Properties

Label 2940.2.f.a.1469.21
Level $2940$
Weight $2$
Character 2940.1469
Analytic conductor $23.476$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(1469,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.1469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1469.21
Character \(\chi\) \(=\) 2940.1469
Dual form 2940.2.f.a.1469.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.917271 - 1.46922i) q^{3} +(-0.536879 - 2.17066i) q^{5} +(-1.31723 - 2.69535i) q^{9} -0.915904i q^{11} -4.31153 q^{13} +(-3.68164 - 1.20229i) q^{15} -0.537062i q^{17} -1.30351i q^{19} -7.98961 q^{23} +(-4.42352 + 2.33076i) q^{25} +(-5.16832 - 0.537062i) q^{27} +3.46154i q^{29} +6.42144i q^{31} +(-1.34567 - 0.840132i) q^{33} +5.04345i q^{37} +(-3.95484 + 6.33460i) q^{39} +9.89809 q^{41} +8.22096i q^{43} +(-5.14349 + 4.30633i) q^{45} -4.34132i q^{47} +(-0.789063 - 0.492631i) q^{51} -1.96985 q^{53} +(-1.98812 + 0.491730i) q^{55} +(-1.91514 - 1.19567i) q^{57} +14.3073 q^{59} -9.68095i q^{61} +(2.31477 + 9.35886i) q^{65} -12.1070i q^{67} +(-7.32863 + 11.7385i) q^{69} +0.943900i q^{71} -10.2242 q^{73} +(-0.633157 + 8.63708i) q^{75} -11.4363 q^{79} +(-5.52981 + 7.10079i) q^{81} -9.35240i q^{83} +(-1.16578 + 0.288337i) q^{85} +(5.08577 + 3.17517i) q^{87} -1.74901 q^{89} +(9.43453 + 5.89020i) q^{93} +(-2.82947 + 0.699827i) q^{95} +10.7844 q^{97} +(-2.46868 + 1.20646i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} - 12 q^{25} - 48 q^{39} + 20 q^{51} + 56 q^{79} + 40 q^{81} - 4 q^{85} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.917271 1.46922i 0.529586 0.848256i
\(4\) 0 0
\(5\) −0.536879 2.17066i −0.240100 0.970748i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.31723 2.69535i −0.439076 0.898450i
\(10\) 0 0
\(11\) 0.915904i 0.276155i −0.990421 0.138078i \(-0.955908\pi\)
0.990421 0.138078i \(-0.0440924\pi\)
\(12\) 0 0
\(13\) −4.31153 −1.19580 −0.597902 0.801569i \(-0.703999\pi\)
−0.597902 + 0.801569i \(0.703999\pi\)
\(14\) 0 0
\(15\) −3.68164 1.20229i −0.950597 0.310429i
\(16\) 0 0
\(17\) 0.537062i 0.130257i −0.997877 0.0651283i \(-0.979254\pi\)
0.997877 0.0651283i \(-0.0207457\pi\)
\(18\) 0 0
\(19\) 1.30351i 0.299045i −0.988758 0.149523i \(-0.952226\pi\)
0.988758 0.149523i \(-0.0477737\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.98961 −1.66595 −0.832974 0.553312i \(-0.813364\pi\)
−0.832974 + 0.553312i \(0.813364\pi\)
\(24\) 0 0
\(25\) −4.42352 + 2.33076i −0.884704 + 0.466153i
\(26\) 0 0
\(27\) −5.16832 0.537062i −0.994644 0.103358i
\(28\) 0 0
\(29\) 3.46154i 0.642791i 0.946945 + 0.321396i \(0.104152\pi\)
−0.946945 + 0.321396i \(0.895848\pi\)
\(30\) 0 0
\(31\) 6.42144i 1.15333i 0.816982 + 0.576663i \(0.195645\pi\)
−0.816982 + 0.576663i \(0.804355\pi\)
\(32\) 0 0
\(33\) −1.34567 0.840132i −0.234251 0.146248i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.04345i 0.829137i 0.910018 + 0.414569i \(0.136068\pi\)
−0.910018 + 0.414569i \(0.863932\pi\)
\(38\) 0 0
\(39\) −3.95484 + 6.33460i −0.633281 + 1.01435i
\(40\) 0 0
\(41\) 9.89809 1.54582 0.772911 0.634515i \(-0.218800\pi\)
0.772911 + 0.634515i \(0.218800\pi\)
\(42\) 0 0
\(43\) 8.22096i 1.25369i 0.779146 + 0.626843i \(0.215653\pi\)
−0.779146 + 0.626843i \(0.784347\pi\)
\(44\) 0 0
\(45\) −5.14349 + 4.30633i −0.766746 + 0.641950i
\(46\) 0 0
\(47\) 4.34132i 0.633246i −0.948551 0.316623i \(-0.897451\pi\)
0.948551 0.316623i \(-0.102549\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.789063 0.492631i −0.110491 0.0689821i
\(52\) 0 0
\(53\) −1.96985 −0.270580 −0.135290 0.990806i \(-0.543197\pi\)
−0.135290 + 0.990806i \(0.543197\pi\)
\(54\) 0 0
\(55\) −1.98812 + 0.491730i −0.268077 + 0.0663048i
\(56\) 0 0
\(57\) −1.91514 1.19567i −0.253667 0.158370i
\(58\) 0 0
\(59\) 14.3073 1.86265 0.931323 0.364195i \(-0.118656\pi\)
0.931323 + 0.364195i \(0.118656\pi\)
\(60\) 0 0
\(61\) 9.68095i 1.23952i −0.784792 0.619759i \(-0.787230\pi\)
0.784792 0.619759i \(-0.212770\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.31477 + 9.35886i 0.287112 + 1.16082i
\(66\) 0 0
\(67\) 12.1070i 1.47910i −0.673100 0.739551i \(-0.735038\pi\)
0.673100 0.739551i \(-0.264962\pi\)
\(68\) 0 0
\(69\) −7.32863 + 11.7385i −0.882264 + 1.41315i
\(70\) 0 0
\(71\) 0.943900i 0.112020i 0.998430 + 0.0560102i \(0.0178379\pi\)
−0.998430 + 0.0560102i \(0.982162\pi\)
\(72\) 0 0
\(73\) −10.2242 −1.19665 −0.598326 0.801253i \(-0.704167\pi\)
−0.598326 + 0.801253i \(0.704167\pi\)
\(74\) 0 0
\(75\) −0.633157 + 8.63708i −0.0731106 + 0.997324i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.4363 −1.28669 −0.643345 0.765577i \(-0.722454\pi\)
−0.643345 + 0.765577i \(0.722454\pi\)
\(80\) 0 0
\(81\) −5.52981 + 7.10079i −0.614424 + 0.788976i
\(82\) 0 0
\(83\) 9.35240i 1.02656i −0.858222 0.513279i \(-0.828430\pi\)
0.858222 0.513279i \(-0.171570\pi\)
\(84\) 0 0
