Properties

Label 420.2.bn
Level $420$
Weight $2$
Character orbit 420.bn
Rep. character $\chi_{420}(89,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(420, [\chi])\).

Total New Old
Modular forms 216 32 184
Cusp forms 168 32 136
Eisenstein series 48 0 48

Trace form

\( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(420, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
420.2.bn.a 420.bn 105.p $32$ $3.354$ None 420.2.bn.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(420, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(420, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)