Properties

Label 405.3.l.n.28.2
Level $405$
Weight $3$
Character 405.28
Analytic conductor $11.035$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(28,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 9])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.2
Character \(\chi\) \(=\) 405.28
Dual form 405.3.l.n.217.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.78913 - 0.747344i) q^{2} +(3.75659 + 2.16887i) q^{4} +(4.50635 - 2.16628i) q^{5} +(-11.5096 - 3.08399i) q^{7} +(-0.689596 - 0.689596i) q^{8} +(-14.1877 + 2.67423i) q^{10} +(6.14980 + 10.6518i) q^{11} +(-0.906368 + 0.242861i) q^{13} +(29.7970 + 17.2033i) q^{14} +(-7.26748 - 12.5876i) q^{16} +(7.47753 - 7.47753i) q^{17} +25.0163i q^{19} +(21.6269 + 1.63586i) q^{20} +(-9.19203 - 34.3051i) q^{22} +(-24.7385 + 6.62867i) q^{23} +(15.6144 - 19.5241i) q^{25} +2.70947 q^{26} +(-36.5482 - 36.5482i) q^{28} +(2.93013 - 1.69171i) q^{29} +(-14.4414 + 25.0133i) q^{31} +(11.8723 + 44.3078i) q^{32} +(-26.4441 + 15.2675i) q^{34} +(-58.5472 + 11.0355i) q^{35} +(-2.59583 + 2.59583i) q^{37} +(18.6958 - 69.7736i) q^{38} +(-4.60142 - 1.61370i) q^{40} +(11.6697 - 20.2125i) q^{41} +(-4.25843 + 15.8927i) q^{43} +53.3525i q^{44} +73.9528 q^{46} +(66.9844 + 17.9484i) q^{47} +(80.5250 + 46.4912i) q^{49} +(-58.1418 + 42.7857i) q^{50} +(-3.93159 - 1.05347i) q^{52} +(27.6894 + 27.6894i) q^{53} +(50.7879 + 34.6784i) q^{55} +(5.81027 + 10.0637i) q^{56} +(-9.43678 + 2.52858i) q^{58} +(75.9971 + 43.8770i) q^{59} +(39.5244 + 68.4583i) q^{61} +(58.9725 - 58.9725i) q^{62} -74.3129i q^{64} +(-3.55831 + 3.05786i) q^{65} +(-16.5841 - 61.8926i) q^{67} +(44.3078 - 11.8723i) q^{68} +(171.543 + 12.9755i) q^{70} +88.7641 q^{71} +(12.8174 + 12.8174i) q^{73} +(9.18007 - 5.30012i) q^{74} +(-54.2571 + 93.9761i) q^{76} +(-37.9319 - 141.564i) q^{77} +(-26.2915 + 15.1794i) q^{79} +(-60.0182 - 40.9810i) q^{80} +(-47.6540 + 47.6540i) q^{82} +(-39.3035 + 146.683i) q^{83} +(17.4980 - 49.8948i) q^{85} +(23.7546 - 41.1442i) q^{86} +(3.10454 - 11.5863i) q^{88} +117.891i q^{89} +11.1809 q^{91} +(-107.309 - 28.7535i) q^{92} +(-173.414 - 100.121i) q^{94} +(54.1923 + 112.732i) q^{95} +(-18.4817 - 4.95215i) q^{97} +(-189.850 - 189.850i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{7} + 80 q^{10} - 40 q^{13} + 152 q^{16} + 136 q^{22} + 32 q^{25} - 224 q^{28} - 200 q^{31} + 32 q^{37} + 48 q^{40} - 136 q^{43} + 304 q^{46} - 640 q^{52} + 496 q^{55} - 48 q^{58} + 280 q^{61}+ \cdots - 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.78913 0.747344i −1.39456 0.373672i −0.518173 0.855276i \(-0.673388\pi\)