\(85\) −1.16578 + 0.288337i −0.126446 + 0.0312746i
\(86\) 0 0
\(87\) 5.08577 + 3.17517i 0.545252 + 0.340414i
\(88\) 0 0
\(89\) −1.74901 −0.185395 −0.0926976 0.995694i \(-0.529549\pi\)
−0.0926976 + 0.995694i \(0.529549\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 9.43453 + 5.89020i 0.978315 + 0.610785i
\(94\) 0 0
\(95\) −2.82947 + 0.699827i −0.290298 + 0.0718007i
\(96\) 0 0
\(97\) 10.7844 1.09499 0.547494 0.836809i \(-0.315582\pi\)
0.547494 + 0.836809i \(0.315582\pi\)
\(98\) 0 0
\(99\) −2.46868 + 1.20646i −0.248112 + 0.121253i
\(100\) 0 0
\(101\) −9.84960 −0.980072 −0.490036 0.871702i \(-0.663016\pi\)
−0.490036 + 0.871702i \(0.663016\pi\)
\(102\) 0 0
\(103\) 2.45793 0.242188 0.121094 0.992641i \(-0.461360\pi\)
0.121094 + 0.992641i \(0.461360\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.49963 −0.144975 −0.0724873 0.997369i \(-0.523094\pi\)
−0.0724873 + 0.997369i \(0.523094\pi\)
\(108\) 0 0
\(109\) −3.86452 −0.370154 −0.185077 0.982724i \(-0.559253\pi\)
−0.185077 + 0.982724i \(0.559253\pi\)
\(110\) 0 0
\(111\) 7.40994 + 4.62620i 0.703321 + 0.439100i
\(112\) 0 0
\(113\) −10.1791 −0.957567 −0.478783 0.877933i \(-0.658922\pi\)
−0.478783 + 0.877933i \(0.658922\pi\)
\(114\) 0 0
\(115\) 4.28945 + 17.3427i 0.399994 + 1.61722i
\(116\) 0 0
\(117\) 5.67927 + 11.6211i 0.525049 + 1.07437i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.1611 0.923738
\(122\) 0 0
\(123\) 9.07922 14.5425i 0.818646 1.31125i
\(124\) 0 0
\(125\) 7.43419 + 8.35062i 0.664934 + 0.746902i
\(126\) 0 0
\(127\) 9.73798i 0.864106i −0.901848 0.432053i \(-0.857789\pi\)
0.901848 0.432053i \(-0.142211\pi\)
\(128\) 0 0
\(129\) 12.0784 + 7.54085i 1.06345 + 0.663935i
\(130\) 0 0
\(131\) −17.6002 −1.53773 −0.768867 0.639409i \(-0.779179\pi\)
−0.768867 + 0.639409i \(0.779179\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.60899 + 11.5070i 0.138480 + 0.990365i
\(136\) 0 0
\(137\) −10.4195 −0.890194 −0.445097 0.895482i \(-0.646831\pi\)
−0.445097 + 0.895482i \(0.646831\pi\)
\(138\) 0 0
\(139\) 7.09182i 0.601520i 0.953700 + 0.300760i \(0.0972403\pi\)
−0.953700 + 0.300760i \(0.902760\pi\)
\(140\) 0 0
\(141\) −6.37836 3.98216i −0.537155 0.335359i
\(142\) 0 0
\(143\) 3.94895i 0.330228i
\(144\) 0 0
\(145\) 7.51382 1.85843i 0.623988 0.154334i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.26524i 0.513269i −0.966509 0.256634i \(-0.917386\pi\)
0.966509 0.256634i \(-0.0826136\pi\)
\(150\) 0 0
\(151\) −17.7116 −1.44135 −0.720673 0.693275i \(-0.756167\pi\)
−0.720673 + 0.693275i \(0.756167\pi\)
\(152\) 0 0
\(153\) −1.44757 + 0.707433i −0.117029 + 0.0571926i
\(154\) 0 0
\(155\) 13.9388 3.44754i 1.11959 0.276913i
\(156\) 0 0
\(157\) −0.773945 −0.0617676 −0.0308838 0.999523i \(-0.509832\pi\)
−0.0308838 + 0.999523i \(0.509832\pi\)
\(158\) 0 0
\(159\) −1.80689 + 2.89415i −0.143296 + 0.229521i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.88703i 0.539434i −0.962940 0.269717i \(-0.913070\pi\)
0.962940 0.269717i \(-0.0869302\pi\)
\(164\) 0 0
\(165\) −1.10118 + 3.37203i −0.0857267 + 0.262512i
\(166\) 0 0
\(167\) 9.49709i 0.734907i 0.930042 + 0.367453i \(0.119770\pi\)
−0.930042 + 0.367453i \(0.880230\pi\)
\(168\) 0 0
\(169\) 5.58930 0.429946
\(170\) 0 0
\(171\) −3.51341 + 1.71702i −0.268677 + 0.131304i
\(172\) 0 0
\(173\) 11.9498i 0.908529i −0.890867 0.454264i \(-0.849902\pi\)
0.890867 0.454264i \(-0.150098\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.1236 21.0205i 0.986432 1.58000i
\(178\) 0 0
\(179\) 18.7457i 1.40112i 0.713593 + 0.700561i \(0.247067\pi\)
−0.713593 + 0.700561i \(0.752933\pi\)
\(180\) 0 0
\(181\) 16.1024i 1.19688i 0.801167 + 0.598441i \(0.204213\pi\)
−0.801167 + 0.598441i \(0.795787\pi\)
\(182\) 0 0
\(183\) −14.2235 8.88005i −1.05143 0.656432i
\(184\) 0 0
\(185\) 10.9476 2.70772i 0.804884 0.199076i
\(186\) 0 0
\(187\) −0.491897 −0.0359711
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.3181i 1.25309i −0.779385 0.626546i \(-0.784468\pi\)
0.779385 0.626546i \(-0.215532\pi\)
\(192\) 0 0
\(193\) 15.1303i 1.08911i 0.838727 + 0.544553i \(0.183301\pi\)
−0.838727 + 0.544553i \(0.816699\pi\)
\(194\) 0 0
\(195\) 15.8735 + 5.18370i 1.13673 + 0.371212i
\(196\) 0 0
\(197\) 18.6287 1.32724 0.663619 0.748071i \(-0.269020\pi\)
0.663619 + 0.748071i \(0.269020\pi\)
\(198\) 0 0
\(199\) 10.0492i 0.712366i 0.934416 + 0.356183i \(0.115922\pi\)
−0.934416 + 0.356183i \(0.884078\pi\)
\(200\) 0 0
\(201\) −17.7878 11.1054i −1.25466 0.783313i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.31408 21.4854i −0.371151 1.50060i
\(206\) 0 0
\(207\) 10.5241 + 21.5348i 0.731479 + 1.49677i
\(208\) 0 0
\(209\) −1.19389 −0.0825830
\(210\) 0 0
\(211\) −1.68592 −0.116064 −0.0580319 0.998315i \(-0.518483\pi\)
−0.0580319 + 0.998315i \(0.518483\pi\)
\(212\) 0 0
\(213\) 1.38680 + 0.865812i 0.0950219 + 0.0593244i
\(214\) 0 0
