Properties

Label 42.2.e.b
Level $42$
Weight $2$
Character orbit 42.e
Analytic conductor $0.335$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 42.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.335371688489\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{3} -\zeta_{6} q^{4} + ( -3 + 3 \zeta_{6} ) q^{5} - q^{6} + ( 2 + \zeta_{6} ) q^{7} - q^{8} + ( -1 + \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} -\zeta_{6} q^{3} -\zeta_{6} q^{4} + ( -3 + 3 \zeta_{6} ) q^{5} - q^{6} + ( 2 + \zeta_{6} ) q^{7} - q^{8} + ( -1 + \zeta_{6} ) q^{9} + 3 \zeta_{6} q^{10} -3 \zeta_{6} q^{11} + ( -1 + \zeta_{6} ) q^{12} -4 q^{13} + ( 3 - 2 \zeta_{6} ) q^{14} + 3 q^{15} + ( -1 + \zeta_{6} ) q^{16} + \zeta_{6} q^{18} + ( 4 - 4 \zeta_{6} ) q^{19} + 3 q^{20} + ( 1 - 3 \zeta_{6} ) q^{21} -3 q^{22} + \zeta_{6} q^{24} -4 \zeta_{6} q^{25} + ( -4 + 4 \zeta_{6} ) q^{26} + q^{27} + ( 1 - 3 \zeta_{6} ) q^{28} + 9 q^{29} + ( 3 - 3 \zeta_{6} ) q^{30} + \zeta_{6} q^{31} + \zeta_{6} q^{32} + ( -3 + 3 \zeta_{6} ) q^{33} + ( -9 + 6 \zeta_{6} ) q^{35} + q^{36} + ( -8 + 8 \zeta_{6} ) q^{37} -4 \zeta_{6} q^{38} + 4 \zeta_{6} q^{39} + ( 3 - 3 \zeta_{6} ) q^{40} + ( -2 - \zeta_{6} ) q^{42} -10 q^{43} + ( -3 + 3 \zeta_{6} ) q^{44} -3 \zeta_{6} q^{45} + ( 6 - 6 \zeta_{6} ) q^{47} + q^{48} + ( 3 + 5 \zeta_{6} ) q^{49} -4 q^{50} + 4 \zeta_{6} q^{52} + 3 \zeta_{6} q^{53} + ( 1 - \zeta_{6} ) q^{54} + 9 q^{55} + ( -2 - \zeta_{6} ) q^{56} -4 q^{57} + ( 9 - 9 \zeta_{6} ) q^{58} -3 \zeta_{6} q^{59} -3 \zeta_{6} q^{60} + ( 10 - 10 \zeta_{6} ) q^{61} + q^{62} + ( -3 + 2 \zeta_{6} ) q^{63} + q^{64} + ( 12 - 12 \zeta_{6} ) q^{65} + 3 \zeta_{6} q^{66} + 10 \zeta_{6} q^{67} + ( -3 + 9 \zeta_{6} ) q^{70} -6 q^{71} + ( 1 - \zeta_{6} ) q^{72} -2 \zeta_{6} q^{73} + 8 \zeta_{6} q^{74} + ( -4 + 4 \zeta_{6} ) q^{75} -4 q^{76} + ( 3 - 9 \zeta_{6} ) q^{77} + 4 q^{78} + ( 1 - \zeta_{6} ) q^{79} -3 \zeta_{6} q^{80} -\zeta_{6} q^{81} -9 q^{83} + ( -3 + 2 \zeta_{6} ) q^{84} + ( -10 + 10 \zeta_{6} ) q^{86} -9 \zeta_{6} q^{87} + 3 \zeta_{6} q^{88} + ( -6 + 6 \zeta_{6} ) q^{89} -3 q^{90} + ( -8 - 4 \zeta_{6} ) q^{91} + ( 1 - \zeta_{6} ) q^{93} -6 \zeta_{6} q^{94} + 12 \zeta_{6} q^{95} + ( 1 - \zeta_{6} ) q^{96} - q^{97} + ( 8 - 3 \zeta_{6} ) q^{98} + 3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - q^{3} - q^{4} - 3q^{5} - 2q^{6} + 5q^{7} - 2q^{8} - q^{9} + O(q^{10}) \) \( 2q + q^{2} - q^{3} - q^{4} - 3q^{5} - 2q^{6} + 5q^{7} - 