Properties

Label 420.2.bn.a.269.11
Level $420$
Weight $2$
Character 420.269
Analytic conductor $3.354$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(89,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.11
Character \(\chi\) \(=\) 420.269
Dual form 420.2.bn.a.89.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.813749 + 1.52899i) q^{3} +(-1.61141 + 1.55028i) q^{5} +(-2.58416 - 0.567546i) q^{7} +(-1.67563 + 2.48843i) q^{9} +(0.793196 + 0.457952i) q^{11} -4.31153 q^{13} +(-3.68164 - 1.20229i) q^{15} +(0.465109 + 0.268531i) q^{17} +(-1.12887 + 0.651755i) q^{19} +(-1.23509 - 4.41300i) q^{21} +(3.99480 + 6.91920i) q^{23} +(0.193261 - 4.99626i) q^{25} +(-5.16832 - 0.537062i) q^{27} +3.46154i q^{29} +(-5.56113 - 3.21072i) q^{31} +(-0.0547421 + 1.58545i) q^{33} +(5.04399 - 3.09163i) q^{35} +(4.36775 - 2.52172i) q^{37} +(-3.50850 - 6.59229i) q^{39} +9.89809 q^{41} +8.22096i q^{43} +(-1.15765 - 6.60756i) q^{45} +(-3.75969 + 2.17066i) q^{47} +(6.35578 + 2.93326i) q^{49} +(-0.0320993 + 0.929664i) q^{51} +(0.984927 - 1.70594i) q^{53} +(-1.98812 + 0.491730i) q^{55} +(-1.91514 - 1.19567i) q^{57} +(-7.15363 + 12.3904i) q^{59} +(-8.38395 + 4.84048i) q^{61} +(5.74239 - 5.47951i) q^{63} +(6.94763 - 6.68408i) q^{65} +(10.4850 + 6.05349i) q^{67} +(-7.32863 + 11.7385i) q^{69} +0.943900i q^{71} +(5.11210 - 8.85442i) q^{73} +(7.79651 - 3.77021i) q^{75} +(-1.78984 - 1.63360i) q^{77} +(5.71817 + 9.90416i) q^{79} +(-3.38455 - 8.33935i) q^{81} -9.35240i q^{83} +(-1.16578 + 0.288337i) q^{85} +(-5.29266 + 2.81682i) q^{87} +(0.874507 + 1.51469i) q^{89} +(11.1417 + 2.44699i) q^{91} +(0.383799 - 11.1156i) q^{93} +(0.808669 - 2.80031i) q^{95} +10.7844 q^{97} +(-2.46868 + 1.20646i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.813749 + 1.52899i 0.469818 + 0.882763i
\(4\) 0 0
\(5\) −1.61141 + 1.55028i −0.720643 + 0.693307i
\(6\) 0 0
\(7\) −2.58416 0.567546i −0.976721 0.214512i
\(8\) 0 0
\(9\) −1.67563 + 2.48843i −0.558542 + 0.829476i
\(10\) 0 0
\(11\) 0.793196 + 0.457952i 0.239158 + 0.138078i 0.614790 0.788691i \(-0.289241\pi\)
−0.375632 + 0.926769i \(0.622574\pi\)
\(12\) 0 0
\(13\) −4.31153 −1.19580 −0.597902 0.801569i \(-0.703999\pi\)
−0.597902 + 0.801569i \(0.703999\pi\)
\(14\) 0 0
\(15\) −3.68164 1.20229i −0.950597 0.310429i
\(16\) 0 0
\(17\) 0.465109 + 0.268531i 0.112805 + 0.0651283i 0.555341 0.831623i \(-0.312588\pi\)
−0.442536 + 0.896751i \(0.645921\pi\)
\(18\) 0 0
\(19\) −1.12887 + 0.651755i −0.258981 + 0.149523i −0.623870 0.781528i \(-0.714440\pi\)
0.364889 + 0.931051i \(0.381107\pi\)
\(20\) 0 0
\(21\) −1.23509 4.41300i −0.269518 0.962995i
\(22\) 0 0
\(23\) 3.99480 + 6.91920i 0.832974 + 1.44275i 0.895669 + 0.444721i \(0.146697\pi\)
−0.0626950 + 0.998033i \(0.519970\pi\)
\(24\) 0 0
\(25\) 0.193261 4.99626i 0.0386521 0.999253i
\(26\) 0 0
\(27\) −5.16832 0.537062i −0.994644 0.103358i
\(28\) 0 0
\(29\) 3.46154i 0.642791i 0.946945 + 0.321396i \(0.104152\pi\)
−0.946945 + 0.321396i \(0.895848\pi\)
\(30\) 0 0
\(31\) −5.56113 3.21072i −0.998809 0.576663i −0.0909133 0.995859i \(-0.528979\pi\)
−0.907896 + 0.419196i \(0.862312\pi\)
\(32\) 0 0
\(33\) −0.0547421 + 1.58545i −0.00952938 + 0.275991i
\(34\) 0 0
\(35\) 5.04399 3.09163i 0.852590 0.522580i
\(36\) 0 0
\(37\) 4.36775 2.52172i 0.718054 0.414569i −0.0959820 0.995383i \(-0.530599\pi\)
0.814036 + 0.580814i \(0.197266\pi\)
\(38\) 0 0
\(39\) −3.50850 6.59229i −0.561810 1.05561i
\(40\) 0 0
\(41\) 9.89809 1.54582 0.772911 0.634515i \(-0.218800\pi\)
0.772911 + 0.634515i \(0.218800\pi\)
\(42\) 0 0
\(43\) 8.22096i 1.25369i 0.779146 + 0.626843i \(0.215653\pi\)
−0.779146 + 0.626843i \(0.784347\pi\)
\(44\) 0 0
\(45\) −1.15765 6.60756i −0.172572 0.984997i
\(46\) 0 0
\(47\) −3.75969 + 2.17066i −0.548407 + 0.316623i −0.748479 0.663158i \(-0.769216\pi\)
0.200072 + 0.979781i \(0.435882\pi\)
\(48\) 0 0
\(49\) 6.35578 + 2.93326i 0.907969 + 0.419038i
\(50\) 0 0
\(51\) −0.0320993 + 0.929664i −0.00449480 + 0.130179i
\(52\) 0 0
\(53\) 0.984927 1.70594i 0.135290 0.234329i −0.790418 0.612568i \(-0.790137\pi\)
0.925708 + 0.378238i \(0.123470\pi\)
\(54\) 0 0
\(55\) −1.98812 + 0.491730i −0.268077 + 0.0663048i
\(56\) 0 0
\(57\) −1.91514 1.19567i −0.253667 0.158370i
\(58\) 0 0
\(59\) −7.15363 + 12.3904i −0.931323 + 1.61310i −0.150260 + 0.988647i \(0.548011\pi\)
−0.781063 + 0.624452i \(0.785322\pi\)
\(60\) 0 0
\(61\) −8.38395 + 4.84048i −1.07345 + 0.619759i −0.929123 0.369770i \(-0.879436\pi\)
−0.144331 + 0.989529i \(0.546103\pi\)
\(62\) 0 0
\(63\) 5.74239 5.47951i 0.723473 0.690353i
\(64\) 0 0
\(65\) 6.94763 6.68408i 0.861747 0.829058i
\(66\) 0 0
\(67\) 10.4850 + 6.05349i 1.28094 + 0.739551i 0.977020 0.213146i \(-0.0683710\pi\)
0.303920 + 0.952697i \(0.401704\pi\)
\(68\) 0 0
\(69\) −7.32863 + 11.7385i −0.882264 + 1.41315i
\(70\) 0 0
\(71\) 0.943900i 0.112020i 0.998430 + 0.0560102i \(0.0178379\pi\)
−0.998430 + 0.0560102i \(0.982162\pi\)
\(72\) 0 0
\(73\) 5.11210 8.85442i 0.598326 1.03633i −0.394742 0.918792i \(-0.629166\pi\)
0.993068 0.117540i \(-0.0375007\pi\)
\(74\) 0 0
\(75\) 7.79651 3.77021i 0.900263 0.435346i
\(76\) 0 0
\(77\) −1.78984 1.63360i −0.203971 0.186166i
\(78\) 0 0
\(79\) 5.71817 + 9.90416i 0.643345 + 1.11431i 0.984681 + 0.174364i \(0.0557870\pi\)
−0.341337 + 0.939941i \(0.610880\pi\)
\(80\) 0 0
\(81\) −3.38455 8.33935i −0.376062 0.926595i
\(82\) 0 0
\(83\) 9.35240i 1.02656i −0.858222 0.513279i \(-0.828430\pi\)
0.858222 0.513279i \(-0.171570\pi\)
\(84\) 0 0
\(85\) −1.16578 + 0.288337i −0.126446 + 0.0312746i
\(86\) 0 0
