Properties

Label 420.2
Level 420
Weight 2
Dimension 1708
Nonzero newspaces 24
Newform subspaces 57
Sturm bound 18432
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 57 \)
Sturm bound: \(18432\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(420))\).

Total New Old
Modular forms 5088 1836 3252
Cusp forms 4129 1708 2421
Eisenstein series 959 128 831

Trace form

\( 1708q - 6q^{3} + 4q^{4} - 10q^{5} + 4q^{6} - 12q^{7} + 36q^{8} + 18q^{9} + O(q^{10}) \) \( 1708q - 6q^{3} + 4q^{4} - 10q^{5} + 4q^{6} - 12q^{7} + 36q^{8} + 18q^{9} + 40q^{10} + 28q^{11} + 32q^{12} + 68q^{13} + 48q^{14} + 46q^{15} + 12q^{16} + 64q^{17} - 8q^{18} + 32q^{19} - 40q^{20} + 34q^{21} - 88q^{22} + 24q^{23} - 72q^{24} + 46q^{25} - 92q^{26} + 12q^{27} - 132q^{28} + 96q^{29} - 114q^{30} + 8q^{31} - 100q^{32} + 6q^{33} - 144q^{34} + 50q^{35} - 108q^{36} + 52q^{37} - 68q^{38} - 16q^{39} - 80q^{40} + 8q^{41} - 116q^{42} - 8q^{43} - 48q^{44} - 23q^{45} - 48q^{46} - 12q^{47} - 80q^{48} - 80q^{49} + 20q^{50} - 18q^{51} - 88q^{52} - 56q^{53} + 4q^{54} - 32q^{55} - 68q^{56} - 116q^{57} - 104q^{58} - 56q^{59} - 16q^{60} - 88q^{61} - 104q^{62} + 2q^{63} - 140q^{64} - 178q^{65} - 4q^{66} - 64q^{67} - 160q^{68} - 184q^{69} - 304q^{70} - 96q^{71} - 48q^{72} - 220q^{73} - 132q^{74} - 105q^{75} - 232q^{76} - 192q^{77} + 40q^{78} - 216q^{79} - 152q^{80} - 246q^{81} - 208q^{82} - 72q^{83} + 64q^{84} - 268q^{85} - 92q^{86} - 124q^{87} - 184q^{88} - 64q^{89} - 12q^{90} - 64q^{91} + 56q^{92} - 166q^{93} - 184q^{94} + 18q^{95} - 20q^{96} - 96q^{97} + 60q^{98} - 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(420))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
420.2.a \(\chi_{420}(1, \cdot)\) 420.2.a.a 1 1
420.2.a.b 1
420.2.a.c 1
420.2.a.d 1
420.2.c \(\chi_{420}(391, \cdot)\) 420.2.c.a 16 1
420.2.c.b 16
420.2.d \(\chi_{420}(41, \cdot)\) 420.2.d.a 2 1
420.2.d.b 2
420.2.d.c 4
420.2.d.d 4
420.2.f \(\chi_{420}(209, \cdot)\) 420.2.f.a 8 1
420.2.f.b 8
420.2.i \(\chi_{420}(139, \cdot)\) 420.2.i.a 48 1
420.2.k \(\chi_{420}(169, \cdot)\) 420.2.k.a 2 1
420.2.k.b 2
420.2.l \(\chi_{420}(239, \cdot)\) 420.2.l.a 4 1
420.2.l.b 4
420.2.l.c 8
420.2.l.d 8
420.2.l.e 8
420.2.l.f 8
420.2.l.g 16
420.2.l.h 16
420.2.n \(\chi_{420}(71, \cdot)\) 420.2.n.a 24 1
420.2.n.b 24
420.2.q \(\chi_{420}(121, \cdot)\) 420.2.q.a 2 2
420.2.q.b 2
420.2.q.c 4
420.2.q.d 4
420.2.s \(\chi_{420}(113, \cdot)\) 420.2.s.a 24 2
420.2.t \(\chi_{420}(43, \cdot)\) 420.2.t.a 4 2
420.2.t.b 4
420.2.t.c 32
420.2.t.d 32
420.2.w \(\chi_{420}(83, \cdot)\) 420.2.w.a 8 2
420.2.w.b 8
420.2.w.c 160
420.2.x \(\chi_{420}(13, \cdot)\) 420.2.x.a 16 2
420.2.ba \(\chi_{420}(179, \cdot)\) 420.2.ba.a 8 2
420.2.ba.b 8
420.2.ba.c 160
420.2.bb \(\chi_{420}(109, \cdot)\) 420.2.bb.a 16 2
420.2.bf \(\chi_{420}(11, \cdot)\) 420.2.bf.a 128 2
420.2.bh \(\chi_{420}(101, \cdot)\) 420.2.bh.a 10 2
420.2.bh.b 10
420.2.bi \(\chi_{420}(31, \cdot)\) 420.2.bi.a 4 2
420.2.bi.b 4
420.2.bi.c 28
420.2.bi.d 28
420.2.bk \(\chi_{420}(19, \cdot)\) 420.2.bk.a 96 2
420.2.bn \(\chi_{420}(89, \cdot)\) 420.2.bn.a 32 2
420.2.bo \(\chi_{420}(73, \cdot)\) 420.2.bo.a 32 4
420.2.br \(\chi_{420}(47, \cdot)\) 420.2.br.a 352 4
420.2.bs \(\chi_{420}(67, \cdot)\) 420.2.bs.a 192 4
420.2.bv \(\chi_{420}(53, \cdot)\) 420.2.bv.a 8 4
420.2.bv.b 8
420.2.bv.c 48

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(420))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(420)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(210))\)\(^{\oplus 2}\)