Label |
Level |
Weight |
Char |
Prim |
Char order |
Dim |
Rel. Dim |
$A$ |
Field |
CM |
Self-dual |
Twist minimal |
Largest |
Maximal |
Minimal twist |
Inner twists |
Rank* |
Traces |
Fricke sign |
Coefficient ring index |
Sato-Tate |
$q$-expansion |
$a_{2}$ |
$a_{3}$ |
$a_{5}$ |
$a_{7}$ |
42.2.a.a |
$42$ |
$2$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$0.335$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.2.a.a |
$1$ |
$0$ |
\(1\) |
\(-1\) |
\(-2\) |
\(-1\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\) |
42.2.d.a |
$42$ |
$2$ |
42.d |
21.c |
$2$ |
$4$ |
$4$ |
$0.335$ |
\(\Q(i, \sqrt{6})\) |
None |
|
✓ |
✓ |
✓ |
42.2.d.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-4\) |
|
$1$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{2}q^{2}+\beta _{1}q^{3}-q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots\) |
42.2.e.a |
$42$ |
$2$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$0.335$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.2.e.a |
$2$ |
$0$ |
\(-1\) |
\(1\) |
\(-1\) |
\(1\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-1+\zeta_{6})q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
42.2.e.b |
$42$ |
$2$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$0.335$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.2.e.b |
$2$ |
$0$ |
\(1\) |
\(-1\) |
\(-3\) |
\(5\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+(-3+\cdots)q^{5}+\cdots\) |
42.2.f.a |
$42$ |
$2$ |
42.f |
21.g |
$6$ |
$4$ |
$2$ |
$0.335$ |
\(\Q(\zeta_{12})\) |
None |
|
✓ |
✓ |
✓ |
42.2.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-10\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
42.3.b.a |
$42$ |
$3$ |
42.b |
3.b |
$2$ |
$4$ |
$4$ |
$1.144$ |
\(\Q(\sqrt{-2}, \sqrt{7})\) |
None |
|
✓ |
✓ |
✓ |
42.3.b.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
|
$2$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{1}q^{2}+(-\beta _{1}+\beta _{3})q^{3}-2q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\) |
42.3.c.a |
$42$ |
$3$ |
42.c |
7.b |
$2$ |
$4$ |
$4$ |
$1.144$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
|
✓ |
✓ |
✓ |
42.3.c.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(8\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}-\beta _{2}q^{3}+2q^{4}+(-2\beta _{2}-\beta _{3})q^{5}+\cdots\) |
42.3.g.a |
$42$ |
$3$ |
42.g |
7.d |
$6$ |
$4$ |
$2$ |
$1.144$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
|
✓ |
✓ |
✓ |
42.3.g.a |
$2$ |
$0$ |
\(0\) |
\(6\) |
\(12\) |
\(-10\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{2}+(2+\beta _{2})q^{3}+2\beta _{2}q^{4}+(2+\cdots)q^{5}+\cdots\) |
42.3.h.a |
$42$ |
$3$ |
42.h |
21.h |
$6$ |
$4$ |
$2$ |
$1.144$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
None |
|
✓ |
|
|
42.3.h.a |
$4$ |
$0$ |
\(0\) |
\(2\) |
\(0\) |
\(-14\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{2}+(2\beta _{1}+\beta _{2}-2\beta _{3})q^{3}+2\beta _{2}q^{4}+\cdots\) |
42.3.h.b |
$42$ |
$3$ |
42.h |
21.h |
$6$ |
$8$ |
$4$ |
$1.144$ |
8.0.4857532416.2 |
None |
|
✓ |
✓ |
|
42.3.h.b |
$4$ |
$0$ |
\(0\) |
\(-2\) |