−0.876389 + 0.481604i \(0.840054\pi\)
\(3\) 0 0
\(4\) 3.75659 + 2.16887i 0.939149 + 0.542218i
\(5\) 4.50635 2.16628i 0.901271 0.433256i
\(6\) 0 0
\(7\) −11.5096 3.08399i −1.64423 0.440570i −0.686242 0.727374i \(-0.740741\pi\)
−0.957989 + 0.286803i \(0.907407\pi\)
\(8\) −0.689596 0.689596i −0.0861995 0.0861995i
\(9\) 0 0
\(10\) −14.1877 + 2.67423i −1.41877 + 0.267423i
\(11\) 6.14980 + 10.6518i 0.559073 + 0.968342i 0.997574 + 0.0696117i \(0.0221760\pi\)
−0.438502 + 0.898730i \(0.644491\pi\)
\(12\) 0 0
\(13\) −0.906368 + 0.242861i −0.0697206 + 0.0186816i −0.293511 0.955956i \(-0.594824\pi\)
0.223790 + 0.974637i \(0.428157\pi\)
\(14\) 29.7970 + 17.2033i 2.12835 + 1.22881i
\(15\) 0 0
\(16\) −7.26748 12.5876i −0.454218 0.786728i
\(17\) 7.47753 7.47753i 0.439855 0.439855i −0.452108 0.891963i \(-0.649328\pi\)
0.891963 + 0.452108i \(0.149328\pi\)
\(18\) 0 0
\(19\) 25.0163i 1.31665i 0.752735 + 0.658323i \(0.228734\pi\)
−0.752735 + 0.658323i \(0.771266\pi\)
\(20\) 21.6269 + 1.63586i 1.08135 + 0.0817929i
\(21\) 0 0
\(22\) −9.19203 34.3051i −0.417819 1.55932i
\(23\) −24.7385 + 6.62867i −1.07559 + 0.288203i −0.752788 0.658264i \(-0.771291\pi\)
−0.322801 + 0.946467i \(0.604625\pi\)
\(24\) 0 0
\(25\) 15.6144 19.5241i 0.624578 0.780962i
\(26\) 2.70947 0.104211
\(27\) 0 0
\(28\) −36.5482 36.5482i −1.30529 1.30529i
\(29\) 2.93013 1.69171i 0.101039 0.0583348i −0.448629 0.893718i \(-0.648088\pi\)
0.549668 + 0.835383i \(0.314754\pi\)
\(30\) 0 0
\(31\) −14.4414 + 25.0133i −0.465853 + 0.806881i −0.999240 0.0389908i \(-0.987586\pi\)
0.533387 + 0.845871i \(0.320919\pi\)
\(32\) 11.8723 + 44.3078i 0.371008 + 1.38462i
\(33\) 0 0
\(34\) −26.4441 + 15.2675i −0.777766 + 0.449044i
\(35\) −58.5472 + 11.0355i −1.67278 + 0.315300i
\(36\) 0 0
\(37\) −2.59583 + 2.59583i −0.0701575 + 0.0701575i −0.741315 0.671157i \(-0.765797\pi\)
0.671157 + 0.741315i \(0.265797\pi\)
\(38\) 18.6958 69.7736i 0.491994 1.83615i
\(39\) 0 0
\(40\) −4.60142 1.61370i −0.115036 0.0403426i
\(41\) 11.6697 20.2125i 0.284627 0.492989i −0.687891 0.725814i \(-0.741463\pi\)
0.972519 + 0.232825i \(0.0747968\pi\)
\(42\) 0 0
\(43\) −4.25843 + 15.8927i −0.0990334 + 0.369598i −0.997600 0.0692394i \(-0.977943\pi\)
0.898567 + 0.438837i \(0.144609\pi\)
\(44\) 53.3525i 1.21256i
\(45\) 0 0
\(46\) 73.9528 1.60767
\(47\) 66.9844 + 17.9484i 1.42520 + 0.381881i 0.887326 0.461143i \(-0.152561\pi\)
0.537875 + 0.843025i \(0.319227\pi\)
\(48\) 0 0
\(49\) 80.5250 + 46.4912i 1.64337 + 0.948799i
\(50\) −58.1418 + 42.7857i −1.16284 + 0.855714i
\(51\) 0 0
\(52\) −3.93159 1.05347i −0.0756075 0.0202590i