\(87\) −5.29266 + 2.81682i −0.567433 + 0.301995i
\(88\) 0 0
\(89\) 0.874507 + 1.51469i 0.0926976 + 0.160557i 0.908645 0.417569i \(-0.137118\pi\)
−0.815948 + 0.578126i \(0.803784\pi\)
\(90\) 0 0
\(91\) 11.1417 + 2.44699i 1.16797 + 0.256515i
\(92\) 0 0
\(93\) 0.383799 11.1156i 0.0397981 1.15264i
\(94\) 0 0
\(95\) 0.808669 2.80031i 0.0829677 0.287306i
\(96\) 0 0
\(97\) 10.7844 1.09499 0.547494 0.836809i \(-0.315582\pi\)
0.547494 + 0.836809i \(0.315582\pi\)
\(98\) 0 0
\(99\) −2.46868 + 1.20646i −0.248112 + 0.121253i
\(100\) 0 0
\(101\) 4.92480 8.53000i 0.490036 0.848767i −0.509898 0.860235i \(-0.670317\pi\)
0.999934 + 0.0114677i \(0.00365037\pi\)
\(102\) 0 0
\(103\) −1.22897 2.12863i −0.121094 0.209741i 0.799106 0.601191i \(-0.205307\pi\)
−0.920199 + 0.391450i \(0.871974\pi\)
\(104\) 0 0
\(105\) 8.83161 + 5.19641i 0.861877 + 0.507117i
\(106\) 0 0
\(107\) 0.749815 + 1.29872i 0.0724873 + 0.125552i 0.899991 0.435909i \(-0.143573\pi\)
−0.827504 + 0.561461i \(0.810240\pi\)
\(108\) 0 0
\(109\) 1.93226 3.34677i 0.185077 0.320563i −0.758525 0.651643i \(-0.774080\pi\)
0.943602 + 0.331081i \(0.107413\pi\)
\(110\) 0 0
\(111\) 7.40994 + 4.62620i 0.703321 + 0.439100i
\(112\) 0 0
\(113\) −10.1791 −0.957567 −0.478783 0.877933i \(-0.658922\pi\)
−0.478783 + 0.877933i \(0.658922\pi\)
\(114\) 0 0
\(115\) −17.1640 4.95658i −1.60055 0.462204i
\(116\) 0 0
\(117\) 7.22451 10.7289i 0.667907 0.991891i
\(118\) 0 0
\(119\) −1.04951 0.957898i −0.0962087 0.0878104i
\(120\) 0 0
\(121\) −5.08056 8.79979i −0.461869 0.799981i
\(122\) 0 0
\(123\) 8.05456 + 15.1341i 0.726255 + 1.36459i
\(124\) 0 0
\(125\) 7.43419 + 8.35062i 0.664934 + 0.746902i
\(126\) 0 0
\(127\) 9.73798i 0.864106i −0.901848 0.432053i \(-0.857789\pi\)
0.901848 0.432053i \(-0.142211\pi\)
\(128\) 0 0
\(129\) −12.5698 + 6.68980i −1.10671 + 0.589004i
\(130\) 0 0
\(131\) 8.80008 + 15.2422i 0.768867 + 1.33172i 0.938178 + 0.346154i \(0.112512\pi\)
−0.169311 + 0.985563i \(0.554154\pi\)
\(132\) 0 0
\(133\) 3.28709 1.04355i 0.285027 0.0904874i
\(134\) 0 0
\(135\) 9.16086 7.14693i 0.788442 0.615109i
\(136\) 0 0
\(137\) 5.20973 9.02351i 0.445097 0.770931i −0.552962 0.833207i \(-0.686503\pi\)
0.998059 + 0.0622758i \(0.0198358\pi\)
\(138\) 0 0
\(139\) 7.09182i 0.601520i 0.953700 + 0.300760i \(0.0972403\pi\)
−0.953700 + 0.300760i \(0.902760\pi\)
\(140\) 0 0
\(141\) −6.37836 3.98216i −0.537155 0.335359i
\(142\) 0 0
\(143\) −3.41989 1.97447i −0.285986 0.165114i
\(144\) 0 0
\(145\) −5.36635 5.57794i −0.445651 0.463223i
\(146\) 0 0
\(147\) 0.687078 + 12.1049i 0.0566692 + 0.998393i
\(148\) 0 0
\(149\) −5.42586 + 3.13262i −0.444504 + 0.256634i −0.705506 0.708704i \(-0.749280\pi\)
0.261003 + 0.965338i \(0.415947\pi\)
\(150\) 0 0
\(151\) 8.85578 15.3387i 0.720673 1.24824i −0.240057 0.970759i \(-0.577166\pi\)
0.960730 0.277484i \(-0.0895006\pi\)
\(152\) 0 0
\(153\) −1.44757 + 0.707433i −0.117029 + 0.0571926i
\(154\) 0 0
\(155\) 13.9388 3.44754i 1.11959 0.276913i
\(156\) 0 0
\(157\) 0.386973 0.670256i 0.0308838 0.0534923i −0.850170 0.526508i \(-0.823501\pi\)
0.881054 + 0.473015i \(0.156834\pi\)
\(158\) 0 0
\(159\) 3.40985 + 0.117735i 0.270419 + 0.00933699i
\(160\) 0 0
\(161\) −6.39625 20.1476i −0.504095 1.58785i
\(162\) 0 0
\(163\) −5.96435 + 3.44352i −0.467164 + 0.269717i −0.715052 0.699072i \(-0.753597\pi\)
0.247888 + 0.968789i \(0.420264\pi\)
\(164\) 0 0
\(165\) −2.36968 2.63967i −0.184479 0.205498i
\(166\) 0 0
\(167\) 9.49709i 0.734907i 0.930042 + 0.367453i \(0.119770\pi\)
−0.930042 + 0.367453i \(0.880230\pi\)
\(168\) 0 0
\(169\) 5.58930 0.429946
\(170\) 0 0
\(171\) 0.269723 3.90121i 0.0206262 0.298333i
\(172\) 0 0
\(173\) −10.3489 + 5.97492i −0.786809 + 0.454264i −0.838838 0.544381i \(-0.816765\pi\)
0.0520289 + 0.998646i \(0.483431\pi\)
\(174\) 0 0
\(175\) −3.33503 + 12.8015i −0.252104 + 0.967700i
\(176\) 0 0
\(177\) −24.7661 0.855122i −1.86154 0.0642749i
\(178\) 0 0
\(179\) −16.2343 9.37286i −1.21341 0.700561i −0.249907 0.968270i \(-0.580400\pi\)
−0.963500 + 0.267709i \(0.913733\pi\)
\(180\) 0 0
\(181\) 16.1024i 1.19688i 0.801167 + 0.598441i \(0.204213\pi\)
−0.801167 + 0.598441i \(0.795787\pi\)
\(182\) 0 0
\(183\) −14.2235 8.88005i −1.05143 0.656432i
\(184\) 0 0
\(185\) −3.12885 + 10.8348i −0.230037 + 0.796587i
\(186\) 0 0
\(187\) 0.245948 + 0.425995i 0.0179855 + 0.0311519i
\(188\) 0 0
\(189\) 13.0510 + 4.32112i 0.949319 + 0.314315i
\(190\) 0 0
\(191\) −14.9979 + 8.65904i −1.08521 + 0.626546i −0.932297 0.361694i \(-0.882199\pi\)
−0.152912 + 0.988240i \(0.548865\pi\)
\(192\) 0 0
\(193\) −13.1033 7.56517i −0.943193 0.544553i −0.0522332 0.998635i \(-0.516634\pi\)
−0.890960 + 0.454082i \(0.849967\pi\)
\(194\) 0 0
\(195\) 15.8735 + 5.18370i 1.13673 + 0.371212i
\(196\) 0 0
\(197\) 18.6287 1.32724 0.663619 0.748071i \(-0.269020\pi\)
0.663619 + 0.748071i \(0.269020\pi\)
\(198\) 0 0
\(199\) −8.70283 5.02458i −0.616927 0.356183i 0.158745 0.987320i \(-0.449255\pi\)
−0.775672 + 0.631137i \(0.782589\pi\)
\(200\) 0 0
\(201\) −0.723615 + 20.9574i −0.0510398 + 1.47822i
\(202\) 0 0
\(203\) 1.96458 8.94517i 0.137887 0.627828i
\(204\) 0 0
\(205\) −15.9498 + 15.3448i −1.11399 + 1.07173i
\(206\) 0 0
\(207\) −23.9117 1.65321i −1.66198 0.114906i
\(208\) 0 0
\(209\) −1.19389 −0.0825830
\(210\) 0 0
\(211\) −1.68592 −0.116064 −0.0580319 0.998315i \(-0.518483\pi\)
−0.0580319 + 0.998315i \(0.518483\pi\)
\(212\) 0 0
\(213\) −1.44321 + 0.768097i −0.0988874 + 0.0526292i
\(214\) 0 0
\(215\) −12.7448 13.2473i −0.869188 0.903459i
\(216\) 0 0
\(217\) 12.5486 + 11.4532i 0.851857 + 0.777495i
\(218\) 0 0