\(215\) 17.8449 4.41366i 1.21701 0.301009i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.37836 + 15.0216i −0.633731 + 1.01507i
\(220\) 0 0
\(221\) 2.31556i 0.155761i
\(222\) 0 0
\(223\) −14.2095 −0.951541 −0.475770 0.879570i \(-0.657831\pi\)
−0.475770 + 0.879570i \(0.657831\pi\)
\(224\) 0 0
\(225\) 12.1090 + 8.85279i 0.807268 + 0.590186i
\(226\) 0 0
\(227\) 0.681753i 0.0452496i 0.999744 + 0.0226248i \(0.00720231\pi\)
−0.999744 + 0.0226248i \(0.992798\pi\)
\(228\) 0 0
\(229\) 2.95734i 0.195427i −0.995215 0.0977133i \(-0.968847\pi\)
0.995215 0.0977133i \(-0.0311528\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.9371 −1.76471 −0.882353 0.470587i \(-0.844042\pi\)
−0.882353 + 0.470587i \(0.844042\pi\)
\(234\) 0 0
\(235\) −9.42352 + 2.33076i −0.614723 + 0.152042i
\(236\) 0 0
\(237\) −10.4902 + 16.8025i −0.681413 + 1.09144i
\(238\) 0 0
\(239\) 17.3461i 1.12202i 0.827808 + 0.561012i \(0.189588\pi\)
−0.827808 + 0.561012i \(0.810412\pi\)
\(240\) 0 0
\(241\) 1.52746i 0.0983921i −0.998789 0.0491961i \(-0.984334\pi\)
0.998789 0.0491961i \(-0.0156659\pi\)
\(242\) 0 0
\(243\) 5.36030 + 14.6379i 0.343863 + 0.939020i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.62012i 0.357600i
\(248\) 0 0
\(249\) −13.7408 8.57868i −0.870785 0.543652i
\(250\) 0 0
\(251\) −6.56268 −0.414233 −0.207116 0.978316i \(-0.566408\pi\)
−0.207116 + 0.978316i \(0.566408\pi\)
\(252\) 0 0
\(253\) 7.31771i 0.460061i
\(254\) 0 0
\(255\) −0.645702 + 1.97727i −0.0404354 + 0.123821i
\(256\) 0 0
\(257\) 16.9729i 1.05874i −0.848391 0.529370i \(-0.822428\pi\)
0.848391 0.529370i \(-0.177572\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.33005 4.55964i 0.577516 0.282234i
\(262\) 0 0
\(263\) −5.31969 −0.328026 −0.164013 0.986458i \(-0.552444\pi\)
−0.164013 + 0.986458i \(0.552444\pi\)
\(264\) 0 0
\(265\) 1.05757 + 4.27588i 0.0649662 + 0.262665i
\(266\) 0 0
\(267\) −1.60432 + 2.56969i −0.0981828 + 0.157263i
\(268\) 0 0
\(269\) −6.55668 −0.399768 −0.199884 0.979820i \(-0.564057\pi\)
−0.199884 + 0.979820i \(0.564057\pi\)
\(270\) 0 0
\(271\) 5.24431i 0.318569i 0.987233 + 0.159285i \(0.0509187\pi\)
−0.987233 + 0.159285i \(0.949081\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.13476 + 4.05152i 0.128731 + 0.244316i
\(276\) 0 0
\(277\) 2.77326i 0.166629i −0.996523 0.0833145i \(-0.973449\pi\)
0.996523 0.0833145i \(-0.0265506\pi\)
\(278\) 0 0
\(279\) 17.3080 8.45851i 1.03620 0.506398i
\(280\) 0 0
\(281\) 22.4373i 1.33850i −0.743038 0.669250i \(-0.766616\pi\)
0.743038 0.669250i \(-0.233384\pi\)
\(282\) 0 0
\(283\) 7.24680 0.430778 0.215389 0.976528i \(-0.430898\pi\)
0.215389 + 0.976528i \(0.430898\pi\)
\(284\) 0 0
\(285\) −1.56719 + 4.79906i −0.0928324 + 0.284272i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.7116 0.983033
\(290\) 0 0
\(291\) 9.89220 15.8447i 0.579891 0.928831i
\(292\) 0 0
\(293\) 26.1686i 1.52879i −0.644750 0.764393i \(-0.723039\pi\)
0.644750 0.764393i \(-0.276961\pi\)
\(294\) 0 0
\(295\) −7.68127 31.0562i −0.447221 1.80816i
\(296\) 0 0
\(297\) −0.491897 + 4.73369i −0.0285428 + 0.274676i
\(298\) 0 0
\(299\) 34.4474 1.99215
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.03475 + 14.4712i −0.519033 + 0.831352i
\(304\) 0 0
\(305\) −21.0140 + 5.19750i −1.20326 + 0.297608i
\(306\) 0 0
\(307\) 22.4144 1.27926 0.639630 0.768683i \(-0.279088\pi\)
0.639630 + 0.768683i \(0.279088\pi\)
\(308\) 0 0
\(309\) 2.25459 3.61125i 0.128259 0.205437i
\(310\) 0 0
\(311\) 19.6276 1.11298 0.556488 0.830855i \(-0.312148\pi\)
0.556488 + 0.830855i \(0.312148\pi\)
\(312\) 0 0
\(313\) −12.8333 −0.725380 −0.362690 0.931910i \(-0.618142\pi\)
−0.362690 + 0.931910i \(0.618142\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.9690 −0.896908 −0.448454 0.893806i \(-0.648025\pi\)
−0.448454 + 0.893806i \(0.648025\pi\)
\(318\) 0 0
\(319\) 3.17044 0.177510
\(320\) 0 0
\(321\) −1.37557 + 2.20329i −0.0767766 + 0.122976i
\(322\) 0 0
\(323\) −0.700065 −0.0389526
\(324\) 0 0
\(325\) 19.0722 10.0492i 1.05793 0.557427i
\(326\) 0 0
\(327\) −3.54481 + 5.67784i −0.196029 + 0.313985i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −19.6378 −1.07939 −0.539694 0.841861i \(-0.681460\pi\)
−0.539694 + 0.841861i \(0.681460\pi\)
\(332\) 0 0
\(333\) 13.5938 6.64337i 0.744938 0.364055i
\(334\) 0 0
\(335\) −26.2801 + 6.49998i −1.43584 + 0.355132i
\(336\) 0 0
\(337\) 0.304237i 0.0165729i 0.999966 + 0.00828643i \(0.00263768\pi\)
−0.999966 + 0.00828643i \(0.997362\pi\)
\(338\) 0 0
\(339\) −9.33696 + 14.9553i −0.507114 + 0.812262i
\(340\) 0 0
\(341\) 5.88143 0.318497
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 29.4149 + 9.60580i 1.58364 + 0.517159i
\(346\) 0 0
\(347\) −28.4469 −1.52711 −0.763556 0.645742i \(-0.776548\pi\)
−0.763556 + 0.645742i \(0.776548\pi\)
\(348\) 0 0
\(349\) 13.9719i 0.747897i −0.927450 0.373948i \(-0.878004\pi\)
0.927450 0.373948i \(-0.121996\pi\)
