Defining parameters
| Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 42.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(42))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 44 | 6 | 38 |
| Cusp forms | 36 | 6 | 30 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(4\) | \(1\) | \(3\) | \(3\) | \(1\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(5\) | \(1\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(5\) | \(0\) | \(5\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(6\) | \(0\) | \(6\) | \(5\) | \(0\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(5\) | \(1\) | \(4\) | \(4\) | \(1\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(21\) | \(2\) | \(19\) | \(17\) | \(2\) | \(15\) | \(4\) | \(0\) | \(4\) | |||||
| Minus space | \(-\) | \(23\) | \(4\) | \(19\) | \(19\) | \(4\) | \(15\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | |||||||
| 42.6.a.a | $1$ | $6.736$ | \(\Q\) | None | \(-4\) | \(-9\) | \(-54\) | \(49\) | $+$ | $+$ | $-$ | \(q-4q^{2}-9q^{3}+2^{4}q^{4}-54q^{5}+6^{2}q^{6}+\cdots\) | |
| 42.6.a.b | $1$ | $6.736$ | \(\Q\) | None | \(-4\) | \(-9\) | \(44\) | \(-49\) | $+$ | $+$ | $+$ | \(q-4q^{2}-9q^{3}+2^{4}q^{4}+44q^{5}+6^{2}q^{6}+\cdots\) | |
| 42.6.a.c | $1$ | $6.736$ | \(\Q\) | None | \(-4\) | \(9\) | \(-72\) | \(49\) | $+$ | $-$ | $-$ | \(q-4q^{2}+9q^{3}+2^{4}q^{4}-72q^{5}-6^{2}q^{6}+\cdots\) | |
| 42.6.a.d | $1$ | $6.736$ | \(\Q\) | None | \(-4\) | \(9\) | \(26\) | \(-49\) | $+$ | $-$ | $+$ | \(q-4q^{2}+9q^{3}+2^{4}q^{4}+26q^{5}-6^{2}q^{6}+\cdots\) | |
| 42.6.a.e | $1$ | $6.736$ | \(\Q\) | None | \(4\) | \(-9\) | \(76\) | \(-49\) | $-$ | $+$ | $+$ | \(q+4q^{2}-9q^{3}+2^{4}q^{4}+76q^{5}-6^{2}q^{6}+\cdots\) | |
| 42.6.a.f | $1$ | $6.736$ | \(\Q\) | None | \(4\) | \(9\) | \(24\) | \(49\) | $-$ | $-$ | $-$ | \(q+4q^{2}+9q^{3}+2^{4}q^{4}+24q^{5}+6^{2}q^{6}+\cdots\) | |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)