\(219\) 17.6983 + 0.611084i 1.19594 + 0.0412933i
\(220\) 0 0
\(221\) −2.00533 1.15778i −0.134893 0.0778806i
\(222\) 0 0
\(223\) −14.2095 −0.951541 −0.475770 0.879570i \(-0.657831\pi\)
−0.475770 + 0.879570i \(0.657831\pi\)
\(224\) 0 0
\(225\) 12.1090 + 8.85279i 0.807268 + 0.590186i
\(226\) 0 0
\(227\) −0.590416 0.340877i −0.0391873 0.0226248i 0.480278 0.877116i \(-0.340536\pi\)
−0.519466 + 0.854491i \(0.673869\pi\)
\(228\) 0 0
\(229\) −2.56113 + 1.47867i −0.169244 + 0.0977133i −0.582230 0.813024i \(-0.697819\pi\)
0.412985 + 0.910738i \(0.364486\pi\)
\(230\) 0 0
\(231\) 1.04128 4.06598i 0.0685110 0.267522i
\(232\) 0 0
\(233\) 13.4685 + 23.3282i 0.882353 + 1.52828i 0.848717 + 0.528847i \(0.177375\pi\)
0.0336360 + 0.999434i \(0.489291\pi\)
\(234\) 0 0
\(235\) 2.69326 9.32639i 0.175689 0.608387i
\(236\) 0 0
\(237\) −10.4902 + 16.8025i −0.681413 + 1.09144i
\(238\) 0 0
\(239\) 17.3461i 1.12202i 0.827808 + 0.561012i \(0.189588\pi\)
−0.827808 + 0.561012i \(0.810412\pi\)
\(240\) 0 0
\(241\) 1.32282 + 0.763728i 0.0852101 + 0.0491961i 0.542000 0.840379i \(-0.317667\pi\)
−0.456790 + 0.889575i \(0.651001\pi\)
\(242\) 0 0
\(243\) 9.99662 11.9611i 0.641283 0.767304i
\(244\) 0 0
\(245\) −14.7891 + 5.12657i −0.944843 + 0.327524i
\(246\) 0 0
\(247\) 4.86717 2.81006i 0.309690 0.178800i
\(248\) 0 0
\(249\) 14.2997 7.61050i 0.906208 0.482296i
\(250\) 0 0
\(251\) −6.56268 −0.414233 −0.207116 0.978316i \(-0.566408\pi\)
−0.207116 + 0.978316i \(0.566408\pi\)
\(252\) 0 0
\(253\) 7.31771i 0.460061i
\(254\) 0 0
\(255\) −1.38951 1.54783i −0.0870148 0.0969288i
\(256\) 0 0
\(257\) −14.6990 + 8.48645i −0.916896 + 0.529370i −0.882644 0.470043i \(-0.844238\pi\)
−0.0342527 + 0.999413i \(0.510905\pi\)
\(258\) 0 0
\(259\) −12.7182 + 4.03764i −0.790269 + 0.250887i
\(260\) 0 0
\(261\) −8.61379 5.80024i −0.533180 0.359026i
\(262\) 0 0
\(263\) 2.65984 4.60699i 0.164013 0.284079i −0.772291 0.635269i \(-0.780889\pi\)
0.936304 + 0.351190i \(0.114223\pi\)
\(264\) 0 0
\(265\) 1.05757 + 4.27588i 0.0649662 + 0.262665i
\(266\) 0 0
\(267\) −1.60432 + 2.56969i −0.0981828 + 0.157263i
\(268\) 0 0
\(269\) 3.27834 5.67825i 0.199884 0.346209i −0.748607 0.663014i \(-0.769277\pi\)
0.948491 + 0.316805i \(0.102610\pi\)
\(270\) 0 0
\(271\) 4.54171 2.62216i 0.275889 0.159285i −0.355672 0.934611i \(-0.615748\pi\)
0.631561 + 0.775326i \(0.282415\pi\)
\(272\) 0 0
\(273\) 5.32511 + 19.0268i 0.322290 + 1.15155i
\(274\) 0 0
\(275\) 2.44134 3.87451i 0.147218 0.233642i
\(276\) 0 0
\(277\) 2.40171 + 1.38663i 0.144305 + 0.0833145i 0.570414 0.821357i \(-0.306783\pi\)
−0.426109 + 0.904672i \(0.640116\pi\)
\(278\) 0 0
\(279\) 17.3080 8.45851i 1.03620 0.506398i
\(280\) 0 0
\(281\) 22.4373i 1.33850i −0.743038 0.669250i \(-0.766616\pi\)
0.743038 0.669250i \(-0.233384\pi\)
\(282\) 0 0
\(283\) −3.62340 + 6.27592i −0.215389 + 0.373064i −0.953393 0.301732i \(-0.902435\pi\)
0.738004 + 0.674796i \(0.235769\pi\)
\(284\) 0 0
\(285\) 4.93970 1.04230i 0.292603 0.0617406i
\(286\) 0 0
\(287\) −25.5783 5.61762i −1.50984 0.331598i
\(288\) 0 0
\(289\) −8.35578 14.4726i −0.491517 0.851332i
\(290\) 0 0
\(291\) 8.77578 + 16.4892i 0.514445 + 0.966616i
\(292\) 0 0
\(293\) 26.1686i 1.52879i −0.644750 0.764393i \(-0.723039\pi\)
0.644750 0.764393i \(-0.276961\pi\)
\(294\) 0 0
\(295\) −7.68127 31.0562i −0.447221 1.80816i
\(296\) 0 0
\(297\) −3.85355 2.79284i −0.223605 0.162057i
\(298\) 0 0
\(299\) −17.2237 29.8324i −0.996073 1.72525i
\(300\) 0 0
\(301\) 4.66578 21.2443i 0.268931 1.22450i
\(302\) 0 0
\(303\) 17.0498 + 0.588695i 0.979488 + 0.0338196i
\(304\) 0 0
\(305\) 6.00585 20.7974i 0.343894 1.19086i
\(306\) 0 0
\(307\) 22.4144 1.27926 0.639630 0.768683i \(-0.279088\pi\)
0.639630 + 0.768683i \(0.279088\pi\)
\(308\) 0 0
\(309\) 2.25459 3.61125i 0.128259 0.205437i
\(310\) 0 0
\(311\) −9.81378 + 16.9980i −0.556488 + 0.963866i 0.441298 + 0.897361i \(0.354518\pi\)
−0.997786 + 0.0665052i \(0.978815\pi\)
\(312\) 0 0
\(313\) 6.41664 + 11.1139i 0.362690 + 0.628197i 0.988403 0.151856i \(-0.0485251\pi\)
−0.625713 + 0.780054i \(0.715192\pi\)
\(314\) 0 0
\(315\) −0.758547 + 17.7320i −0.0427393 + 0.999086i
\(316\) 0 0
\(317\) 7.98449 + 13.8295i 0.448454 + 0.776745i 0.998286 0.0585306i \(-0.0186415\pi\)
−0.549832 + 0.835275i \(0.685308\pi\)
\(318\) 0 0
\(319\) −1.58522 + 2.74568i −0.0887552 + 0.153728i
\(320\) 0 0
\(321\) −1.37557 + 2.20329i −0.0767766 + 0.122976i
\(322\) 0 0
\(323\) −0.700065 −0.0389526
\(324\) 0 0
\(325\) −0.833250 + 21.5415i −0.0462204 + 1.19491i
\(326\) 0 0
\(327\) 6.68956 + 0.230976i 0.369934 + 0.0127730i
\(328\) 0 0
\(329\) 10.9476 3.47553i 0.603561 0.191612i
\(330\) 0 0
\(331\) 9.81888 + 17.0068i 0.539694 + 0.934778i 0.998920 + 0.0464584i \(0.0147935\pi\)
−0.459226 + 0.888319i \(0.651873\pi\)
\(332\) 0 0
\(333\) −1.04359 + 15.0943i −0.0571885 + 0.827163i
\(334\) 0 0
\(335\) −26.2801 + 6.49998i −1.43584 + 0.355132i
\(336\) 0 0
\(337\) 0.304237i 0.0165729i 0.999966 + 0.00828643i \(0.00263768\pi\)
−0.999966 + 0.00828643i \(0.997362\pi\)
\(338\) 0 0
\(339\) −8.28321 15.5637i −0.449882 0.845305i
\(340\) 0 0
\(341\) −2.94071 5.09346i −0.159249 0.275827i
\(342\) 0 0
\(343\) −14.7596 11.1872i −0.796944 0.604053i
\(344\) 0 0
\(345\) −6.38858 30.2769i −0.343950 1.63006i
\(346\) 0 0
\(347\) 14.2235 24.6358i 0.763556 1.32252i −0.177451 0.984130i \(-0.556785\pi\)
0.941007 0.338388i \(-0.109882\pi\)
\(348\) 0 0
\(349\) 13.9719i 0.747897i −0.927450 0.373948i \(-0.878004\pi\)
0.927450 0.373948i \(-0.121996\pi\)
\(350\) 0 0
\(351\) 22.2834 + 2.31556i 1.18940 + 0.123595i