\(53\) 27.6894 + 27.6894i 0.522442 + 0.522442i 0.918308 0.395866i \(-0.129556\pi\)
−0.395866 + 0.918308i \(0.629556\pi\)
\(54\) 0 0
\(55\) 50.7879 + 34.6784i 0.923416 + 0.630517i
\(56\) 5.81027 + 10.0637i 0.103755 + 0.179709i
\(57\) 0 0
\(58\) −9.43678 + 2.52858i −0.162703 + 0.0435962i
\(59\) 75.9971 + 43.8770i 1.28809 + 0.743677i 0.978313 0.207133i \(-0.0664132\pi\)
0.309774 + 0.950810i \(0.399747\pi\)
\(60\) 0 0
\(61\) 39.5244 + 68.4583i 0.647942 + 1.12227i 0.983614 + 0.180289i \(0.0577032\pi\)
−0.335672 + 0.941979i \(0.608963\pi\)
\(62\) 58.9725 58.9725i 0.951169 0.951169i
\(63\) 0 0
\(64\) 74.3129i 1.16114i
\(65\) −3.55831 + 3.05786i −0.0547432 + 0.0470441i
\(66\) 0 0
\(67\) −16.5841 61.8926i −0.247523 0.923769i −0.972098 0.234574i \(-0.924631\pi\)
0.724575 0.689196i \(-0.242036\pi\)
\(68\) 44.3078 11.8723i 0.651586 0.174592i
\(69\) 0 0
\(70\) 171.543 + 12.9755i 2.45061 + 0.185364i
\(71\) 88.7641 1.25020 0.625099 0.780546i \(-0.285059\pi\)
0.625099 + 0.780546i \(0.285059\pi\)
\(72\) 0 0
\(73\) 12.8174 + 12.8174i 0.175581 + 0.175581i 0.789426 0.613845i \(-0.210378\pi\)
−0.613845 + 0.789426i \(0.710378\pi\)
\(74\) 9.18007 5.30012i 0.124055 0.0716232i
\(75\) 0 0
\(76\) −54.2571 + 93.9761i −0.713909 + 1.23653i
\(77\) −37.9319 141.564i −0.492622 1.83849i
\(78\) 0 0
\(79\) −26.2915 + 15.1794i −0.332804 + 0.192144i −0.657085 0.753816i \(-0.728211\pi\)
0.324281 + 0.945961i \(0.394878\pi\)
\(80\) −60.0182 40.9810i −0.750228 0.512262i
\(81\) 0 0
\(82\) −47.6540 + 47.6540i −0.581147 + 0.581147i
\(83\) −39.3035 + 146.683i −0.473536 + 1.76726i 0.153372 + 0.988168i \(0.450987\pi\)
−0.626909 + 0.779093i \(0.715680\pi\)
\(84\) 0 0
\(85\) 17.4980 49.8948i 0.205858 0.586998i
\(86\) 23.7546 41.1442i 0.276216 0.478421i
\(87\) 0 0
\(88\) 3.10454 11.5863i 0.0352788 0.131662i
\(89\) 117.891i 1.32462i 0.749231 + 0.662309i \(0.230423\pi\)
−0.749231 + 0.662309i \(0.769577\pi\)
\(90\) 0 0
\(91\) 11.1809 0.122867
\(92\) −107.309 28.7535i −1.16641 0.312538i
\(93\) 0 0
\(94\) −173.414 100.121i −1.84483 1.06511i
\(95\) 54.1923 + 112.732i 0.570445 + 1.18666i
\(96\) 0 0
\(97\) −18.4817 4.95215i −0.190533 0.0510531i 0.162291 0.986743i \(-0.448112\pi\)
−0.352824 + 0.935690i \(0.614778\pi\)
\(98\) −189.850 189.850i −1.93724 1.93724i
\(99\) 0 0
\(100\) 101.002 39.4783i 1.01002 0.394783i
\(101\) −9.82532 17.0179i −0.0972804 0.168495i 0.813278 0.581876i \(-0.197681\pi\)
−0.910558 + 0.413381i \(0.864348\pi\)
\(102\) 0 0
\(103\) 165.589 44.3694i 1.60766 0.430770i 0.660314 0.750990i \(-0.270423\pi\)
0.947343 + 0.320219i \(0.103757\pi\)
\(104\) 0.792503 + 0.457552i 0.00762022 + 0.00439954i