\(0\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(\beta _{2}-\beta _{6})q^{2}+(\beta _{1}-\beta _{2}-\beta _{3}+\beta _{4}+\cdots)q^{3}+\cdots\) |
42.4.a.a |
$42$ |
$4$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$2.478$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.4.a.a |
$1$ |
$0$ |
\(2\) |
\(-3\) |
\(18\) |
\(7\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+2q^{2}-3q^{3}+4q^{4}+18q^{5}-6q^{6}+\cdots\) |
42.4.a.b |
$42$ |
$4$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$2.478$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.4.a.b |
$1$ |
$0$ |
\(2\) |
\(3\) |
\(2\) |
\(-7\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+2q^{2}+3q^{3}+4q^{4}+2q^{5}+6q^{6}+\cdots\) |
42.4.d.a |
$42$ |
$4$ |
42.d |
21.c |
$2$ |
$8$ |
$8$ |
$2.478$ |
8.0.\(\cdots\).13 |
None |
|
✓ |
✓ |
✓ |
42.4.d.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(4\) |
|
$2^{5}\cdot 3^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{3}q^{2}+\beta _{5}q^{3}-4q^{4}+(2\beta _{5}-2\beta _{6}+\cdots)q^{5}+\cdots\) |
42.4.e.a |
$42$ |
$4$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$2.478$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.4.e.a |
$2$ |
$0$ |
\(2\) |
\(-3\) |
\(6\) |
\(-7\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(2-2\zeta_{6})q^{2}-3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\) |
42.4.e.b |
$42$ |
$4$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$2.478$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.4.e.b |
$2$ |
$0$ |
\(2\) |
\(3\) |
\(15\) |
\(35\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(2-2\zeta_{6})q^{2}+3\zeta_{6}q^{3}-4\zeta_{6}q^{4}+\cdots\) |
42.4.e.c |
$42$ |
$4$ |
42.e |
7.c |
$3$ |
$4$ |
$2$ |
$2.478$ |
\(\Q(\sqrt{-3}, \sqrt{1345})\) |
None |
|
✓ |
✓ |
|
42.4.e.c |
$2$ |
$0$ |
\(-4\) |
\(-6\) |
\(-5\) |
\(0\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-2\beta _{2}q^{2}+(-3+3\beta _{2})q^{3}+(-4+4\beta _{2}+\cdots)q^{4}+\cdots\) |
42.4.f.a |
$42$ |
$4$ |
42.f |
21.g |
$6$ |
$16$ |
$8$ |
$2.478$ |
\(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.4.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(80\) |
|
$2^{6}\cdot 3^{8}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta _{2}q^{2}+\beta _{1}q^{3}+(4+4\beta _{5})q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots\) |
42.5.b.a |
$42$ |
$5$ |
42.b |
3.b |
$2$ |
$8$ |
$8$ |
$4.342$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.5.b.a |
$2$ |
$0$ |
\(0\) |
\(12\) |
\(0\) |
\(0\) |
|
$2^{7}\cdot 3^{3}\cdot 7^{2}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(2-\beta _{3})q^{3}-8q^{4}+(-4\beta _{1}+\cdots)q^{5}+\cdots\) |
42.5.c.a |
$42$ |
$5$ |
42.c |
7.b |
$2$ |
$4$ |
$4$ |
$4.342$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
|
✓ |
✓ |
✓ |
42.5.c.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(20\) |
|
$2^{4}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}-3\beta _{2}q^{3}+8q^{4}+(-4\beta _{2}+\cdots)q^{5}+\cdots\) |
42.5.g.a |
$42$ |
$5$ |
42.g |
7.d |
$6$ |
$4$ |
$2$ |
$4.342$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
|
✓ |
|
|
42.5.g.a |
$2$ |
$0$ |
\(0\) |
\(-18\) |
\(-66\) |
\(-70\) |
|