\(352\) 0 0
\(353\) 29.9676 + 17.3018i 1.59501 + 0.920881i 0.992428 + 0.122826i \(0.0391958\pi\)
0.602585 + 0.798055i \(0.294138\pi\)
\(354\) 0 0
\(355\) −1.46331 1.52101i −0.0776644 0.0807266i
\(356\) 0 0
\(357\) 0.610577 2.38418i 0.0323152 0.126184i
\(358\) 0 0
\(359\) 19.8260 11.4465i 1.04638 0.604126i 0.124743 0.992189i \(-0.460189\pi\)
0.921633 + 0.388064i \(0.126856\pi\)
\(360\) 0 0
\(361\) −8.65043 + 14.9830i −0.455286 + 0.788578i
\(362\) 0 0
\(363\) 9.32050 14.9289i 0.489199 0.783566i
\(364\) 0 0
\(365\) 5.48916 + 22.1933i 0.287316 + 1.16165i
\(366\) 0 0
\(367\) 14.4999 25.1145i 0.756887 1.31097i −0.187543 0.982256i \(-0.560053\pi\)
0.944431 0.328711i \(-0.106614\pi\)
\(368\) 0 0
\(369\) −16.5855 + 24.6307i −0.863406 + 1.28222i
\(370\) 0 0
\(371\) −3.51341 + 3.84944i −0.182407 + 0.199853i
\(372\) 0 0
\(373\) 20.8113 12.0154i 1.07757 0.622136i 0.147331 0.989087i \(-0.452932\pi\)
0.930240 + 0.366952i \(0.119599\pi\)
\(374\) 0 0
\(375\) −6.71846 + 18.1621i −0.346940 + 0.937887i
\(376\) 0 0
\(377\) 14.9245i 0.768652i
\(378\) 0 0
\(379\) −14.0820 −0.723342 −0.361671 0.932306i \(-0.617794\pi\)
−0.361671 + 0.932306i \(0.617794\pi\)
\(380\) 0 0
\(381\) 14.8893 7.92427i 0.762801 0.405972i
\(382\) 0 0
\(383\) −25.4637 + 14.7015i −1.30114 + 0.751211i −0.980599 0.196025i \(-0.937197\pi\)
−0.320537 + 0.947236i \(0.603863\pi\)
\(384\) 0 0
\(385\) 5.41669 0.142362i 0.276060 0.00725542i
\(386\) 0 0
\(387\) −20.4573 13.7753i −1.03990 0.700236i
\(388\) 0 0
\(389\) 20.2730 + 11.7046i 1.02788 + 0.593448i 0.916377 0.400316i \(-0.131100\pi\)
0.111504 + 0.993764i \(0.464433\pi\)
\(390\) 0 0
\(391\) 4.29091i 0.217001i
\(392\) 0 0
\(393\) −16.1441 + 25.8586i −0.814363 + 1.30439i
\(394\) 0 0
\(395\) −24.5685 7.09486i −1.23618 0.356981i
\(396\) 0 0
\(397\) 5.96889 + 10.3384i 0.299570 + 0.518871i 0.976038 0.217602i \(-0.0698234\pi\)
−0.676467 + 0.736473i \(0.736490\pi\)
\(398\) 0 0
\(399\) 4.27045 + 4.17674i 0.213790 + 0.209099i
\(400\) 0 0
\(401\) −21.6844 + 12.5195i −1.08287 + 0.625193i −0.931668 0.363311i \(-0.881646\pi\)
−0.151198 + 0.988504i \(0.548313\pi\)
\(402\) 0 0
\(403\) 23.9770 + 13.8431i 1.19438 + 0.689575i
\(404\) 0 0
\(405\) 18.3822 + 8.19108i 0.913420 + 0.407018i
\(406\) 0 0
\(407\) 4.61931 0.228971
\(408\) 0 0
\(409\) 26.1378 + 15.0906i 1.29243 + 0.746184i 0.979084 0.203455i \(-0.0652172\pi\)
0.313345 + 0.949640i \(0.398551\pi\)
\(410\) 0 0
\(411\) 18.0363 + 0.622754i 0.889664 + 0.0307182i
\(412\) 0 0
\(413\) 25.5183 27.9589i 1.25567 1.37577i
\(414\) 0 0
\(415\) 14.4988 + 15.0705i 0.711720 + 0.739782i
\(416\) 0 0
\(417\) −10.8433 + 5.77096i −0.531000 + 0.282605i
\(418\) 0 0
\(419\) 9.85560 0.481477 0.240739 0.970590i \(-0.422610\pi\)
0.240739 + 0.970590i \(0.422610\pi\)
\(420\) 0 0
\(421\) −8.16112 −0.397749 −0.198874 0.980025i \(-0.563729\pi\)
−0.198874 + 0.980025i \(0.563729\pi\)
\(422\) 0 0
\(423\) 0.898308 12.9929i 0.0436772 0.631738i
\(424\) 0 0
\(425\) 1.43154 2.27191i 0.0694398 0.110204i
\(426\) 0 0
\(427\) 24.4127 7.75029i 1.18141 0.375063i
\(428\) 0 0
\(429\) 0.236022 6.83571i 0.0113953 0.330031i
\(430\) 0 0
\(431\) 2.84702 + 1.64373i 0.137136 + 0.0791755i 0.566998 0.823719i \(-0.308105\pi\)
−0.429862 + 0.902894i \(0.641438\pi\)
\(432\) 0 0
\(433\) −31.9717 −1.53646 −0.768231 0.640173i \(-0.778863\pi\)
−0.768231 + 0.640173i \(0.778863\pi\)
\(434\) 0 0
\(435\) 4.16176 12.7441i 0.199541 0.611035i
\(436\) 0 0
\(437\) −9.01924 5.20726i −0.431449 0.249097i
\(438\) 0 0
\(439\) 36.1217 20.8549i 1.72399 0.995349i 0.813827 0.581107i \(-0.197380\pi\)
0.910167 0.414242i \(-0.135953\pi\)
\(440\) 0 0
\(441\) −17.9491 + 10.9009i −0.854720 + 0.519089i
\(442\) 0 0
\(443\) 9.47885 + 16.4179i 0.450354 + 0.780036i 0.998408 0.0564073i \(-0.0179645\pi\)
−0.548054 + 0.836443i \(0.684631\pi\)
\(444\) 0 0
\(445\) −3.75738 1.08505i −0.178117 0.0514364i
\(446\) 0 0
\(447\) −9.20503 5.74692i −0.435383 0.271820i
\(448\) 0 0
\(449\) 40.0091i 1.88815i −0.329737 0.944073i \(-0.606960\pi\)
0.329737 0.944073i \(-0.393040\pi\)
\(450\) 0 0
\(451\) 7.85112 + 4.53285i 0.369695 + 0.213444i
\(452\) 0 0
\(453\) 30.6591 + 1.05859i 1.44049 + 0.0497370i
\(454\) 0 0
\(455\) −21.7473 + 13.3296i −1.01953 + 0.624904i
\(456\) 0 0
\(457\) 9.86127 5.69340i 0.461291 0.266326i −0.251296 0.967910i \(-0.580857\pi\)
0.712587 + 0.701584i \(0.247523\pi\)
\(458\) 0 0
\(459\) −2.25962 1.63765i −0.105470 0.0764388i
\(460\) 0 0
\(461\) 8.71020 0.405674 0.202837 0.979212i \(-0.434984\pi\)
0.202837 + 0.979212i \(0.434984\pi\)
\(462\) 0 0
\(463\) 16.1154i 0.748944i 0.927238 + 0.374472i \(0.122176\pi\)
−0.927238 + 0.374472i \(0.877824\pi\)
\(464\) 0 0
\(465\) 16.6139 + 18.5068i 0.770451 + 0.858233i
\(466\) 0 0
\(467\) 7.88492 4.55236i 0.364870 0.210658i −0.306345 0.951921i \(-0.599106\pi\)
0.671215 + 0.741263i \(0.265773\pi\)
\(468\) 0 0
\(469\) −23.6592 21.5939i −1.09248 0.997113i
\(470\) 0 0
\(471\) 1.33971 + 0.0462575i 0.0617308 + 0.00213143i
\(472\) 0 0
\(473\) −3.76481 + 6.52084i −0.173106 + 0.299828i
\(474\) 0 0
\(475\) 3.03817 + 5.76610i 0.139401 + 0.264567i
\(476\) 0 0
\(477\) 2.59475 + 5.30944i 0.118805 + 0.243103i
\(478\) 0 0
\(479\) 13.2092 22.8791i 0.603546 1.04537i −0.388733 0.921350i \(-0.627087\pi\)
0.992279 0.124022i \(-0.0395794\pi\)
\(480\) 0 0
\(481\) −18.8317 + 10.8725i −0.858652 + 0.495743i
\(482\) 0 0
\(483\) 25.6005 26.1749i 1.16486 1.19100i
\(484\) 0 0
\(485\) −17.3780 + 16.7188i −0.789096 + 0.759163i
\(486\) 0 0
\(487\) −7.93392 4.58065i −0.359520 0.207569i 0.309350 0.950948i \(-0.399889\pi\)