2q^{8} - q^{9} + 3q^{10} - 3q^{11} - q^{12} - 8q^{13} + 4q^{14} + 6q^{15} - q^{16} + q^{18} + 4q^{19} + 6q^{20} - q^{21} - 6q^{22} + q^{24} - 4q^{25} - 4q^{26} + 2q^{27} - q^{28} + 18q^{29} + 3q^{30} + q^{31} + q^{32} - 3q^{33} - 12q^{35} + 2q^{36} - 8q^{37} - 4q^{38} + 4q^{39} + 3q^{40} - 5q^{42} - 20q^{43} - 3q^{44} - 3q^{45} + 6q^{47} + 2q^{48} + 11q^{49} - 8q^{50} + 4q^{52} + 3q^{53} + q^{54} + 18q^{55} - 5q^{56} - 8q^{57} + 9q^{58} - 3q^{59} - 3q^{60} + 10q^{61} + 2q^{62} - 4q^{63} + 2q^{64} + 12q^{65} + 3q^{66} + 10q^{67} + 3q^{70} - 12q^{71} + q^{72} - 2q^{73} + 8q^{74} - 4q^{75} - 8q^{76} - 3q^{77} + 8q^{78} + q^{79} - 3q^{80} - q^{81} - 18q^{83} - 4q^{84} - 10q^{86} - 9q^{87} + 3q^{88} - 6q^{89} - 6q^{90} - 20q^{91} + q^{93} - 6q^{94} + 12q^{95} + q^{96} - 2q^{97} + 13q^{98} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i −1.50000 2.59808i −1.00000 2.50000 0.866025i −1.00000 −0.500000 0.866025i 1.50000 2.59808i
37.1 0.500000 0.866025i −0.500000 0.866025i −0.500000 0.866025i −1.50000 + 2.59808i −1.00000 2.50000 + 0.866025i −1.00000 −0.500000 + 0.866025i 1.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.2.e.b 2
3.b odd 2 1 126.2.g.b 2
4.b odd 2 1 336.2.q.d 2
5.b even 2 1 1050.2.i.e 2
5.c odd 4 2 1050.2.o.b 4
7.b odd 2 1 294.2.e.f 2
7.c even 3 1 inner 42.2.e.b 2
7.c even 3 1 294.2.a.d 1
7.d odd 6 1 294.2.a.a 1
7.d odd 6 1 294.2.e.f 2
8.b even 2 1 1344.2.q.v 2
8.d odd 2 1 1344.2.q.j 2
9.c even 3 1 1134.2.e.a 2
9.c even 3 1 1134.2.h.p 2
9.d odd 6 1 1134.2.e.p 2
9.d odd 6 1 1134.2.h.a 2
12.b even 2 1 1008.2.s.n 2
21.c even 2 1 882.2.g.b 2
21.g even 6 1 882.2.a.k 1
21.g even 6 1 882.2.g.b 2
21.h odd 6 1 126.2.g.b 2
21.h odd 6 1 882.2.a.g 1
28.d even 2 1 2352.2.q.m 2
28.f even 6 1 2352.2.a.n 1
28.f even 6 1 2352.2.q.m 2
28.g odd 6 1 336.2.q.d 2
28.g odd 6 1 2352.2.a.m 1
35.i odd 6 1 7350.2.a.cw 1
35.j even 6 1 1050.2.i.e 2
35.j even 6 1 7350.2.a.ce 1
35.l odd 12 2 1050.2.o.b 4
56.j odd 6 1 9408.2.a.db 1
56.k odd 6 1 1344.2.q.j 2
56.k odd 6 1 9408.2.a.bu 1
56.m even 6 1 9408.2.a.bm 1
56.p even 6 1 1344.2.q.v 2
56.p even 6 1 9408.2.a.d 1
63.g even 3 1 1134.2.e.a 2
63.h even 3 1 1134.2.h.p 2
63.j odd 6 1 1134.2.h.a 2
63.n odd 6 1 1134.2.e.p 2
84.j odd 6 1 7056.2.a.bz 1
84.n even 6 1 1008.2.s.n 2
84.n even 6 1 7056.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.b 2 1.a even 1 1 trivial
42.2.e.b 2 7.c even 3 1 inner
126.2.g.b 2 3.b odd 2 1
126.2.g.b 2 21.h odd 6 1
294.2.a.a 1 7.d odd 6 1