$2^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{2}+(-6-3\beta _{2})q^{3}+8\beta _{2}q^{4}+\cdots\) |
42.5.g.b |
$42$ |
$5$ |
42.g |
7.d |
$6$ |
$8$ |
$4$ |
$4.342$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
✓ |
✓ |
|
42.5.g.b |
$2$ |
$0$ |
\(0\) |
\(36\) |
\(-42\) |
\(76\) |
|
$2^{4}\cdot 3^{2}\cdot 7$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{3}q^{2}+(6+3\beta _{1})q^{3}+8\beta _{1}q^{4}+(-3+\cdots)q^{5}+\cdots\) |
42.5.h.a |
$42$ |
$5$ |
42.h |
21.h |
$6$ |
$20$ |
$10$ |
$4.342$ |
\(\mathbb{Q}[x]/(x^{20} - \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.5.h.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(130\) |
|
$2^{12}\cdot 3^{6}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+(\beta _{1}+\beta _{9})q^{2}-\beta _{10}q^{3}+(8+8\beta _{2}+\cdots)q^{4}+\cdots\) |
42.6.a.a |
$42$ |
$6$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$6.736$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.6.a.a |
$1$ |
$0$ |
\(-4\) |
\(-9\) |
\(-54\) |
\(49\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-4q^{2}-9q^{3}+2^{4}q^{4}-54q^{5}+6^{2}q^{6}+\cdots\) |
42.6.a.b |
$42$ |
$6$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$6.736$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.6.a.b |
$1$ |
$1$ |
\(-4\) |
\(-9\) |
\(44\) |
\(-49\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-4q^{2}-9q^{3}+2^{4}q^{4}+44q^{5}+6^{2}q^{6}+\cdots\) |
42.6.a.c |
$42$ |
$6$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$6.736$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.6.a.c |
$1$ |
$1$ |
\(-4\) |
\(9\) |
\(-72\) |
\(49\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-4q^{2}+9q^{3}+2^{4}q^{4}-72q^{5}-6^{2}q^{6}+\cdots\) |
42.6.a.d |
$42$ |
$6$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$6.736$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.6.a.d |
$1$ |
$0$ |
\(-4\) |
\(9\) |
\(26\) |
\(-49\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-4q^{2}+9q^{3}+2^{4}q^{4}+26q^{5}-6^{2}q^{6}+\cdots\) |
42.6.a.e |
$42$ |
$6$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$6.736$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.6.a.e |
$1$ |
$0$ |
\(4\) |
\(-9\) |
\(76\) |
\(-49\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+4q^{2}-9q^{3}+2^{4}q^{4}+76q^{5}-6^{2}q^{6}+\cdots\) |
42.6.a.f |
$42$ |
$6$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$6.736$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.6.a.f |
$1$ |
$0$ |
\(4\) |
\(9\) |
\(24\) |
\(49\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+4q^{2}+9q^{3}+2^{4}q^{4}+24q^{5}+6^{2}q^{6}+\cdots\) |
42.6.d.a |
$42$ |
$6$ |
42.d |
21.c |
$2$ |
$12$ |
$12$ |
$6.736$ |
\(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.6.d.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-252\) |
|
$2^{15}\cdot 3^{6}\cdot 5^{4}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{1}q^{2}+\beta _{3}q^{3}-2^{4}q^{4}+(\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\) |
42.6.e.a |
$42$ |
$6$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$6.736$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.6.e.a |
$2$ |
$0$ |