−0.668870 + 0.743379i \(0.733222\pi\)
\(488\) 0 0
\(489\) −10.1186 6.31727i −0.457578 0.285677i
\(490\) 0 0
\(491\) 33.0800i 1.49288i 0.665453 + 0.746440i \(0.268239\pi\)
−0.665453 + 0.746440i \(0.731761\pi\)
\(492\) 0 0
\(493\) −0.929529 + 1.60999i −0.0418639 + 0.0725104i
\(494\) 0 0
\(495\) 2.10770 5.77124i 0.0947342 0.259398i
\(496\) 0 0
\(497\) 0.535707 2.43919i 0.0240297 0.109413i
\(498\) 0 0
\(499\) −8.54365 14.7980i −0.382466 0.662451i 0.608948 0.793210i \(-0.291592\pi\)
−0.991414 + 0.130759i \(0.958259\pi\)
\(500\) 0 0
\(501\) −14.5210 + 7.72824i −0.648749 + 0.345272i
\(502\) 0 0
\(503\) 21.1753i 0.944158i −0.881556 0.472079i \(-0.843504\pi\)
0.881556 0.472079i \(-0.156496\pi\)
\(504\) 0 0
\(505\) 5.28804 + 21.3801i 0.235315 + 0.951403i
\(506\) 0 0
\(507\) 4.54828 + 8.54599i 0.201996 + 0.379541i
\(508\) 0 0
\(509\) 15.5918 + 27.0059i 0.691096 + 1.19701i 0.971479 + 0.237125i \(0.0762052\pi\)
−0.280383 + 0.959888i \(0.590461\pi\)
\(510\) 0 0
\(511\) −18.2358 + 19.9799i −0.806704 + 0.883859i
\(512\) 0 0
\(513\) 6.18441 2.76220i 0.273048 0.121954i
\(514\) 0 0
\(515\) 5.28035 + 1.52485i 0.232680 + 0.0671929i
\(516\) 0 0
\(517\) −3.97623 −0.174874
\(518\) 0 0
\(519\) −17.5570 10.9612i −0.770665 0.481145i
\(520\) 0 0
\(521\) 19.4555 33.6980i 0.852363 1.47634i −0.0267070 0.999643i \(-0.508502\pi\)
0.879070 0.476693i \(-0.158165\pi\)
\(522\) 0 0
\(523\) −1.88123 3.25839i −0.0822606 0.142480i 0.821960 0.569545i \(-0.192881\pi\)
−0.904221 + 0.427066i \(0.859547\pi\)
\(524\) 0 0
\(525\) −22.2872 + 5.31795i −0.972693 + 0.232094i
\(526\) 0 0
\(527\) −1.72436 2.98667i −0.0751141 0.130101i
\(528\) 0 0
\(529\) −20.4169 + 35.3631i −0.887692 + 1.53753i
\(530\) 0 0
\(531\) −18.8459 38.5630i −0.817844 1.67349i
\(532\) 0 0
\(533\) −42.6759 −1.84850
\(534\) 0 0
\(535\) −3.22163 0.930338i −0.139283 0.0402220i
\(536\) 0 0
\(537\) 1.12040 32.4492i 0.0483489 1.40029i
\(538\) 0 0
\(539\) 3.69809 + 5.23730i 0.159288 + 0.225586i
\(540\) 0 0
\(541\) −13.6223 23.5945i −0.585667 1.01440i −0.994792 0.101927i \(-0.967499\pi\)
0.409125 0.912478i \(-0.365834\pi\)
\(542\) 0 0
\(543\) −24.6204 + 13.1033i −1.05656 + 0.562316i
\(544\) 0 0
\(545\) 2.07478 + 8.38856i 0.0888739 + 0.359326i
\(546\) 0 0
\(547\) 13.4516i 0.575148i 0.957758 + 0.287574i \(0.0928487\pi\)
−0.957758 + 0.287574i \(0.907151\pi\)
\(548\) 0 0
\(549\) 2.00319 28.9737i 0.0854939 1.23657i
\(550\) 0 0
\(551\) −2.25607 3.90763i −0.0961119 0.166471i
\(552\) 0 0
\(553\) −9.15561 28.8393i −0.389336 1.22637i
\(554\) 0 0
\(555\) −19.1123 + 4.03280i −0.811274 + 0.171183i
\(556\) 0 0
\(557\) −18.8087 + 32.5776i −0.796950 + 1.38036i 0.124644 + 0.992202i \(0.460221\pi\)
−0.921594 + 0.388156i \(0.873112\pi\)
\(558\) 0 0
\(559\) 35.4449i 1.49916i
\(560\) 0 0
\(561\) −0.451203 + 0.722706i −0.0190498 + 0.0305127i
\(562\) 0 0
\(563\) 8.81514 + 5.08942i 0.371514 + 0.214494i 0.674120 0.738622i \(-0.264523\pi\)
−0.302606 + 0.953116i \(0.597857\pi\)
\(564\) 0 0
\(565\) 16.4026 15.7804i 0.690063 0.663887i
\(566\) 0 0
\(567\) 4.01327 + 23.4711i 0.168541 + 0.985695i
\(568\) 0 0
\(569\) 0.744706 0.429956i 0.0312197 0.0180247i −0.484309 0.874897i \(-0.660929\pi\)
0.515529 + 0.856872i \(0.327596\pi\)
\(570\) 0 0
\(571\) −1.71817 + 2.97596i −0.0719032 + 0.124540i −0.899735 0.436436i \(-0.856241\pi\)
0.827832 + 0.560976i \(0.189574\pi\)
\(572\) 0 0
\(573\) −25.4441 15.8854i −1.06294 0.663620i
\(574\) 0 0
\(575\) 35.3422 18.6219i 1.47387 0.776586i
\(576\) 0 0
\(577\) −12.8498 + 22.2565i −0.534944 + 0.926550i 0.464222 + 0.885719i \(0.346334\pi\)
−0.999166 + 0.0408310i \(0.986999\pi\)
\(578\) 0 0
\(579\) 0.904316 26.1909i 0.0375821 1.08846i
\(580\) 0 0
\(581\) −5.30792 + 24.1681i −0.220210 + 1.00266i
\(582\) 0 0
\(583\) 1.56248 0.902098i 0.0647113 0.0373611i
\(584\) 0 0
\(585\) 4.99123 + 28.4887i 0.206362 + 1.17786i
\(586\) 0 0
\(587\) 22.5090i 0.929048i 0.885561 + 0.464524i \(0.153775\pi\)
−0.885561 + 0.464524i \(0.846225\pi\)
\(588\) 0 0
\(589\) 8.37041 0.344897
\(590\) 0 0
\(591\) 15.1591 + 28.4831i 0.623560 + 1.17164i
\(592\) 0 0
\(593\) −20.5878 + 11.8863i −0.845438 + 0.488114i −0.859109 0.511793i \(-0.828982\pi\)
0.0136712 + 0.999907i \(0.495648\pi\)
\(594\) 0 0
\(595\) 3.17620 0.0834771i 0.130212 0.00342223i
\(596\) 0 0
\(597\) 0.600622 17.3953i 0.0245818 0.711942i
\(598\) 0 0
\(599\) 37.6990 + 21.7655i 1.54034 + 0.889314i 0.998817 + 0.0486270i \(0.0154846\pi\)
0.541521 + 0.840687i \(0.317849\pi\)
\(600\) 0 0
\(601\) 19.9347i 0.813153i −0.913617 0.406577i \(-0.866722\pi\)
0.913617 0.406577i \(-0.133278\pi\)
\(602\) 0 0
\(603\) −32.6325 + 15.9477i −1.32890 + 0.649439i
\(604\) 0 0
\(605\) 21.8290 + 6.30374i 0.887474 + 0.256284i
\(606\) 0 0
\(607\) 5.31663 + 9.20867i 0.215795 + 0.373768i 0.953518 0.301335i \(-0.0974323\pi\)
−0.737723 + 0.675103i \(0.764099\pi\)
\(608\) 0 0
\(609\) 15.2758 4.27529i 0.619005 0.173244i
\(610\) 0 0
\(611\) 16.2100 9.35886i 0.655788 0.378619i
\(612\) 0 0
\(613\) 13.1068 + 7.56721i 0.529378 + 0.305637i 0.740763 0.671766i \(-0.234464\pi\)
−0.211385 + 0.977403i \(0.567797\pi\)
\(614\) 0 0
\(615\) −36.4412 11.9003i −1.46945 0.479868i
\(616\) 0 0
\(617\) 7.39865 0.297858 0.148929 0.988848i \(-0.452417\pi\)
0.148929 + 0.988848i \(0.452417\pi\)
\(618\) 0 0
\(619\) 16.0456 + 9.26396i 0.644929 + 0.372350i 0.786511 0.617577i \(-0.211885\pi\)
−0.141582 + 0.989927i \(0.545219\pi\)
\(620\) 0 0
\(621\) −16.9304 37.9061i −0.679394 1.52112i
\(622\) 0 0
\(623\) −1.40021 4.41053i −0.0560983 0.176704i
\(624\) 0 0