\(350\) 0 0
\(351\) 22.2834 + 2.31556i 1.18940 + 0.123595i
\(352\) 0 0
\(353\) 34.6036i 1.84176i −0.389843 0.920881i \(-0.627471\pi\)
0.389843 0.920881i \(-0.372529\pi\)
\(354\) 0 0
\(355\) 2.04888 0.506760i 0.108744 0.0268960i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.8931i 1.20825i 0.796889 + 0.604126i \(0.206477\pi\)
−0.796889 + 0.604126i \(0.793523\pi\)
\(360\) 0 0
\(361\) 17.3009 0.910572
\(362\) 0 0
\(363\) 9.32050 14.9289i 0.489199 0.783566i
\(364\) 0 0
\(365\) 5.48916 + 22.1933i 0.287316 + 1.16165i
\(366\) 0 0
\(367\) −28.9997 −1.51377 −0.756887 0.653546i \(-0.773281\pi\)
−0.756887 + 0.653546i \(0.773281\pi\)
\(368\) 0 0
\(369\) −13.0381 26.6788i −0.678734 1.38884i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 24.0309i 1.24427i 0.782909 + 0.622136i \(0.213735\pi\)
−0.782909 + 0.622136i \(0.786265\pi\)
\(374\) 0 0
\(375\) 19.0881 3.26270i 0.985704 0.168485i
\(376\) 0 0
\(377\) 14.9245i 0.768652i
\(378\) 0 0
\(379\) −14.0820 −0.723342 −0.361671 0.932306i \(-0.617794\pi\)
−0.361671 + 0.932306i \(0.617794\pi\)
\(380\) 0 0
\(381\) −14.3073 8.93236i −0.732983 0.457619i
\(382\) 0 0
\(383\) 29.4030i 1.50242i −0.660062 0.751211i \(-0.729470\pi\)
0.660062 0.751211i \(-0.270530\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 22.1584 10.8289i 1.12637 0.550464i
\(388\) 0 0
\(389\) 23.4092i 1.18690i −0.804873 0.593448i \(-0.797766\pi\)
0.804873 0.593448i \(-0.202234\pi\)
\(390\) 0 0
\(391\) 4.29091i 0.217001i
\(392\) 0 0
\(393\) −16.1441 + 25.8586i −0.814363 + 1.30439i
\(394\) 0 0
\(395\) 6.13993 + 24.8244i 0.308934 + 1.24905i
\(396\) 0 0
\(397\) −11.9378 −0.599140 −0.299570 0.954074i \(-0.596843\pi\)
−0.299570 + 0.954074i \(0.596843\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.0390i 1.25039i −0.780470 0.625193i \(-0.785020\pi\)
0.780470 0.625193i \(-0.214980\pi\)
\(402\) 0 0
\(403\) 27.6863i 1.37915i
\(404\) 0 0
\(405\) 18.3822 + 8.19108i 0.913420 + 0.407018i
\(406\) 0 0
\(407\) 4.61931 0.228971
\(408\) 0 0
\(409\) 30.1813i 1.49237i −0.665740 0.746184i \(-0.731884\pi\)
0.665740 0.746184i \(-0.268116\pi\)
\(410\) 0 0
\(411\) −9.55746 + 15.3085i −0.471435 + 0.755113i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.3009 + 5.02111i −0.996530 + 0.246476i
\(416\) 0 0
\(417\) 10.4195 + 6.50511i 0.510243 + 0.318557i
\(418\) 0 0
\(419\) 9.85560 0.481477 0.240739 0.970590i \(-0.422610\pi\)
0.240739 + 0.970590i \(0.422610\pi\)
\(420\) 0 0
\(421\) −8.16112 −0.397749 −0.198874 0.980025i \(-0.563729\pi\)
−0.198874 + 0.980025i \(0.563729\pi\)
\(422\) 0 0
\(423\) −11.7014 + 5.71851i −0.568940 + 0.278044i
\(424\) 0 0
\(425\) 1.25176 + 2.37570i 0.0607194 + 0.115239i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.80188 + 3.62225i 0.280118 + 0.174884i
\(430\) 0 0
\(431\) 3.28745i 0.158351i −0.996861 0.0791755i \(-0.974771\pi\)
0.996861 0.0791755i \(-0.0252288\pi\)
\(432\) 0 0
\(433\) −31.9717 −1.53646 −0.768231 0.640173i \(-0.778863\pi\)
−0.768231 + 0.640173i \(0.778863\pi\)
\(434\) 0 0
\(435\) 4.16176 12.7441i 0.199541 0.611035i
\(436\) 0 0
\(437\) 10.4145i 0.498194i
\(438\) 0 0
\(439\) 41.7097i 1.99070i 0.0963398 + 0.995349i \(0.469286\pi\)
−0.0963398 + 0.995349i \(0.530714\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.9577 −0.900708 −0.450354 0.892850i \(-0.648702\pi\)
−0.450354 + 0.892850i \(0.648702\pi\)
\(444\) 0 0
\(445\) 0.939010 + 3.79651i 0.0445133 + 0.179972i
\(446\) 0 0
\(447\) −9.20503 5.74692i −0.435383 0.271820i
\(448\) 0 0
\(449\) 40.0091i 1.88815i −0.329737 0.944073i \(-0.606960\pi\)
0.329737 0.944073i \(-0.393040\pi\)
\(450\) 0 0
\(451\) 9.06570i 0.426887i
\(452\) 0 0
\(453\) −16.2463 + 26.0222i −0.763318 + 1.22263i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.3868i 0.532652i 0.963883 + 0.266326i \(0.0858098\pi\)
−0.963883 + 0.266326i \(0.914190\pi\)
\(458\) 0 0
\(459\) −0.288435 + 2.77571i −0.0134630 + 0.129559i
\(460\) 0 0
\(461\) 8.71020 0.405674 0.202837 0.979212i \(-0.434984\pi\)
0.202837 + 0.979212i \(0.434984\pi\)
\(462\) 0 0
\(463\) 16.1154i 0.748944i 0.927238 + 0.374472i \(0.122176\pi\)
−0.927238 + 0.374472i \(0.877824\pi\)
\(464\) 0 0
\(465\) 7.72042 23.6415i 0.358026 1.09635i
\(466\) 0 0
\(467\) 9.10472i 0.421316i 0.977560 + 0.210658i \(0.0675607\pi\)
−0.977560 + 0.210658i \(0.932439\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.709917 + 1.13710i −0.0327113 + 0.0523947i
\(472\) 0 0
\(473\) 7.52961 0.346212
\(474\) 0 0
\(475\) 3.03817 + 5.76610i 0.139401 + 0.264567i
\(476\) 0 0
\(477\) 2.59475 + 5.30944i 0.118805 + 0.243103i
\(478\) 0 0
\(479\) −26.4185 −1.20709 −0.603546 0.797328i \(-0.706246\pi\)
−0.603546 + 0.797328i \(0.706246\pi\)
\(480\) 0 0
\(481\) 21.7450i 0.991485i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.78991 23.4092i −0.262906 1.06296i
\(486\) 0 0
\(487\) 9.16130i 0.415138i 0.978220 + 0.207569i \(0.0665552\pi\)