\(-4\) |
\(-9\) |
\(6\) |
\(119\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-4+4\zeta_{6})q^{2}-9\zeta_{6}q^{3}-2^{4}\zeta_{6}q^{4}+\cdots\) |
42.6.e.b |
$42$ |
$6$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$6.736$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.6.e.b |
$2$ |
$0$ |
\(4\) |
\(9\) |
\(-86\) |
\(49\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(4-4\zeta_{6})q^{2}+9\zeta_{6}q^{3}-2^{4}\zeta_{6}q^{4}+\cdots\) |
42.6.e.c |
$42$ |
$6$ |
42.e |
7.c |
$3$ |
$4$ |
$2$ |
$6.736$ |
\(\Q(\sqrt{-3}, \sqrt{9601})\) |
None |
|
✓ |
|
|
42.6.e.c |
$2$ |
$0$ |
\(-8\) |
\(18\) |
\(53\) |
\(6\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-4\beta _{2}q^{2}+(9-9\beta _{2})q^{3}+(-2^{4}+2^{4}\beta _{2}+\cdots)q^{4}+\cdots\) |
42.6.e.d |
$42$ |
$6$ |
42.e |
7.c |
$3$ |
$4$ |
$2$ |
$6.736$ |
\(\Q(\sqrt{-3}, \sqrt{505})\) |
None |
|
✓ |
|
|
42.6.e.d |
$2$ |
$0$ |
\(8\) |
\(-18\) |
\(-17\) |
\(-408\) |
|
$7$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(4-4\beta _{1})q^{2}-9\beta _{1}q^{3}-2^{4}\beta _{1}q^{4}+\cdots\) |
42.6.f.a |
$42$ |
$6$ |
42.f |
21.g |
$6$ |
$28$ |
$14$ |
$6.736$ |
|
None |
|
✓ |
✓ |
✓ |
42.6.f.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-154\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
42.7.b.a |
$42$ |
$7$ |
42.b |
3.b |
$2$ |
$12$ |
$12$ |
$9.662$ |
\(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.7.b.a |
$2$ |
$0$ |
\(0\) |
\(-84\) |
\(0\) |
\(0\) |
|
$2^{13}\cdot 3^{9}\cdot 7^{6}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{3}q^{2}+(-7+\beta _{1})q^{3}-2^{5}q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\) |
42.7.c.a |
$42$ |
$7$ |
42.c |
7.b |
$2$ |
$8$ |
$8$ |
$9.662$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.7.c.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-212\) |
|
$2^{9}\cdot 3^{8}\cdot 7$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{2}q^{2}+\beta _{1}q^{3}+2^{5}q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\) |
42.7.g.a |
$42$ |
$7$ |
42.g |
7.d |
$6$ |
$8$ |
$4$ |
$9.662$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
✓ |
|
|
42.7.g.a |
$2$ |
$0$ |
\(0\) |
\(-108\) |
\(462\) |
\(580\) |
|
$2^{8}\cdot 3^{2}\cdot 7^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{3}q^{2}+(-18+9\beta _{1})q^{3}-2^{5}\beta _{1}q^{4}+\cdots\) |
42.7.g.b |
$42$ |
$7$ |
42.g |
7.d |
$6$ |
$8$ |
$4$ |
$9.662$ |
\(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
None |
|
✓ |
|
|
42.7.g.b |
$2$ |
$0$ |
\(0\) |
\(108\) |
\(210\) |
\(-608\) |
|
$2^{6}\cdot 3^{2}\cdot 7^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta _{5}q^{2}+(9+9\beta _{1})q^{3}+(-2^{5}+2^{5}\beta _{1}+\cdots)q^{4}+\cdots\) |
42.7.h.a |
$42$ |
$7$ |
42.h |
21.h |
$6$ |
$32$ |
$16$ |
$9.662$ |
|
None |
|
✓ |
✓ |
✓ |
42.7.h.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-1684\) |
|
|
$\mathrm{SU}(2)[C_{6}]$ |
|
42.8.a.a |
$42$ |
$8$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$13.120$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.8.a.a |
$1$ |
$0$ |
\(-8\) |
\(-27\) |
\(-410\) |
\(-343\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-8q^{2}-3^{3}q^{3}+2^{6}q^{4}-410q^{5}+\cdots\) |