\(105\) 0 0
\(106\) −56.5358 97.9229i −0.533357 0.923801i
\(107\) 10.5840 10.5840i 0.0989155 0.0989155i −0.655917 0.754833i \(-0.727718\pi\)
0.754833 + 0.655917i \(0.227718\pi\)
\(108\) 0 0
\(109\) 9.08051i 0.0833075i 0.999132 + 0.0416537i \(0.0132626\pi\)
−0.999132 + 0.0416537i \(0.986737\pi\)
\(110\) −115.737 134.678i −1.05216 1.22435i
\(111\) 0 0
\(112\) 44.8257 + 167.292i 0.400230 + 1.49368i
\(113\) −148.642 + 39.8284i −1.31541 + 0.352464i −0.847258 0.531182i \(-0.821748\pi\)
−0.468155 + 0.883646i \(0.655081\pi\)
\(114\) 0 0
\(115\) −97.1211 + 83.4618i −0.844531 + 0.725755i
\(116\) 14.6764 0.126521
\(117\) 0 0
\(118\) −179.174 179.174i −1.51843 1.51843i
\(119\) −109.124 + 63.0029i −0.917010 + 0.529436i
\(120\) 0 0
\(121\) −15.1400 + 26.2233i −0.125124 + 0.216722i
\(122\) −59.0767 220.477i −0.484235 1.80719i
\(123\) 0 0
\(124\) −108.501 + 62.6432i −0.875010 + 0.505187i
\(125\) 28.0696 121.808i 0.224557 0.974461i
\(126\) 0 0
\(127\) −115.169 + 115.169i −0.906841 + 0.906841i −0.996016 0.0891750i \(-0.971577\pi\)
0.0891750 + 0.996016i \(0.471577\pi\)
\(128\) −8.04831 + 30.0367i −0.0628774 + 0.234662i
\(129\) 0 0
\(130\) 12.2099 5.86949i 0.0939219 0.0451499i
\(131\) 9.42889 16.3313i 0.0719762 0.124667i −0.827791 0.561036i \(-0.810403\pi\)
0.899767 + 0.436370i \(0.143736\pi\)
\(132\) 0 0
\(133\) 77.1500 287.928i 0.580076 2.16487i
\(134\) 185.020i 1.38075i
\(135\) 0 0
\(136\) −10.3129 −0.0758305
\(137\) 73.0600 + 19.5764i 0.533284 + 0.142893i 0.515405 0.856947i \(-0.327642\pi\)
0.0178799 + 0.999840i \(0.494308\pi\)
\(138\) 0 0
\(139\) 38.9303 + 22.4764i 0.280074 + 0.161701i 0.633457 0.773778i \(-0.281635\pi\)
−0.353383 + 0.935479i \(0.614969\pi\)
\(140\) −243.873 85.5254i −1.74195 0.610896i
\(141\) 0 0
\(142\) −247.574 66.3373i −1.74348 0.467164i
\(143\) −8.16088 8.16088i −0.0570691 0.0570691i
\(144\) 0 0
\(145\) 9.53947 13.9709i 0.0657894 0.0963512i
\(146\) −26.1703 45.3283i −0.179249 0.310468i
\(147\) 0 0
\(148\) −15.3815 + 4.12146i −0.103929 + 0.0278477i
\(149\) −142.228 82.1151i −0.954547 0.551108i −0.0600567 0.998195i \(-0.519128\pi\)
−0.894491 + 0.447087i \(0.852461\pi\)
\(150\) 0 0
\(151\) −19.2011 33.2572i −0.127159 0.220247i 0.795416 0.606064i \(-0.207253\pi\)
−0.922575 + 0.385818i \(0.873919\pi\)
\(152\) 17.2511 17.2511i 0.113494 0.113494i
\(153\) 0 0
\(154\) 423.187i 2.74797i
\(155\) −10.8924 + 144.003i −0.0702733 + 0.929052i
\(156\) 0 0
\(157\) −16.8614 62.9277i −0.107398 0.400814i 0.891208 0.453594i \(-0.149858\pi\)
−0.998606 + 0.0527803i \(0.983192\pi\)
\(158\) 84.6745 22.6885i 0.535915 0.143598i