−0.978220 + 0.207569i \(0.933445\pi\)
\(488\) 0 0
\(489\) −10.1186 6.31727i −0.457578 0.285677i
\(490\) 0 0
\(491\) 33.0800i 1.49288i 0.665453 + 0.746440i \(0.268239\pi\)
−0.665453 + 0.746440i \(0.731761\pi\)
\(492\) 0 0
\(493\) 1.85906 0.0837278
\(494\) 0 0
\(495\) 3.94419 + 4.71094i 0.177278 + 0.211741i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.0873 0.764933 0.382466 0.923969i \(-0.375075\pi\)
0.382466 + 0.923969i \(0.375075\pi\)
\(500\) 0 0
\(501\) 13.9533 + 8.71140i 0.623389 + 0.389197i
\(502\) 0 0
\(503\) 21.1753i 0.944158i −0.881556 0.472079i \(-0.843504\pi\)
0.881556 0.472079i \(-0.156496\pi\)
\(504\) 0 0
\(505\) 5.28804 + 21.3801i 0.235315 + 0.951403i
\(506\) 0 0
\(507\) 5.12690 8.21192i 0.227694 0.364704i
\(508\) 0 0
\(509\) −31.1837 −1.38219 −0.691096 0.722763i \(-0.742872\pi\)
−0.691096 + 0.722763i \(0.742872\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −0.700065 + 6.73696i −0.0309086 + 0.297444i
\(514\) 0 0
\(515\) −1.31961 5.33534i −0.0581491 0.235103i
\(516\) 0 0
\(517\) −3.97623 −0.174874
\(518\) 0 0
\(519\) −17.5570 10.9612i −0.770665 0.481145i
\(520\) 0 0
\(521\) −38.9111 −1.70473 −0.852363 0.522951i \(-0.824831\pi\)
−0.852363 + 0.522951i \(0.824831\pi\)
\(522\) 0 0
\(523\) 3.76247 0.164521 0.0822606 0.996611i \(-0.473786\pi\)
0.0822606 + 0.996611i \(0.473786\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.44871 0.150228
\(528\) 0 0
\(529\) 40.8338 1.77538
\(530\) 0 0
\(531\) −18.8459 38.5630i −0.817844 1.67349i
\(532\) 0 0
\(533\) −42.6759 −1.84850
\(534\) 0 0
\(535\) 0.805120 + 3.25518i 0.0348084 + 0.140734i
\(536\) 0 0
\(537\) 27.5416 + 17.1949i 1.18851 + 0.742015i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 27.2445 1.17133 0.585667 0.810552i \(-0.300833\pi\)
0.585667 + 0.810552i \(0.300833\pi\)
\(542\) 0 0
\(543\) 23.6580 + 14.7703i 1.01526 + 0.633852i
\(544\) 0 0
\(545\) 2.07478 + 8.38856i 0.0888739 + 0.359326i
\(546\) 0 0
\(547\) 13.4516i 0.575148i 0.957758 + 0.287574i \(0.0928487\pi\)
−0.957758 + 0.287574i \(0.907151\pi\)
\(548\) 0 0
\(549\) −26.0935 + 12.7520i −1.11365 + 0.544243i
\(550\) 0 0
\(551\) 4.51214 0.192224
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.06367 18.5682i 0.257388 0.788175i
\(556\) 0 0
\(557\) 37.6174 1.59390 0.796950 0.604046i \(-0.206446\pi\)
0.796950 + 0.604046i \(0.206446\pi\)
\(558\) 0 0
\(559\) 35.4449i 1.49916i
\(560\) 0 0
\(561\) −0.451203 + 0.722706i −0.0190498 + 0.0305127i
\(562\) 0 0
\(563\) 10.1788i 0.428987i −0.976725 0.214494i \(-0.931190\pi\)
0.976725 0.214494i \(-0.0688101\pi\)
\(564\) 0 0
\(565\) 5.46493 + 22.0953i 0.229911 + 0.929556i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.859912i 0.0360494i 0.999838 + 0.0180247i \(0.00573775\pi\)
−0.999838 + 0.0180247i \(0.994262\pi\)
\(570\) 0 0
\(571\) 3.43634 0.143806 0.0719032 0.997412i \(-0.477093\pi\)
0.0719032 + 0.997412i \(0.477093\pi\)
\(572\) 0 0
\(573\) −25.4441 15.8854i −1.06294 0.663620i
\(574\) 0 0
\(575\) 35.3422 18.6219i 1.47387 0.776586i
\(576\) 0 0
\(577\) 25.6996 1.06989 0.534944 0.844888i \(-0.320333\pi\)
0.534944 + 0.844888i \(0.320333\pi\)
\(578\) 0 0
\(579\) 22.2298 + 13.8786i 0.923840 + 0.576775i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.80420i 0.0747222i
\(584\) 0 0
\(585\) 22.1763 18.5669i 0.916878 0.767646i
\(586\) 0 0
\(587\) 22.5090i 0.929048i 0.885561 + 0.464524i \(0.153775\pi\)
−0.885561 + 0.464524i \(0.846225\pi\)
\(588\) 0 0
\(589\) 8.37041 0.344897
\(590\) 0 0
\(591\) 17.0875 27.3697i 0.702887 1.12584i
\(592\) 0 0
\(593\) 23.7727i 0.976227i −0.872780 0.488114i \(-0.837685\pi\)
0.872780 0.488114i \(-0.162315\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.7644 + 9.21780i 0.604269 + 0.377259i
\(598\) 0 0
\(599\) 43.5310i 1.77863i −0.457296 0.889314i \(-0.651182\pi\)
0.457296 0.889314i \(-0.348818\pi\)
\(600\) 0 0
\(601\) 19.9347i 0.813153i −0.913617 0.406577i \(-0.866722\pi\)
0.913617 0.406577i \(-0.133278\pi\)
\(602\) 0 0
\(603\) −32.6325 + 15.9477i −1.32890 + 0.649439i
\(604\) 0 0
\(605\) −5.45529 22.0563i −0.221789 0.896717i
\(606\) 0 0
\(607\) −10.6333 −0.431590 −0.215795 0.976439i \(-0.569234\pi\)
−0.215795 + 0.976439i \(0.569234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.7177i 0.757238i
\(612\) 0 0
\(613\) 15.1344i 0.611273i −0.952148 0.305637i \(-0.901131\pi\)
0.952148 0.305637i \(-0.0988693\pi\)
\(614\) 0 0
\(615\) −36.4412 11.9003i −1.46945 0.479868i
\(616\) 0 0
\(617\) 7.39865 0.297858 0.148929 0.988848i \(-0.452417\pi\)
0.148929 + 0.988848i \(0.452417\pi\)
\(618\) 0 0
\(619\) 18.5279i 0.744700i −0.928092 0.372350i \(-0.878552\pi\)
0.928092 0.372350i \(-0.121448\pi\)
\(620\) 0 0
\(621\) 41.2929 + 4.29091i 1.65703 + 0.172188i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.1351 20.6204i 0.565403 0.824814i
\(626\) 0 0
\(627\) −1.09512 + 1.75409i −0.0437349 + 0.0700516i