\(625\) −24.9253 1.93116i −0.997012 0.0772465i
\(626\) 0 0
\(627\) −0.971526 1.82545i −0.0387990 0.0729013i
\(628\) 0 0
\(629\) 2.70864 0.108001
\(630\) 0 0
\(631\) 13.1786 0.524632 0.262316 0.964982i \(-0.415514\pi\)
0.262316 + 0.964982i \(0.415514\pi\)
\(632\) 0 0
\(633\) −1.37192 2.57776i −0.0545288 0.102457i
\(634\) 0 0
\(635\) 15.0966 + 15.6918i 0.599090 + 0.622712i
\(636\) 0 0
\(637\) −27.4032 12.6469i −1.08575 0.501087i
\(638\) 0 0
\(639\) −2.34883 1.58162i −0.0929182 0.0625681i
\(640\) 0 0
\(641\) 12.2389 + 7.06611i 0.483406 + 0.279094i 0.721835 0.692065i \(-0.243299\pi\)
−0.238429 + 0.971160i \(0.576632\pi\)
\(642\) 0 0
\(643\) −17.9278 −0.707005 −0.353503 0.935434i \(-0.615009\pi\)
−0.353503 + 0.935434i \(0.615009\pi\)
\(644\) 0 0
\(645\) 9.88396 30.2667i 0.389180 1.19175i
\(646\) 0 0
\(647\) 20.7892 + 12.0026i 0.817306 + 0.471872i 0.849487 0.527610i \(-0.176912\pi\)
−0.0321804 + 0.999482i \(0.510245\pi\)
\(648\) 0 0
\(649\) −11.3485 + 6.55204i −0.445466 + 0.257190i
\(650\) 0 0
\(651\) −7.30044 + 28.5068i −0.286127 + 1.11727i
\(652\) 0 0
\(653\) 14.4745 + 25.0705i 0.566430 + 0.981085i 0.996915 + 0.0784876i \(0.0250091\pi\)
−0.430485 + 0.902598i \(0.641658\pi\)
\(654\) 0 0
\(655\) −37.8102 10.9188i −1.47737 0.426632i
\(656\) 0 0
\(657\) 13.4676 + 27.5578i 0.525422 + 1.07513i
\(658\) 0 0
\(659\) 5.09127i 0.198328i 0.995071 + 0.0991638i \(0.0316168\pi\)
−0.995071 + 0.0991638i \(0.968383\pi\)
\(660\) 0 0
\(661\) 25.1768 + 14.5358i 0.979264 + 0.565378i 0.902048 0.431636i \(-0.142064\pi\)
0.0772160 + 0.997014i \(0.475397\pi\)
\(662\) 0 0
\(663\) 0.138397 4.00827i 0.00537490 0.155669i
\(664\) 0 0
\(665\) −3.67904 + 6.77750i −0.142667 + 0.262820i
\(666\) 0 0
\(667\) −23.9511 + 13.8282i −0.927389 + 0.535429i
\(668\) 0 0
\(669\) −11.5630 21.7262i −0.447051 0.839985i
\(670\) 0 0
\(671\) −8.86682 −0.342300
\(672\) 0 0
\(673\) 8.51862i 0.328369i 0.986430 + 0.164184i \(0.0524992\pi\)
−0.986430 + 0.164184i \(0.947501\pi\)
\(674\) 0 0
\(675\) −3.68214 + 25.7185i −0.141725 + 0.989906i
\(676\) 0 0
\(677\) −16.4341 + 9.48823i −0.631614 + 0.364662i −0.781377 0.624060i \(-0.785482\pi\)
0.149763 + 0.988722i \(0.452149\pi\)
\(678\) 0 0
\(679\) −27.8686 6.12064i −1.06950 0.234889i
\(680\) 0 0
\(681\) 0.0407473 1.18013i 0.00156144 0.0452226i
\(682\) 0 0
\(683\) −10.4587 + 18.1149i −0.400190 + 0.693149i −0.993749 0.111642i \(-0.964389\pi\)
0.593559 + 0.804791i \(0.297722\pi\)
\(684\) 0 0
\(685\) 5.59399 + 22.6171i 0.213735 + 0.864154i
\(686\) 0 0
\(687\) −4.34499 2.71268i −0.165772 0.103495i
\(688\) 0 0
\(689\) −4.24654 + 7.35523i −0.161780 + 0.280212i
\(690\) 0 0
\(691\) 29.4902 17.0261i 1.12186 0.647705i 0.179984 0.983670i \(-0.442396\pi\)
0.941875 + 0.335964i \(0.109062\pi\)
\(692\) 0 0
\(693\) 7.06419 1.71659i 0.268346 0.0652077i
\(694\) 0 0
\(695\) −10.9943 11.4278i −0.417038 0.433481i
\(696\) 0 0
\(697\) 4.60369 + 2.65794i 0.174377 + 0.100677i
\(698\) 0 0
\(699\) −24.7086 + 39.5766i −0.934565 + 1.49692i
\(700\) 0 0
\(701\) 18.9758i 0.716706i 0.933586 + 0.358353i \(0.116662\pi\)
−0.933586 + 0.358353i \(0.883338\pi\)
\(702\) 0 0
\(703\) −3.28709 + 5.69340i −0.123975 + 0.214731i
\(704\) 0 0
\(705\) 16.4516 3.47137i 0.619603 0.130739i
\(706\) 0 0
\(707\) −17.5676 + 19.2479i −0.660699 + 0.723890i
\(708\) 0 0
\(709\) −1.53691 2.66200i −0.0577197 0.0999735i 0.835722 0.549153i \(-0.185050\pi\)
−0.893441 + 0.449180i \(0.851716\pi\)
\(710\) 0 0
\(711\) −34.2273 2.36641i −1.28362 0.0887475i
\(712\) 0 0
\(713\) 51.3048i 1.92138i
\(714\) 0 0
\(715\) 8.57182 2.12011i 0.320568 0.0792875i
\(716\) 0 0
\(717\) −26.5220 + 14.1153i −0.990482 + 0.527147i
\(718\) 0 0
\(719\) −6.70106 11.6066i −0.249907 0.432852i 0.713593 0.700561i \(-0.247067\pi\)
−0.963500 + 0.267709i \(0.913733\pi\)
\(720\) 0 0
\(721\) 1.96775 + 6.19823i 0.0732829 + 0.230834i
\(722\) 0 0
\(723\) −0.0912936 + 2.64406i −0.00339525 + 0.0983335i
\(724\) 0 0
\(725\) 17.2948 + 0.668979i 0.642311 + 0.0248453i
\(726\) 0 0
\(727\) 4.88627 0.181222 0.0906109 0.995886i \(-0.471118\pi\)
0.0906109 + 0.995886i \(0.471118\pi\)
\(728\) 0 0
\(729\) 26.4231 + 5.55142i 0.978634 + 0.205608i
\(730\) 0 0
\(731\) −2.20758 + 3.82364i −0.0816504 + 0.141423i
\(732\) 0 0
\(733\) −18.4955 32.0351i −0.683145 1.18324i −0.974016 0.226480i \(-0.927278\pi\)
0.290871 0.956762i \(-0.406055\pi\)
\(734\) 0 0
\(735\) −19.8731 18.4407i −0.733031 0.680196i
\(736\) 0 0
\(737\) 5.54441 + 9.60321i 0.204231 + 0.353739i
\(738\) 0 0
\(739\) −18.9759 + 32.8672i −0.698040 + 1.20904i 0.271105 + 0.962550i \(0.412611\pi\)
−0.969145 + 0.246491i \(0.920722\pi\)
\(740\) 0 0
\(741\) 8.25721 + 5.15517i 0.303336 + 0.189380i
\(742\) 0 0
\(743\) −14.0878 −0.516830 −0.258415 0.966034i \(-0.583200\pi\)
−0.258415 + 0.966034i \(0.583200\pi\)
\(744\) 0 0
\(745\) 3.88682 13.4595i 0.142402 0.493119i
\(746\) 0 0
\(747\) 23.2728 + 15.6711i 0.851506 + 0.573376i
\(748\) 0 0
\(749\) −1.20056 3.78165i −0.0438675 0.138178i
\(750\) 0 0
\(751\) 12.8752 + 22.3005i 0.469823 + 0.813757i 0.999405 0.0345016i \(-0.0109844\pi\)
−0.529582 + 0.848259i \(0.677651\pi\)
\(752\) 0 0
\(753\) −5.34037 10.0343i −0.194614 0.365669i
\(754\) 0 0
\(755\) 9.50897 + 38.4458i 0.346067 + 1.39918i
\(756\) 0 0
\(757\) 40.3111i 1.46513i −0.680697 0.732565i \(-0.738323\pi\)
0.680697 0.732565i \(-0.261677\pi\)
\(758\) 0 0
\(759\) −11.1887 + 5.95478i −0.406125 + 0.216145i
\(760\) 0 0
\(761\) −9.76529 16.9140i −0.353991 0.613131i 0.632953 0.774190i \(-0.281842\pi\)
−0.986945 + 0.161059i \(0.948509\pi\)
\(762\) 0 0