42.8.a.b |
$42$ |
$8$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$13.120$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.8.a.b |
$1$ |
$1$ |
\(-8\) |
\(-27\) |
\(-18\) |
\(343\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-8q^{2}-3^{3}q^{3}+2^{6}q^{4}-18q^{5}+6^{3}q^{6}+\cdots\) |
42.8.a.c |
$42$ |
$8$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$13.120$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.8.a.c |
$1$ |
$1$ |
\(-8\) |
\(27\) |
\(-122\) |
\(-343\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-8q^{2}+3^{3}q^{3}+2^{6}q^{4}-122q^{5}+\cdots\) |
42.8.a.d |
$42$ |
$8$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$13.120$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.8.a.d |
$1$ |
$0$ |
\(-8\) |
\(27\) |
\(270\) |
\(343\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q-8q^{2}+3^{3}q^{3}+2^{6}q^{4}+270q^{5}+\cdots\) |
42.8.a.e |
$42$ |
$8$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$13.120$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.8.a.e |
$1$ |
$0$ |
\(8\) |
\(-27\) |
\(30\) |
\(343\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+8q^{2}-3^{3}q^{3}+2^{6}q^{4}+30q^{5}-6^{3}q^{6}+\cdots\) |
42.8.a.f |
$42$ |
$8$ |
42.a |
1.a |
$1$ |
$1$ |
$1$ |
$13.120$ |
\(\Q\) |
None |
✓ |
✓ |
✓ |
✓ |
42.8.a.f |
$1$ |
$0$ |
\(8\) |
\(27\) |
\(470\) |
\(-343\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+8q^{2}+3^{3}q^{3}+2^{6}q^{4}+470q^{5}+\cdots\) |
42.8.d.a |
$42$ |
$8$ |
42.d |
21.c |
$2$ |
$20$ |
$20$ |
$13.120$ |
\(\mathbb{Q}[x]/(x^{20} + \cdots)\) |
None |
|
✓ |
✓ |
✓ |
42.8.d.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(892\) |
|
$2^{47}\cdot 3^{24}\cdot 7^{6}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{4}q^{2}+\beta _{3}q^{3}-2^{6}q^{4}+\beta _{1}q^{5}+\cdots\) |
42.8.e.a |
$42$ |
$8$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$13.120$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.8.e.a |
$2$ |
$0$ |
\(8\) |
\(-27\) |
\(-165\) |
\(-343\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(8-8\zeta_{6})q^{2}-3^{3}\zeta_{6}q^{3}-2^{6}\zeta_{6}q^{4}+\cdots\) |
42.8.e.b |
$42$ |
$8$ |
42.e |
7.c |
$3$ |
$2$ |
$1$ |
$13.120$ |
\(\Q(\sqrt{-3}) \) |
None |
|
✓ |
|
|
42.8.e.b |
$2$ |
$0$ |
\(8\) |
\(-27\) |
\(290\) |
\(1477\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(8-8\zeta_{6})q^{2}-3^{3}\zeta_{6}q^{3}-2^{6}\zeta_{6}q^{4}+\cdots\) |
42.8.e.c |
$42$ |
$8$ |
42.e |
7.c |
$3$ |
$4$ |
$2$ |
$13.120$ |
\(\Q(\sqrt{-3}, \sqrt{2881})\) |
None |
|
✓ |
|
|
42.8.e.c |
$2$ |
$0$ |
\(-16\) |
\(54\) |
\(-309\) |
\(868\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-8\beta _{1}q^{2}+(3^{3}-3^{3}\beta _{1})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\) |
42.8.e.d |
$42$ |
$8$ |
42.e |
7.c |
$3$ |
$6$ |
$3$ |
$13.120$ |
\(\mathbb{Q}[x]/(x^{6} + \cdots)\) |
None |
|
✓ |
|
|
42.8.e.d |
$2$ |
$0$ |
\(-24\) |
\(-81\) |
\(70\) |
\(-895\) |
|
$2^{2}\cdot 3\cdot 7$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-8\beta _{1}q^{2}+(-3^{3}+3^{3}\beta _{1})q^{3}+(-2^{6}+\cdots)q^{4}+\cdots\) |