\(628\) 0 0
\(629\) 2.70864 0.108001
\(630\) 0 0
\(631\) 13.1786 0.524632 0.262316 0.964982i \(-0.415514\pi\)
0.262316 + 0.964982i \(0.415514\pi\)
\(632\) 0 0
\(633\) −1.54645 + 2.47700i −0.0614658 + 0.0984518i
\(634\) 0 0
\(635\) −21.1378 + 5.22812i −0.838829 + 0.207471i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.54414 1.24333i 0.100645 0.0491855i
\(640\) 0 0
\(641\) 14.1322i 0.558189i −0.960264 0.279094i \(-0.909966\pi\)
0.960264 0.279094i \(-0.0900343\pi\)
\(642\) 0 0
\(643\) −17.9278 −0.707005 −0.353503 0.935434i \(-0.615009\pi\)
−0.353503 + 0.935434i \(0.615009\pi\)
\(644\) 0 0
\(645\) 9.88396 30.2667i 0.389180 1.19175i
\(646\) 0 0
\(647\) 24.0053i 0.943744i −0.881667 0.471872i \(-0.843578\pi\)
0.881667 0.471872i \(-0.156422\pi\)
\(648\) 0 0
\(649\) 13.1041i 0.514380i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.9489 −1.13286 −0.566430 0.824110i \(-0.691676\pi\)
−0.566430 + 0.824110i \(0.691676\pi\)
\(654\) 0 0
\(655\) 9.44916 + 38.2040i 0.369209 + 1.49275i
\(656\) 0 0
\(657\) 13.4676 + 27.5578i 0.525422 + 1.07513i
\(658\) 0 0
\(659\) 5.09127i 0.198328i 0.995071 + 0.0991638i \(0.0316168\pi\)
−0.995071 + 0.0991638i \(0.968383\pi\)
\(660\) 0 0
\(661\) 29.0717i 1.13076i −0.824832 0.565378i \(-0.808730\pi\)
0.824832 0.565378i \(-0.191270\pi\)
\(662\) 0 0
\(663\) 3.40207 + 2.12399i 0.132125 + 0.0824891i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 27.6563i 1.07086i
\(668\) 0 0
\(669\) −13.0340 + 20.8770i −0.503923 + 0.807150i
\(670\) 0 0
\(671\) −8.86682 −0.342300
\(672\) 0 0
\(673\) 8.51862i 0.328369i 0.986430 + 0.164184i \(0.0524992\pi\)
−0.986430 + 0.164184i \(0.947501\pi\)
\(674\) 0 0
\(675\) 24.1140 9.67043i 0.928146 0.372215i
\(676\) 0 0
\(677\) 18.9765i 0.729325i −0.931140 0.364662i \(-0.881184\pi\)
0.931140 0.364662i \(-0.118816\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.00165 + 0.625352i 0.0383832 + 0.0239636i
\(682\) 0 0
\(683\) 20.9173 0.800379 0.400190 0.916432i \(-0.368944\pi\)
0.400190 + 0.916432i \(0.368944\pi\)
\(684\) 0 0
\(685\) 5.59399 + 22.6171i 0.213735 + 0.864154i
\(686\) 0 0
\(687\) −4.34499 2.71268i −0.165772 0.103495i
\(688\) 0 0
\(689\) 8.49309 0.323561
\(690\) 0 0
\(691\) 34.0523i 1.29541i 0.761891 + 0.647705i \(0.224271\pi\)
−0.761891 + 0.647705i \(0.775729\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.3939 3.80745i 0.583924 0.144425i
\(696\) 0 0
\(697\) 5.31588i 0.201353i
\(698\) 0 0
\(699\) −24.7086 + 39.5766i −0.934565 + 1.49692i
\(700\) 0 0
\(701\) 18.9758i 0.716706i 0.933586 + 0.358353i \(0.116662\pi\)
−0.933586 + 0.358353i \(0.883338\pi\)
\(702\) 0 0
\(703\) 6.57418 0.247950
\(704\) 0 0
\(705\) −5.21951 + 15.9832i −0.196578 + 0.601962i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.07381 0.115439 0.0577197 0.998333i \(-0.481617\pi\)
0.0577197 + 0.998333i \(0.481617\pi\)
\(710\) 0 0
\(711\) 15.0643 + 30.8249i 0.564955 + 1.15603i
\(712\) 0 0
\(713\) 51.3048i 1.92138i
\(714\) 0 0
\(715\) 8.57182 2.12011i 0.320568 0.0792875i
\(716\) 0 0
\(717\) 25.4852 + 15.9110i 0.951764 + 0.594209i
\(718\) 0 0
\(719\) 13.4021 0.499815 0.249907 0.968270i \(-0.419600\pi\)
0.249907 + 0.968270i \(0.419600\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −2.24417 1.40109i −0.0834617 0.0521071i
\(724\) 0 0
\(725\) −8.06802 15.3122i −0.299639 0.568680i
\(726\) 0 0
\(727\) 4.88627 0.181222 0.0906109 0.995886i \(-0.471118\pi\)
0.0906109 + 0.995886i \(0.471118\pi\)
\(728\) 0 0
\(729\) 26.4231 + 5.55142i 0.978634 + 0.205608i
\(730\) 0 0
\(731\) 4.41516 0.163301
\(732\) 0 0
\(733\) 36.9909 1.36629 0.683145 0.730283i \(-0.260612\pi\)
0.683145 + 0.730283i \(0.260612\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.0888 −0.408462
\(738\) 0 0
\(739\) 37.9518 1.39608 0.698040 0.716058i \(-0.254056\pi\)
0.698040 + 0.716058i \(0.254056\pi\)
\(740\) 0 0
\(741\) 8.25721 + 5.15517i 0.303336 + 0.189380i
\(742\) 0 0
\(743\) −14.0878 −0.516830 −0.258415 0.966034i \(-0.583200\pi\)
−0.258415 + 0.966034i \(0.583200\pi\)
\(744\) 0 0
\(745\) −13.5997 + 3.36368i −0.498255 + 0.123236i
\(746\) 0 0
\(747\) −25.2080 + 12.3193i −0.922312 + 0.450738i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −25.7504 −0.939646 −0.469823 0.882761i \(-0.655682\pi\)
−0.469823 + 0.882761i \(0.655682\pi\)
\(752\) 0 0
\(753\) −6.01975 + 9.64204i −0.219372 + 0.351375i
\(754\) 0 0
\(755\) 9.50897 + 38.4458i 0.346067 + 1.39918i
\(756\) 0 0
\(757\) 40.3111i 1.46513i −0.680697 0.732565i \(-0.738323\pi\)
0.680697 0.732565i \(-0.261677\pi\)
\(758\) 0 0
\(759\) 10.7513 + 6.71232i 0.390249 + 0.243642i
\(760\) 0 0
\(761\) 19.5306 0.707983 0.353991 0.935249i \(-0.384824\pi\)
0.353991 + 0.935249i \(0.384824\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.31277 + 2.76237i 0.0836182 + 0.0998738i
\(766\) 0 0
\(767\) −61.6862 −2.22736
\(768\) 0 0