\(763\) −6.89272 + 7.55196i −0.249533 + 0.273399i
\(764\) 0 0
\(765\) 1.23590 3.38410i 0.0446841 0.122352i
\(766\) 0 0
\(767\) 30.8431 53.4218i 1.11368 1.92895i
\(768\) 0 0
\(769\) 47.6475i 1.71821i −0.511797 0.859107i \(-0.671020\pi\)
0.511797 0.859107i \(-0.328980\pi\)
\(770\) 0 0
\(771\) −24.9370 15.5687i −0.898083 0.560695i
\(772\) 0 0
\(773\) −18.2945 10.5624i −0.658009 0.379901i 0.133509 0.991048i \(-0.457375\pi\)
−0.791518 + 0.611146i \(0.790709\pi\)
\(774\) 0 0
\(775\) −17.1164 + 27.1644i −0.614838 + 0.975773i
\(776\) 0 0
\(777\) −16.5229 16.1603i −0.592756 0.579749i
\(778\) 0 0
\(779\) −11.1737 + 6.45112i −0.400338 + 0.231135i
\(780\) 0 0
\(781\) −0.432261 + 0.748698i −0.0154675 + 0.0267905i
\(782\) 0 0
\(783\) 1.85906 17.8903i 0.0664373 0.639349i
\(784\) 0 0
\(785\) 0.415515 + 1.67997i 0.0148304 + 0.0599608i
\(786\) 0 0
\(787\) −3.27330 + 5.66953i −0.116681 + 0.202097i −0.918450 0.395536i \(-0.870559\pi\)
0.801770 + 0.597633i \(0.203892\pi\)
\(788\) 0 0
\(789\) 9.20848 + 0.317949i 0.327831 + 0.0113193i
\(790\) 0 0
\(791\) 26.3044 + 5.77709i 0.935276 + 0.205410i
\(792\) 0 0
\(793\) 36.1477 20.8699i 1.28364 0.741110i
\(794\) 0 0
\(795\) −5.67718 + 5.09651i −0.201349 + 0.180755i
\(796\) 0 0
\(797\) 6.50728i 0.230500i 0.993337 + 0.115250i \(0.0367669\pi\)
−0.993337 + 0.115250i \(0.963233\pi\)
\(798\) 0 0
\(799\) −2.33156 −0.0824845
\(800\) 0 0
\(801\) −5.23455 0.361907i −0.184954 0.0127874i
\(802\) 0 0
\(803\) 8.10980 4.68219i 0.286189 0.165231i
\(804\) 0 0
\(805\) 41.5414 + 22.5499i 1.46414 + 0.794781i
\(806\) 0 0
\(807\) 11.3497 + 0.391882i 0.399530 + 0.0137949i
\(808\) 0 0
\(809\) −1.41519 0.817063i −0.0497556 0.0287264i 0.474916 0.880031i \(-0.342478\pi\)
−0.524671 + 0.851305i \(0.675812\pi\)
\(810\) 0 0
\(811\) 29.4411i 1.03382i −0.856041 0.516909i \(-0.827083\pi\)
0.856041 0.516909i \(-0.172917\pi\)
\(812\) 0 0
\(813\) 7.70506 + 4.81045i 0.270228 + 0.168710i
\(814\) 0 0
\(815\) 4.27257 14.7953i 0.149662 0.518257i
\(816\) 0 0
\(817\) −5.35805 9.28042i −0.187454 0.324681i
\(818\) 0 0
\(819\) −24.7585 + 23.6251i −0.865131 + 0.825526i
\(820\) 0 0
\(821\) 19.6357 11.3367i 0.685292 0.395654i −0.116554 0.993184i \(-0.537185\pi\)
0.801846 + 0.597531i \(0.203851\pi\)
\(822\) 0 0
\(823\) −16.6180 9.59438i −0.579266 0.334439i 0.181576 0.983377i \(-0.441880\pi\)
−0.760841 + 0.648938i \(0.775214\pi\)
\(824\) 0 0
\(825\) 7.91073 + 0.579911i 0.275416 + 0.0201899i
\(826\) 0 0
\(827\) 32.5074 1.13039 0.565196 0.824957i \(-0.308800\pi\)
0.565196 + 0.824957i \(0.308800\pi\)
\(828\) 0 0
\(829\) 44.7613 + 25.8429i 1.55462 + 0.897563i 0.997756 + 0.0669618i \(0.0213306\pi\)
0.556868 + 0.830601i \(0.312003\pi\)
\(830\) 0 0
\(831\) −0.165753 + 4.80057i −0.00574992 + 0.166530i
\(832\) 0 0
\(833\) 2.16846 + 3.07101i 0.0751327 + 0.106404i
\(834\) 0 0
\(835\) −14.7232 15.3037i −0.509516 0.529605i
\(836\) 0 0
\(837\) 27.0174 + 19.5807i 0.933857 + 0.676809i
\(838\) 0 0
\(839\) 2.88841 0.0997192 0.0498596 0.998756i \(-0.484123\pi\)
0.0498596 + 0.998756i \(0.484123\pi\)
\(840\) 0 0
\(841\) 17.0178 0.586819
\(842\) 0 0
\(843\) 34.3065 18.2584i 1.18158 0.628851i
\(844\) 0 0
\(845\) −9.00663 + 8.66498i −0.309838 + 0.298084i
\(846\) 0 0
\(847\) 8.13470 + 25.6235i 0.279512 + 0.880435i
\(848\) 0 0
\(849\) −12.5444 0.433130i −0.430521 0.0148650i
\(850\) 0 0
\(851\) 34.8966 + 20.1476i 1.19624 + 0.690650i
\(852\) 0 0
\(853\) 49.3673 1.69031 0.845153 0.534525i \(-0.179509\pi\)
0.845153 + 0.534525i \(0.179509\pi\)
\(854\) 0 0
\(855\) 5.61334 + 6.70459i 0.191972 + 0.229292i
\(856\) 0 0
\(857\) −15.1586 8.75185i −0.517809 0.298957i 0.218228 0.975898i \(-0.429972\pi\)
−0.736038 + 0.676940i \(0.763306\pi\)
\(858\) 0 0
\(859\) −5.23153 + 3.02042i −0.178497 + 0.103056i −0.586586 0.809887i \(-0.699529\pi\)
0.408089 + 0.912942i \(0.366195\pi\)
\(860\) 0 0
\(861\) −12.2250 43.6803i −0.416626 1.48862i
\(862\) 0 0
\(863\) 17.0085 + 29.4595i 0.578975 + 1.00281i 0.995597 + 0.0937342i \(0.0298804\pi\)
−0.416622 + 0.909080i \(0.636786\pi\)
\(864\) 0 0
\(865\) 7.41342 25.6716i 0.252064 0.872862i
\(866\) 0 0
\(867\) 15.3290 24.5530i 0.520601 0.833864i
\(868\) 0 0
\(869\) 10.4746i 0.355326i
\(870\) 0 0
\(871\) −45.2062 26.0998i −1.53175 0.884358i
\(872\) 0 0
\(873\) −18.0706 + 26.8362i −0.611597 + 0.908267i
\(874\) 0 0
\(875\) −14.4718 25.7986i −0.489236 0.872152i
\(876\) 0 0
\(877\) 6.27005 3.62002i 0.211725 0.122239i −0.390388 0.920650i \(-0.627659\pi\)
0.602113 + 0.798411i \(0.294326\pi\)
\(878\) 0 0
\(879\) 40.0116 21.2947i 1.34956 0.718252i
\(880\) 0 0
\(881\) −25.9119 −0.872993 −0.436496 0.899706i \(-0.643781\pi\)
−0.436496 + 0.899706i \(0.643781\pi\)
\(882\) 0 0
\(883\) 17.5664i 0.591155i 0.955319 + 0.295577i \(0.0955120\pi\)
−0.955319 + 0.295577i \(0.904488\pi\)
\(884\) 0 0
\(885\) 41.2340 37.0165i 1.38607 1.24430i
\(886\) 0 0
\(887\) −12.7893 + 7.38392i −0.429423 + 0.247928i −0.699101 0.715023i \(-0.746416\pi\)
0.269678 + 0.962951i \(0.413083\pi\)
\(888\) 0 0
\(889\) −5.52675 + 25.1645i −0.185361 + 0.843990i
\(890\) 0 0
\(891\) 1.13441 8.16471i 0.0380041 0.273528i
\(892\) 0 0
\(893\) 2.82947 4.90079i 0.0946847 0.163999i
\(894\) 0 0
\(895\) 40.6906 10.0642i 1.36014 0.336409i
\(896\) 0 0
\(897\) 31.5976 50.6110i 1.05501 1.68985i
\(898\) 0 0
\(899\) 11.1140 19.2501i 0.370674 0.642026i
\(900\) 0 0
\(901\) 0.916197 0.528966i 0.0305229 0.0176224i
\(902\) 0 0
\(903\) 36.2791 10.1536i 1.20729 0.337890i
\(904\) 0 0
\(905\) −24.9632 25.9475i −0.829806 0.862524i
\(906\) 0 0
\(907\) −25.3957 14.6622i −0.843250 0.486851i 0.0151176 0.999886i \(-0.495188\pi\)