\(159\) 0 0
\(160\) 149.484 + 173.948i 0.934274 + 1.08718i
\(161\) 305.174 1.89549
\(162\) 0 0
\(163\) 20.9849 + 20.9849i 0.128742 + 0.128742i 0.768542 0.639800i \(-0.220983\pi\)
−0.639800 + 0.768542i \(0.720983\pi\)
\(164\) 87.6768 50.6202i 0.534615 0.308660i
\(165\) 0 0
\(166\) 219.245 379.743i 1.32075 2.28761i
\(167\) 24.2968 + 90.6768i 0.145490 + 0.542975i 0.999733 + 0.0231017i \(0.00735415\pi\)
−0.854243 + 0.519873i \(0.825979\pi\)
\(168\) 0 0
\(169\) −145.596 + 84.0598i −0.861513 + 0.497395i
\(170\) −86.0926 + 126.086i −0.506427 + 0.741682i
\(171\) 0 0
\(172\) −50.4664 + 50.4664i −0.293409 + 0.293409i
\(173\) 51.5809 192.502i 0.298155 1.11273i −0.640524 0.767938i \(-0.721283\pi\)
0.938679 0.344792i \(-0.112051\pi\)
\(174\) 0 0
\(175\) −239.928 + 176.560i −1.37102 + 1.00891i
\(176\) 89.3871 154.823i 0.507881 0.879676i
\(177\) 0 0
\(178\) 88.1051 328.813i 0.494973 1.84726i
\(179\) 45.6130i 0.254821i −0.991850 0.127411i \(-0.959333\pi\)
0.991850 0.127411i \(-0.0406666\pi\)
\(180\) 0 0
\(181\) −104.793 −0.578968 −0.289484 0.957183i \(-0.593484\pi\)
−0.289484 + 0.957183i \(0.593484\pi\)
\(182\) −31.1850 8.35600i −0.171346 0.0459121i
\(183\) 0 0
\(184\) 21.6307 + 12.4885i 0.117558 + 0.0678722i
\(185\) −6.07443 + 17.3210i −0.0328347 + 0.0936271i
\(186\) 0 0
\(187\) 125.634 + 33.6636i 0.671840 + 0.180019i
\(188\) 212.706 + 212.706i 1.13141 + 1.13141i
\(189\) 0 0
\(190\) −66.8994 354.925i −0.352102 1.86802i
\(191\) −50.6473 87.7237i −0.265169 0.459286i 0.702439 0.711744i \(-0.252094\pi\)
−0.967608 + 0.252458i \(0.918761\pi\)
\(192\) 0 0
\(193\) −273.261 + 73.2202i −1.41586 + 0.379379i −0.884014 0.467461i \(-0.845169\pi\)
−0.531848 + 0.846840i \(0.678502\pi\)
\(194\) 47.8468 + 27.6243i 0.246633 + 0.142394i
\(195\) 0 0
\(196\) 201.667 + 349.297i 1.02891 + 1.78213i
\(197\) 5.26310 5.26310i 0.0267163 0.0267163i −0.693622 0.720339i \(-0.743986\pi\)
0.720339 + 0.693622i \(0.243986\pi\)
\(198\) 0 0
\(199\) 141.070i 0.708895i −0.935076 0.354448i \(-0.884669\pi\)
0.935076 0.354448i \(-0.115331\pi\)
\(200\) −24.2314 + 2.69605i −0.121157 + 0.0134803i
\(201\) 0 0
\(202\) 14.6858 + 54.8081i 0.0727019 + 0.271327i
\(203\) −38.9419 + 10.4344i −0.191832 + 0.0514012i
\(204\) 0 0
\(205\) 8.80182 116.365i 0.0429357 0.567633i
\(206\) −495.007 −2.40295
\(207\) 0 0
\(208\) 9.64406 + 9.64406i 0.0463657 + 0.0463657i
\(209\) −266.468 + 153.845i −1.27496 + 0.736101i
\(210\) 0 0
\(211\) 22.5534 39.0637i 0.106888 0.185136i −0.807620 0.589703i \(-0.799245\pi\)
0.914508 + 0.404568i \(0.132578\pi\)
\(212\) 43.9632 + 164.073i 0.207374 + 0.773929i
