Properties

Label 42.6.a
Level $42$
Weight $6$
Character orbit 42.a
Rep. character $\chi_{42}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $6$
Sturm bound $48$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(48\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(42))\).

Total New Old
Modular forms 44 6 38
Cusp forms 36 6 30
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(4\)\(1\)\(3\)\(3\)\(1\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(6\)\(1\)\(5\)\(5\)\(1\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(6\)\(1\)\(5\)\(5\)\(1\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(6\)\(1\)\(5\)\(5\)\(1\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(6\)\(1\)\(5\)\(5\)\(1\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(5\)\(0\)\(5\)\(4\)\(0\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(6\)\(0\)\(6\)\(5\)\(0\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(21\)\(2\)\(19\)\(17\)\(2\)\(15\)\(4\)\(0\)\(4\)
Minus space\(-\)\(23\)\(4\)\(19\)\(19\)\(4\)\(15\)\(4\)\(0\)\(4\)

Trace form

\( 6 q - 8 q^{2} + 96 q^{4} + 44 q^{5} - 128 q^{8} + 486 q^{9} + 624 q^{10} + 712 q^{11} - 36 q^{13} - 792 q^{15} + 1536 q^{16} + 1468 q^{17} - 648 q^{18} - 4080 q^{19} + 704 q^{20} + 882 q^{21} + 2880 q^{22}+ \cdots + 57672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
42.6.a.a 42.a 1.a $1$ $6.736$ \(\Q\) None 42.6.a.a \(-4\) \(-9\) \(-54\) \(49\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-9q^{3}+2^{4}q^{4}-54q^{5}+6^{2}q^{6}+\cdots\)
42.6.a.b 42.a 1.a $1$ $6.736$ \(\Q\) None 42.6.a.b \(-4\) \(-9\) \(44\) \(-49\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}-9q^{3}+2^{4}q^{4}+44q^{5}+6^{2}q^{6}+\cdots\)
42.6.a.c 42.a 1.a $1$ $6.736$ \(\Q\) None 42.6.a.c \(-4\) \(9\) \(-72\) \(49\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+9q^{3}+2^{4}q^{4}-72q^{5}-6^{2}q^{6}+\cdots\)
42.6.a.d 42.a 1.a $1$ $6.736$ \(\Q\) None 42.6.a.d \(-4\) \(9\) \(26\) \(-49\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}+9q^{3}+2^{4}q^{4}+26q^{5}-6^{2}q^{6}+\cdots\)
42.6.a.e 42.a 1.a $1$ $6.736$ \(\Q\) None 42.6.a.e \(4\) \(-9\) \(76\) \(-49\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}-9q^{3}+2^{4}q^{4}+76q^{5}-6^{2}q^{6}+\cdots\)
42.6.a.f 42.a 1.a $1$ $6.736$ \(\Q\) None 42.6.a.f \(4\) \(9\) \(24\) \(49\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}+9q^{3}+2^{4}q^{4}+24q^{5}+6^{2}q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)