\(769\) 47.6475i 1.71821i −0.511797 0.859107i \(-0.671020\pi\)
0.511797 0.859107i \(-0.328980\pi\)
\(770\) 0 0
\(771\) −24.9370 15.5687i −0.898083 0.560695i
\(772\) 0 0
\(773\) 21.1247i 0.759803i 0.925027 + 0.379901i \(0.124042\pi\)
−0.925027 + 0.379901i \(0.875958\pi\)
\(774\) 0 0
\(775\) −14.9669 28.4054i −0.537626 1.02035i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.9022i 0.462271i
\(780\) 0 0
\(781\) 0.864522 0.0309350
\(782\) 0 0
\(783\) 1.85906 17.8903i 0.0664373 0.639349i
\(784\) 0 0
\(785\) 0.415515 + 1.67997i 0.0148304 + 0.0599608i
\(786\) 0 0
\(787\) 6.54661 0.233361 0.116681 0.993169i \(-0.462775\pi\)
0.116681 + 0.993169i \(0.462775\pi\)
\(788\) 0 0
\(789\) −4.87959 + 7.81581i −0.173718 + 0.278250i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 41.7397i 1.48222i
\(794\) 0 0
\(795\) 7.25230 + 2.36833i 0.257213 + 0.0839960i
\(796\) 0 0
\(797\) 6.50728i 0.230500i 0.993337 + 0.115250i \(0.0367669\pi\)
−0.993337 + 0.115250i \(0.963233\pi\)
\(798\) 0 0
\(799\) −2.33156 −0.0824845
\(800\) 0 0
\(801\) 2.30385 + 4.71421i 0.0814027 + 0.166568i
\(802\) 0 0
\(803\) 9.36439i 0.330462i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.01425 + 9.63322i −0.211712 + 0.339106i
\(808\) 0 0
\(809\) 1.63413i 0.0574528i 0.999587 + 0.0287264i \(0.00914515\pi\)
−0.999587 + 0.0287264i \(0.990855\pi\)
\(810\) 0 0
\(811\) 29.4411i 1.03382i −0.856041 0.516909i \(-0.827083\pi\)
0.856041 0.516909i \(-0.172917\pi\)
\(812\) 0 0
\(813\) 7.70506 + 4.81045i 0.270228 + 0.168710i
\(814\) 0 0
\(815\) −14.9494 + 3.69750i −0.523655 + 0.129518i
\(816\) 0 0
\(817\) 10.7161 0.374909
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.6734i 0.791307i 0.918400 + 0.395654i \(0.129482\pi\)
−0.918400 + 0.395654i \(0.870518\pi\)
\(822\) 0 0
\(823\) 19.1888i 0.668878i 0.942417 + 0.334439i \(0.108547\pi\)
−0.942417 + 0.334439i \(0.891453\pi\)
\(824\) 0 0
\(825\) 7.91073 + 0.579911i 0.275416 + 0.0201899i
\(826\) 0 0
\(827\) 32.5074 1.13039 0.565196 0.824957i \(-0.308800\pi\)
0.565196 + 0.824957i \(0.308800\pi\)
\(828\) 0 0
\(829\) 51.6859i 1.79513i −0.440887 0.897563i \(-0.645336\pi\)
0.440887 0.897563i \(-0.354664\pi\)
\(830\) 0 0
\(831\) −4.07454 2.54383i −0.141344 0.0882445i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 20.6149 5.09879i 0.713409 0.176451i
\(836\) 0 0
\(837\) 3.44871 33.1881i 0.119205 1.14715i
\(838\) 0 0
\(839\) 2.88841 0.0997192 0.0498596 0.998756i \(-0.484123\pi\)
0.0498596 + 0.998756i \(0.484123\pi\)
\(840\) 0 0
\(841\) 17.0178 0.586819
\(842\) 0 0
\(843\) −32.9654 20.5811i −1.13539 0.708851i
\(844\) 0 0
\(845\) −3.00078 12.1325i −0.103230 0.417369i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 6.64728 10.6472i 0.228134 0.365410i
\(850\) 0 0
\(851\) 40.2952i 1.38130i
\(852\) 0 0
\(853\) 49.3673 1.69031 0.845153 0.534525i \(-0.179509\pi\)
0.845153 + 0.534525i \(0.179509\pi\)
\(854\) 0 0
\(855\) 5.61334 + 6.70459i 0.191972 + 0.229292i
\(856\) 0 0
\(857\) 17.5037i 0.597915i 0.954266 + 0.298957i \(0.0966389\pi\)
−0.954266 + 0.298957i \(0.903361\pi\)
\(858\) 0 0
\(859\) 6.04085i 0.206111i −0.994676 0.103056i \(-0.967138\pi\)
0.994676 0.103056i \(-0.0328619\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.0169 −1.15795 −0.578975 0.815345i \(-0.696547\pi\)
−0.578975 + 0.815345i \(0.696547\pi\)
\(864\) 0 0
\(865\) −25.9390 + 6.41562i −0.881953 + 0.218137i
\(866\) 0 0
\(867\) 15.3290 24.5530i 0.520601 0.833864i
\(868\) 0 0
\(869\) 10.4746i 0.355326i
\(870\) 0 0
\(871\) 52.1996i 1.76872i
\(872\) 0 0
\(873\) −14.2055 29.0677i −0.480784 0.983792i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.24003i 0.244478i 0.992501 + 0.122239i \(0.0390075\pi\)
−0.992501 + 0.122239i \(0.960992\pi\)
\(878\) 0 0
\(879\) −38.4475 24.0037i −1.29680 0.809625i
\(880\) 0 0
\(881\) −25.9119 −0.872993 −0.436496 0.899706i \(-0.643781\pi\)
−0.436496 + 0.899706i \(0.643781\pi\)
\(882\) 0 0
\(883\) 17.5664i 0.591155i 0.955319 + 0.295577i \(0.0955120\pi\)
−0.955319 + 0.295577i \(0.904488\pi\)
\(884\) 0 0
\(885\) −52.6742 17.2014i −1.77062 0.578219i
\(886\) 0 0
\(887\) 14.7678i 0.495855i −0.968779 0.247928i \(-0.920250\pi\)
0.968779 0.247928i \(-0.0797496\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.50364 + 5.06478i 0.217880 + 0.169676i
\(892\) 0 0
\(893\) −5.65895 −0.189369
\(894\) 0 0
\(895\) 40.6906 10.0642i 1.36014 0.336409i
\(896\) 0 0
\(897\) 31.5976 50.6110i 1.05501 1.68985i
\(898\) 0 0
\(899\) −22.2281 −0.741347
\(900\) 0 0
\(901\) 1.05793i 0.0352449i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.9528 8.64504i 1.16187 0.287371i
\(906\) 0 0
\(907\) 29.3244i 0.973701i 0.873485 + 0.486851i \(0.161854\pi\)
−0.873485 + 0.486851i \(0.838146\pi\)
\(908\) 0 0
\(909\) 12.9742 + 26.5481i 0.430326 + 0.880545i
\(910\) 0 0
\(911\) 30.3043i 1.00403i −0.864860 0.502013i \(-0.832593\pi\)