294.2.a.d 1 7.c even 3 1
294.2.e.f 2 7.b odd 2 1
294.2.e.f 2 7.d odd 6 1
336.2.q.d 2 4.b odd 2 1
336.2.q.d 2 28.g odd 6 1
882.2.a.g 1 21.h odd 6 1
882.2.a.k 1 21.g even 6 1
882.2.g.b 2 21.c even 2 1
882.2.g.b 2 21.g even 6 1
1008.2.s.n 2 12.b even 2 1
1008.2.s.n 2 84.n even 6 1
1050.2.i.e 2 5.b even 2 1
1050.2.i.e 2 35.j even 6 1
1050.2.o.b 4 5.c odd 4 2
1050.2.o.b 4 35.l odd 12 2
1134.2.e.a 2 9.c even 3 1
1134.2.e.a 2 63.g even 3 1
1134.2.e.p 2 9.d odd 6 1
1134.2.e.p 2 63.n odd 6 1
1134.2.h.a 2 9.d odd 6 1
1134.2.h.a 2 63.j odd 6 1
1134.2.h.p 2 9.c even 3 1
1134.2.h.p 2 63.h even 3 1
1344.2.q.j 2 8.d odd 2 1
1344.2.q.j 2 56.k odd 6 1
1344.2.q.v 2 8.b even 2 1
1344.2.q.v 2 56.p even 6 1
2352.2.a.m 1 28.g odd 6 1
2352.2.a.n 1 28.f even 6 1
2352.2.q.m 2 28.d even 2 1
2352.2.q.m 2 28.f even 6 1
7056.2.a.g 1 84.n even 6 1
7056.2.a.bz 1 84.j odd 6 1
7350.2.a.ce 1 35.j even 6 1
7350.2.a.cw 1 35.i odd 6 1
9408.2.a.d 1 56.p even 6 1
9408.2.a.bm 1 56.m even 6 1
9408.2.a.bu 1 56.k odd 6 1
9408.2.a.db 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 3 T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(42, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 + 3 T + 4 T^{2} + 15 T^{3} + 25 T^{4} \)
$7$ \( 1 - 5 T + 7 T^{2} \)
$11$ \( 1 + 3 T - 2 T^{2} + 33 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 4 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 17 T^{2} + 289 T^{4} \)
$19$ \( 1 - 4 T - 3 T^{2} - 76 T^{3} + 361 T^{4} \)
$23$ \( 1 - 23 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 9 T + 29 T^{2} )^{2} \)
$31$ \( 1 - T - 30 T^{2} - 31 T^{3} + 961 T^{4} \)
$37$ \( 1 + 8 T + 27 T^{2} + 296 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 10 T + 43 T^{2} )^{2} \)
$47$ \( 1 - 6 T - 11 T^{2} - 282 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 3 T - 44 T^{2} - 159 T^{3} + 2809 T^{4} \)
$59$ \( 1 + 3 T - 50 T^{2} + 177 T^{3} + 3481 T^{4} \)
$61$ \( 1 - 10 T + 39 T^{2} - 610 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 10 T + 33 T^{2} - 670 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 6 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 2 T - 69 T^{2} + 146 T^{3} + 5329 T^{4} \)
$79$ \( 1 - T - 78 T^{2} - 79 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 9 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 6 T - 53 T^{2} + 534 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 + T + 97 T^{2} )^{2} \)
show more
show less