979i
\(980\) 0 0
\(981\) 5.09046 + 10.4162i 0.162526 + 0.332565i
\(982\) 0 0
\(983\) 6.56947 + 11.3787i 0.209533 + 0.362923i 0.951568 0.307439i \(-0.0994722\pi\)
−0.742034 + 0.670362i \(0.766139\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −6.67054 + 18.7428i −0.212326 + 0.596589i
\(988\) 0 0
\(989\) −56.8825 32.8411i −1.80876 1.04429i
\(990\) 0 0
\(991\) 3.18520 + 5.51694i 0.101181 + 0.175251i 0.912172 0.409808i \(-0.134404\pi\)
−0.810990 + 0.585060i \(0.801071\pi\)
\(992\) 0 0
\(993\) 28.8522 + 18.0131i 0.915598 + 0.571630i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.3595 11.7546i 0.644792 0.372271i −0.141666 0.989915i \(-0.545246\pi\)
0.786458 + 0.617644i \(0.211913\pi\)
\(998\) 0 0
\(999\) 21.2196 + 15.3788i 0.671359 + 0.486565i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.2.bi.n.1601.8 32
3.2 odd 2 inner 2100.2.bi.n.1601.3 32
5.2 odd 4 420.2.bn.a.89.16 yes 32
5.3 odd 4 420.2.bn.a.89.1 32
5.4 even 2 inner 2100.2.bi.n.1601.9 32
7.3 odd 6 inner 2100.2.bi.n.101.3 32
15.2 even 4 420.2.bn.a.89.6 yes 32
15.8 even 4 420.2.bn.a.89.11 yes 32
15.14 odd 2 inner 2100.2.bi.n.1601.14 32
21.17 even 6 inner 2100.2.bi.n.101.8 32
35.2 odd 12 2940.2.f.a.1469.12 32
35.3 even 12 420.2.bn.a.269.6 yes 32
35.12 even 12 2940.2.f.a.1469.21 32
35.17 even 12 420.2.bn.a.269.11 yes 32
35.23 odd 12 2940.2.f.a.1469.22 32
35.24 odd 6 inner 2100.2.bi.n.101.14 32
35.33 even 12 2940.2.f.a.1469.11 32
105.2 even 12 2940.2.f.a.1469.9 32
105.17 odd 12 420.2.bn.a.269.1 yes 32
105.23 even 12 2940.2.f.a.1469.23 32
105.38 odd 12 420.2.bn.a.269.16 yes 32
105.47 odd 12 2940.2.f.a.1469.24 32
105.59 even 6 inner 2100.2.bi.n.101.9 32
105.68 odd 12 2940.2.f.a.1469.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.1 32 5.3 odd 4
420.2.bn.a.89.6 yes 32 15.2 even 4
420.2.bn.a.89.11 yes 32 15.8 even 4
420.2.bn.a.89.16 yes 32 5.2 odd 4
420.2.bn.a.269.1 yes 32 105.17 odd 12
420.2.bn.a.269.6 yes 32 35.3 even 12
420.2.bn.a.269.11 yes 32 35.17 even 12
420.2.bn.a.269.16 yes 32 105.38 odd 12
2100.2.bi.n.101.3 32 7.3 odd 6 inner
2100.2.bi.n.101.8 32 21.17 even 6 inner
2100.2.bi.n.101.9 32 105.59 even 6 inner
2100.2.bi.n.101.14 32 35.24 odd 6 inner
2100.2.bi.n.1601.3 32 3.2 odd 2 inner
2100.2.bi.n.1601.8 32 1.1 even 1 trivial
2100.2.bi.n.1601.9 32 5.4 even 2 inner
2100.2.bi.n.1601.14 32 15.14 odd 2 inner
2940.2.f.a.1469.9 32 105.2 even 12
2940.2.f.a.1469.10 32 105.68 odd 12
2940.2.f.a.1469.11 32 35.33 even 12
2940.2.f.a.1469.12 32 35.2 odd 12
2940.2.f.a.1469.21 32 35.12 even 12
2940.2.f.a.1469.22 32 35.23 odd 12
2940.2.f.a.1469.23 32 105.23 even 12
2940.2.f.a.1469.24 32 105.47 odd 12