Properties

Label 42.6
Level 42
Weight 6
Dimension 58
Nonzero newspaces 4
Newform subspaces 12
Sturm bound 576
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 12 \)
Sturm bound: \(576\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(42))\).

Total New Old
Modular forms 264 58 206
Cusp forms 216 58 158
Eisenstein series 48 0 48

Trace form

\( 58 q - 8 q^{2} + 32 q^{4} - 144 q^{6} - 640 q^{7} - 128 q^{8} + 570 q^{9} + 2016 q^{10} + 1008 q^{11} - 3348 q^{13} - 704 q^{14} - 5220 q^{15} - 512 q^{16} + 4080 q^{17} + 840 q^{18} - 408 q^{19} + 2112 q^{20}+ \cdots - 663624 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(42))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
42.6.a \(\chi_{42}(1, \cdot)\) 42.6.a.a 1 1
42.6.a.b 1
42.6.a.c 1
42.6.a.d 1
42.6.a.e 1
42.6.a.f 1
42.6.d \(\chi_{42}(41, \cdot)\) 42.6.d.a 12 1
42.6.e \(\chi_{42}(25, \cdot)\) 42.6.e.a 2 2
42.6.e.b 2
42.6.e.c 4
42.6.e.d 4
42.6.f \(\chi_{42}(5, \cdot)\) 42.6.f.a 28 2

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(42))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(42)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)