0.864860 0.502013i \(-0.167407\pi\)
\(912\) 0 0
\(913\) −8.56590 −0.283490
\(914\) 0 0
\(915\) −11.6393 + 35.6418i −0.384783 + 1.17828i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −7.63775 −0.251946 −0.125973 0.992034i \(-0.540205\pi\)
−0.125973 + 0.992034i \(0.540205\pi\)
\(920\) 0 0
\(921\) 20.5601 32.9318i 0.677479 1.08514i
\(922\) 0 0
\(923\) 4.06965i 0.133954i
\(924\) 0 0
\(925\) −11.7551 22.3098i −0.386505 0.733541i
\(926\) 0 0
\(927\) −3.23766 6.62499i −0.106339 0.217593i
\(928\) 0 0
\(929\) −17.2502 −0.565959 −0.282980 0.959126i \(-0.591323\pi\)
−0.282980 + 0.959126i \(0.591323\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 18.0038 28.8372i 0.589417 0.944089i
\(934\) 0 0
\(935\) 0.264089 + 1.06774i 0.00863664 + 0.0349188i
\(936\) 0 0
\(937\) 36.0492 1.17768 0.588839 0.808251i \(-0.299585\pi\)
0.588839 + 0.808251i \(0.299585\pi\)
\(938\) 0 0
\(939\) −11.7716 + 18.8549i −0.384151 + 0.615308i
\(940\) 0 0
\(941\) 31.6307 1.03113 0.515565 0.856850i \(-0.327582\pi\)
0.515565 + 0.856850i \(0.327582\pi\)
\(942\) 0 0
\(943\) −79.0818 −2.57526
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.6174 1.31989 0.659944 0.751315i \(-0.270580\pi\)
0.659944 + 0.751315i \(0.270580\pi\)
\(948\) 0 0
\(949\) 44.0820 1.43096
\(950\) 0 0
\(951\) −14.6479 + 23.4620i −0.474990 + 0.760807i
\(952\) 0 0
\(953\) −5.31938 −0.172312 −0.0861558 0.996282i \(-0.527458\pi\)
−0.0861558 + 0.996282i \(0.527458\pi\)
\(954\) 0 0
\(955\) −37.5916 + 9.29771i −1.21644 + 0.300867i
\(956\) 0 0
\(957\) 2.90815 4.65807i 0.0940070 0.150574i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −10.2349 −0.330159
\(962\) 0 0
\(963\) 1.97536 + 4.04203i 0.0636550 + 0.130252i
\(964\) 0 0
\(965\) 32.8428 8.12316i 1.05725 0.261494i
\(966\) 0 0
\(967\) 6.75930i 0.217364i 0.994077 + 0.108682i \(0.0346631\pi\)
−0.994077 + 0.108682i \(0.965337\pi\)
\(968\) 0 0
\(969\) −0.642149 + 1.02855i −0.0206288 + 0.0330418i
\(970\) 0 0
\(971\) 43.9702 1.41107 0.705535 0.708675i \(-0.250707\pi\)
0.705535 + 0.708675i \(0.250707\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.72987 37.2390i 0.0874260 1.19260i
\(976\) 0 0
\(977\) 9.24885 0.295897 0.147949 0.988995i \(-0.452733\pi\)
0.147949 + 0.988995i \(0.452733\pi\)
\(978\) 0 0
\(979\) 1.60193i 0.0511979i
\(980\) 0 0
\(981\) 5.09046 + 10.4162i 0.162526 + 0.332565i
\(982\) 0 0
\(983\) 13.1389i 0.419067i −0.977801 0.209533i \(-0.932805\pi\)
0.977801 0.209533i \(-0.0671945\pi\)
\(984\) 0 0
\(985\) −10.0013 40.4365i −0.318669 1.28841i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 65.6823i 2.08857i
\(990\) 0 0
\(991\) −6.37041 −0.202363 −0.101181 0.994868i \(-0.532262\pi\)
−0.101181 + 0.994868i \(0.532262\pi\)
\(992\) 0 0
\(993\) −18.0131 + 28.8522i −0.571630 + 0.915598i
\(994\) 0 0
\(995\) 21.8133 5.39518i 0.691528 0.171039i
\(996\) 0 0
\(997\) 23.5091 0.744542 0.372271 0.928124i \(-0.378579\pi\)
0.372271 + 0.928124i \(0.378579\pi\)
\(998\) 0 0
\(999\) 2.70864 26.0662i 0.0856976 0.824697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.2.f.a.1469.21 32
3.2 odd 2 inner 2940.2.f.a.1469.24 32
5.4 even 2 inner 2940.2.f.a.1469.11 32
7.2 even 3 420.2.bn.a.269.11 yes 32
7.3 odd 6 420.2.bn.a.89.16 yes 32
7.6 odd 2 inner 2940.2.f.a.1469.12 32
15.14 odd 2 inner 2940.2.f.a.1469.10 32
21.2 odd 6 420.2.bn.a.269.1 yes 32
21.17 even 6 420.2.bn.a.89.6 yes 32
21.20 even 2 inner 2940.2.f.a.1469.9 32
35.2 odd 12 2100.2.bi.n.101.14 32
35.3 even 12 2100.2.bi.n.1601.8 32
35.9 even 6 420.2.bn.a.269.6 yes 32
35.17 even 12 2100.2.bi.n.1601.9 32
35.23 odd 12 2100.2.bi.n.101.3 32
35.24 odd 6 420.2.bn.a.89.1 32
35.34 odd 2 inner 2940.2.f.a.1469.22 32
105.2 even 12 2100.2.bi.n.101.9 32
105.17 odd 12 2100.2.bi.n.1601.14 32
105.23 even 12 2100.2.bi.n.101.8 32
105.38 odd 12 2100.2.bi.n.1601.3 32
105.44 odd 6 420.2.bn.a.269.16 yes 32
105.59 even 6 420.2.bn.a.89.11 yes 32
105.104 even 2 inner 2940.2.f.a.1469.23 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.1 32 35.24 odd 6
420.2.bn.a.89.6 yes 32 21.17 even 6
420.2.bn.a.89.11 yes 32 105.59 even 6
420.2.bn.a.89.16 yes 32 7.3 odd 6
420.2.bn.a.269.1 yes 32 21.2 odd 6
420.2.bn.a.269.6 yes 32 35.9 even 6
420.2.bn.a.269.11 yes 32 7.2 even 3
420.2.bn.a.269.16 yes 32 105.44 odd 6
2100.2.bi.n.101.3 32 35.23 odd 12
2100.2.bi.n.101.8 32 105.23 even 12
2100.2.bi.n.101.9 32 105.2 even 12
2100.2.bi.n.101.14 32 35.2 odd 12
2100.2.bi.n.1601.3 32 105.38 odd 12
2100.2.bi.n.1601.8 32 35.3 even 12
2100.2.bi.n.1601.9 32 35.17 even 12
2100.2.bi.n.1601.14 32 105.17 odd 12
2940.2.f.a.1469.9 32 21.20 even 2 inner
2940.2.f.a.1469.10 32 15.14 odd 2 inner
2940.2.f.a.1469.11 32 5.4 even 2 inner
2940.2.f.a.1469.12 32 7.6 odd 2 inner
2940.2.f.a.1469.21 32 1.1 even 1 trivial
2940.2.f.a.1469.22 32 35.34 odd 2 inner
2940.2.f.a.1469.23 32 105.104 even 2 inner
2940.2.f.a.1469.24 32 3.2 odd 2 inner