Defining parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(21))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 4 | 12 |
Cusp forms | 12 | 4 | 8 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(21))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | |||||||
21.6.a.a | $1$ | $3.368$ | \(\Q\) | None | \(-6\) | \(-9\) | \(78\) | \(49\) | $+$ | $-$ | \(q-6q^{2}-9q^{3}+4q^{4}+78q^{5}+54q^{6}+\cdots\) | |
21.6.a.b | $1$ | $3.368$ | \(\Q\) | None | \(1\) | \(-9\) | \(-34\) | \(-49\) | $+$ | $+$ | \(q+q^{2}-9q^{3}-31q^{4}-34q^{5}-9q^{6}+\cdots\) | |
21.6.a.c | $1$ | $3.368$ | \(\Q\) | None | \(5\) | \(9\) | \(94\) | \(-49\) | $-$ | $+$ | \(q+5q^{2}+9q^{3}-7q^{4}+94q^{5}+45q^{6}+\cdots\) | |
21.6.a.d | $1$ | $3.368$ | \(\Q\) | None | \(10\) | \(9\) | \(-106\) | \(-49\) | $-$ | $+$ | \(q+10q^{2}+9q^{3}+68q^{4}-106q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(21))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(21)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)