Defining parameters
Level: | \( N \) | = | \( 42 = 2 \cdot 3 \cdot 7 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(42))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 58 | 206 |
Cusp forms | 216 | 58 | 158 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(42))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(42)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 1}\)