\(213\) 0 0
\(214\) −37.4298 + 21.6101i −0.174906 + 0.100982i
\(215\) 15.2380 + 80.8431i 0.0708746 + 0.376014i
\(216\) 0 0
\(217\) 243.356 243.356i 1.12146 1.12146i
\(218\) 6.78627 25.3267i 0.0311297 0.116177i
\(219\) 0 0
\(220\) 115.576 + 240.425i 0.525348 + 1.09284i
\(221\) −4.96140 + 8.59339i −0.0224498 + 0.0388841i
\(222\) 0 0
\(223\) −1.45246 + 5.42064i −0.00651326 + 0.0243078i −0.969106 0.246645i \(-0.920672\pi\)
0.962593 + 0.270952i \(0.0873386\pi\)
\(224\) 546.580i 2.44009i
\(225\) 0 0
\(226\) 444.346 1.96613
\(227\) −73.4236 19.6738i −0.323452 0.0866686i 0.0934396 0.995625i \(-0.470214\pi\)
−0.416891 + 0.908956i \(0.636880\pi\)
\(228\) 0 0
\(229\) −47.7957 27.5948i −0.208715 0.120502i 0.391999 0.919966i \(-0.371784\pi\)
−0.600714 + 0.799464i \(0.705117\pi\)
\(230\) 333.257 160.203i 1.44895 0.696533i
\(231\) 0 0
\(232\) −3.18720 0.854007i −0.0137379 0.00368107i
\(233\) 96.4842 + 96.4842i 0.414095 + 0.414095i 0.883162 0.469067i \(-0.155410\pi\)
−0.469067 + 0.883162i \(0.655410\pi\)
\(234\) 0 0
\(235\) 340.737 64.2252i 1.44994 0.273299i
\(236\) 190.327 + 329.656i 0.806470 + 1.39685i
\(237\) 0 0
\(238\) 351.446 94.1696i 1.47666 0.395671i
\(239\) 127.675 + 73.7133i 0.534206 + 0.308424i 0.742727 0.669594i \(-0.233532\pi\)
−0.208522 + 0.978018i \(0.566865\pi\)
\(240\) 0 0
\(241\) 179.499 + 310.901i 0.744809 + 1.29005i 0.950284 + 0.311384i \(0.100793\pi\)
−0.205475 + 0.978662i \(0.565874\pi\)
\(242\) 61.8253 61.8253i 0.255476 0.255476i
\(243\) 0 0
\(244\) 342.894i 1.40530i
\(245\) 463.587 + 35.0657i 1.89219 + 0.143125i
\(246\) 0 0
\(247\) −6.07547 22.6740i −0.0245970 0.0917974i
\(248\) 27.2078 7.29031i 0.109709 0.0293964i
\(249\) 0 0
\(250\) −169.322 + 318.759i −0.677287 + 1.27504i
\(251\) −154.041 −0.613710 −0.306855 0.951756i \(-0.599277\pi\)
−0.306855 + 0.951756i \(0.599277\pi\)
\(252\) 0 0
\(253\) −222.744 222.744i −0.880411 0.880411i
\(254\) 407.291 235.150i 1.60351 0.925785i
\(255\) 0 0
\(256\) −103.730 + 179.666i −0.405197 + 0.701821i
\(257\) 89.3689 + 333.529i 0.347739 + 1.29778i 0.889380 + 0.457169i \(0.151137\pi\)
−0.541641 + 0.840610i \(0.682197\pi\)
\(258\) 0 0
\(259\) 37.8825 21.8715i 0.146265 0.0844459i
\(260\) −19.9992 + 3.76964i −0.0769202 + 0.0144986i
\(261\) 0 0
\(262\) −38.5035 + 38.5035i −0.146960 + 0.146960i
\(263\) −67.4597 + 251.763i −0.256501 + 0.957274i 0.710748 + 0.703446i \(0.248356\pi\)
−0.967249 + 0.253828i \(0.918310\pi\)
\(264\) 0 0
\(265\) 184.762 + 64.7953i 0.697213 + 0.244511i
\(266\) −430.362 + 745.409i −1.61790 + 2.80229i
\(267\) 0 0
\(268\) 71.9374 268.474i 0.268423 1.00177i