−0.858368 + 0.513035i \(0.828521\pi\)
\(908\) 0 0
\(909\) 12.9742 + 26.5481i 0.430326 + 0.880545i
\(910\) 0 0
\(911\) 30.3043i 1.00403i −0.864860 0.502013i \(-0.832593\pi\)
0.864860 0.502013i \(-0.167407\pi\)
\(912\) 0 0
\(913\) 4.28295 7.41828i 0.141745 0.245509i
\(914\) 0 0
\(915\) 36.6864 7.74100i 1.21281 0.255909i
\(916\) 0 0
\(917\) −14.0902 44.3827i −0.465299 1.46565i
\(918\) 0 0
\(919\) 3.81888 + 6.61449i 0.125973 + 0.218192i 0.922113 0.386921i \(-0.126461\pi\)
−0.796140 + 0.605113i \(0.793128\pi\)
\(920\) 0 0
\(921\) 18.2397 + 34.2715i 0.601019 + 1.12928i
\(922\) 0 0
\(923\) 4.06965i 0.133954i
\(924\) 0 0
\(925\) −11.7551 22.3098i −0.386505 0.733541i
\(926\) 0 0
\(927\) 7.35624 + 0.508597i 0.241611 + 0.0167045i
\(928\) 0 0
\(929\) 8.62508 + 14.9391i 0.282980 + 0.490135i 0.972117 0.234495i \(-0.0753438\pi\)
−0.689138 + 0.724631i \(0.742010\pi\)
\(930\) 0 0
\(931\) −9.08663 + 0.831132i −0.297802 + 0.0272393i
\(932\) 0 0
\(933\) −33.9757 1.17311i −1.11231 0.0384058i
\(934\) 0 0
\(935\) −1.05673 0.305162i −0.0345589 0.00997987i
\(936\) 0 0
\(937\) 36.0492 1.17768 0.588839 0.808251i \(-0.299585\pi\)
0.588839 + 0.808251i \(0.299585\pi\)
\(938\) 0 0
\(939\) −11.7716 + 18.8549i −0.384151 + 0.615308i
\(940\) 0 0
\(941\) −15.8153 + 27.3930i −0.515565 + 0.892985i 0.484272 + 0.874918i \(0.339085\pi\)
−0.999837 + 0.0180673i \(0.994249\pi\)
\(942\) 0 0
\(943\) 39.5409 + 68.4869i 1.28763 + 2.23024i
\(944\) 0 0
\(945\) −27.7294 + 13.2696i −0.902036 + 0.431660i
\(946\) 0 0
\(947\) −20.3087 35.1757i −0.659944 1.14306i −0.980630 0.195871i \(-0.937247\pi\)
0.320685 0.947186i \(-0.396087\pi\)
\(948\) 0 0
\(949\) −22.0410 + 38.1761i −0.715481 + 1.23925i
\(950\) 0 0
\(951\) −14.6479 + 23.4620i −0.474990 + 0.760807i
\(952\) 0 0
\(953\) −5.31938 −0.172312 −0.0861558 0.996282i \(-0.527458\pi\)
−0.0861558 + 0.996282i \(0.527458\pi\)
\(954\) 0 0
\(955\) 10.7438 37.2042i 0.347660 1.20390i
\(956\) 0 0
\(957\) −5.48808 0.189492i −0.177405 0.00612540i
\(958\) 0 0
\(959\) −18.5840 + 20.3615i −0.600110 + 0.657506i
\(960\) 0 0
\(961\) 5.11747 + 8.86371i 0.165080 + 0.285926i
\(962\) 0 0
\(963\) −4.48817 0.310304i −0.144629 0.00999941i
\(964\) 0 0
\(965\) 32.8428 8.12316i 1.05725 0.261494i
\(966\) 0 0
\(967\) 6.75930i 0.217364i 0.994077 + 0.108682i \(0.0346631\pi\)
−0.994077 + 0.108682i \(0.965337\pi\)
\(968\) 0 0
\(969\) −0.569677 1.07039i −0.0183007 0.0343860i
\(970\) 0 0
\(971\) −21.9851 38.0793i −0.705535 1.22202i −0.966498 0.256674i \(-0.917373\pi\)
0.260963 0.965349i \(-0.415960\pi\)
\(972\) 0 0
\(973\) 4.02493 18.3264i 0.129033 0.587517i
\(974\) 0 0
\(975\) −33.6149 + 16.2554i −1.07654 + 0.520589i
\(976\) 0 0
\(977\) −4.62443 + 8.00974i −0.147949 + 0.256254i −0.930469 0.366370i \(-0.880600\pi\)
0.782521 + 0.622625i \(0.213934\pi\)
\(978\) 0 0
\(979\) 1.60193i 0.0511979i
\(980\) 0 0
\(981\) 5.09046 + 10.4162i 0.162526 + 0.332565i
\(982\) 0 0
\(983\) 11.3787 + 6.56947i 0.362923 + 0.209533i 0.670362 0.742034i \(-0.266139\pi\)
−0.307439 + 0.951568i \(0.599472\pi\)
\(984\) 0 0
\(985\) −30.0184 + 28.8797i −0.956465 + 0.920183i
\(986\) 0 0
\(987\) 14.2227 + 13.9106i 0.452712 + 0.442778i
\(988\) 0 0
\(989\) −56.8825 + 32.8411i −1.80876 + 1.04429i
\(990\) 0 0
\(991\) 3.18520 5.51694i 0.101181 0.175251i −0.810990 0.585060i \(-0.801071\pi\)
0.912172 + 0.409808i \(0.134404\pi\)
\(992\) 0 0
\(993\) −18.0131 + 28.8522i −0.571630 + 0.915598i
\(994\) 0 0
\(995\) 21.8133 5.39518i 0.691528 0.171039i
\(996\) 0 0
\(997\) −11.7546 + 20.3595i −0.372271 + 0.644792i −0.989915 0.141666i \(-0.954754\pi\)
0.617644 + 0.786458i \(0.288087\pi\)
\(998\) 0 0
\(999\) −23.9283 + 10.6873i −0.757057 + 0.338132i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bn.a.269.11 yes 32
3.2 odd 2 inner 420.2.bn.a.269.1 yes 32
5.2 odd 4 2100.2.bi.n.101.14 32
5.3 odd 4 2100.2.bi.n.101.3 32
5.4 even 2 inner 420.2.bn.a.269.6 yes 32
7.3 odd 6 2940.2.f.a.1469.12 32
7.4 even 3 2940.2.f.a.1469.21 32
7.5 odd 6 inner 420.2.bn.a.89.16 yes 32
15.2 even 4 2100.2.bi.n.101.9 32
15.8 even 4 2100.2.bi.n.101.8 32
15.14 odd 2 inner 420.2.bn.a.269.16 yes 32
21.5 even 6 inner 420.2.bn.a.89.6 yes 32
21.11 odd 6 2940.2.f.a.1469.24 32
21.17 even 6 2940.2.f.a.1469.9 32
35.4 even 6 2940.2.f.a.1469.11 32
35.12 even 12 2100.2.bi.n.1601.9 32
35.19 odd 6 inner 420.2.bn.a.89.1 32
35.24 odd 6 2940.2.f.a.1469.22 32
35.33 even 12 2100.2.bi.n.1601.8 32
105.47 odd 12 2100.2.bi.n.1601.14 32
105.59 even 6 2940.2.f.a.1469.23 32
105.68 odd 12 2100.2.bi.n.1601.3 32
105.74 odd 6 2940.2.f.a.1469.10 32
105.89 even 6 inner 420.2.bn.a.89.11 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.1 32 35.19 odd 6 inner
420.2.bn.a.89.6 yes 32 21.5 even 6 inner
420.2.bn.a.89.11 yes 32 105.89 even 6 inner
420.2.bn.a.89.16 yes 32 7.5 odd 6 inner
420.2.bn.a.269.1 yes 32 3.2 odd 2 inner
420.2.bn.a.269.6 yes 32 5.4 even 2 inner
420.2.bn.a.269.11 yes 32 1.1 even 1 trivial
420.2.bn.a.269.16 yes 32 15.14 odd 2 inner
2100.2.bi.n.101.3 32 5.3 odd 4
2100.2.bi.n.101.8 32 15.8 even 4
2100.2.bi.n.101.9 32 15.2 even 4
2100.2.bi.n.101.14 32 5.2 odd 4
2100.2.bi.n.1601.3 32 105.68 odd 12
2100.2.bi.n.1601.8 32 35.33 even 12
2100.2.bi.n.1601.9 32 35.12 even 12
2100.2.bi.n.1601.14 32 105.47 odd 12
2940.2.f.a.1469.9 32 21.17 even 6
2940.2.f.a.1469.10 32 105.74 odd 6
2940.2.f.a.1469.11 32 35.4 even 6
2940.2.f.a.1469.12 32 7.3 odd 6
2940.2.f.a.1469.21 32 7.4 even 3
2940.2.f.a.1469.22 32 35.24 odd 6
2940.2.f.a.1469.23 32 105.59 even 6
2940.2.f.a.1469.24 32 21.11 odd 6