Properties

Label 14.6.a
Level $14$
Weight $6$
Character orbit 14.a
Rep. character $\chi_{14}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $12$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(14))\).

Total New Old
Modular forms 12 2 10
Cusp forms 8 2 6
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeDim
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(2\)

Trace form

\( 2 q + 18 q^{3} + 32 q^{4} + 94 q^{5} - 8 q^{6} - 322 q^{9} - 296 q^{10} - 676 q^{11} + 288 q^{12} + 290 q^{13} - 392 q^{14} + 920 q^{15} + 512 q^{16} - 232 q^{17} - 144 q^{18} + 2902 q^{19} + 1504 q^{20}+ \cdots + 108908 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(14))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
14.6.a.a 14.a 1.a $1$ $2.245$ \(\Q\) None 14.6.a.a \(-4\) \(10\) \(84\) \(49\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+10q^{3}+2^{4}q^{4}+84q^{5}-40q^{6}+\cdots\)
14.6.a.b 14.a 1.a $1$ $2.245$ \(\Q\) None 14.6.a.b \(4\) \(8\) \(10\) \(-49\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+8q^{3}+2^{4}q^{4}+10q^{5}+2^{5}q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(14))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(14)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)