\(269\) 194.835i 0.724296i −0.932121 0.362148i \(-0.882044\pi\)
0.932121 0.362148i \(-0.117956\pi\)
\(270\) 0 0
\(271\) −307.130 −1.13332 −0.566661 0.823951i \(-0.691765\pi\)
−0.566661 + 0.823951i \(0.691765\pi\)
\(272\) −148.467 39.7817i −0.545836 0.146256i
\(273\) 0 0
\(274\) −189.143 109.202i −0.690303 0.398547i
\(275\) 303.991 + 46.2524i 1.10542 + 0.168190i
\(276\) 0 0
\(277\) 102.569 + 27.4833i 0.370285 + 0.0992175i 0.439163 0.898408i \(-0.355275\pi\)
−0.0688778 + 0.997625i \(0.521942\pi\)
\(278\) −91.7838 91.7838i −0.330157 0.330157i
\(279\) 0 0
\(280\) 47.9839 + 32.7639i 0.171371 + 0.117014i
\(281\) 0.574798 + 0.995579i 0.00204554 + 0.00354299i 0.867046 0.498227i \(-0.166016\pi\)
−0.865001 + 0.501770i \(0.832682\pi\)
\(282\) 0 0
\(283\) −309.889 + 83.0344i −1.09501 + 0.293408i −0.760732 0.649066i \(-0.775160\pi\)
−0.334280 + 0.942474i \(0.608493\pi\)
\(284\) 333.451 + 192.518i 1.17412 + 0.677880i
\(285\) 0 0
\(286\) 16.6627 + 28.8607i 0.0582613 + 0.100911i
\(287\) −196.649 + 196.649i −0.685189 + 0.685189i
\(288\) 0 0
\(289\) 177.173i 0.613056i
\(290\) −37.0478 + 31.8374i −0.127751 + 0.109784i
\(291\) 0 0
\(292\) 20.3505 + 75.9490i 0.0696934 + 0.260099i
\(293\) −99.3033 + 26.6082i −0.338919 + 0.0908131i −0.424264 0.905538i \(-0.639467\pi\)
0.0853454 + 0.996351i \(0.472801\pi\)
\(294\) 0 0
\(295\) 437.520 + 33.0939i 1.48312 + 0.112183i
\(296\) 3.58015 0.0120951
\(297\) 0 0
\(298\) 335.322 + 335.322i 1.12524 + 1.12524i
\(299\) 20.8124 12.0160i 0.0696066 0.0401874i
\(300\) 0 0
\(301\) 98.0259 169.786i 0.325667 0.564073i
\(302\) 28.6996 + 107.108i 0.0950319 + 0.354664i
\(303\) 0 0
\(304\) 314.896 181.805i 1.03584 0.598044i
\(305\) 326.411 + 222.876i 1.07020 + 0.730742i
\(306\) 0 0
\(307\) −74.6079 + 74.6079i −0.243023 + 0.243023i −0.818099 0.575077i \(-0.804972\pi\)
0.575077 + 0.818099i \(0.304972\pi\)
\(308\) 164.539 614.067i 0.534216 1.99372i
\(309\) 0 0
\(310\) 138.000 393.502i 0.445161 1.26936i
\(311\) 298.630 517.242i 0.960225 1.66316i 0.238295 0.971193i \(-0.423411\pi\)
0.721930 0.691966i \(-0.243255\pi\)
\(312\) 0 0
\(313\) −43.8958 + 163.821i −0.140242 + 0.523391i 0.859679 + 0.510835i \(0.170664\pi\)
−0.999921 + 0.0125563i \(0.996003\pi\)
\(314\) 188.115i 0.599091i
\(315\) 0 0
\(316\) −131.689 −0.416736
\(317\) 394.769 + 105.778i 1.24533 + 0.333685i 0.820530 0.571603i \(-0.193678\pi\)
0.424798 + 0.905288i \(0.360345\pi\)
\(318\) 0 0
\(319\) 36.0394 + 20.8073i 0.112976 + 0.0652268i
\(320\) −160.983 334.880i −0.503071 1.04650i
\(321\) 0 0
\(322\) −851.168 228.070i −2.64338 0.708292i
\(323\) 187.060 + 187.060i 0.579133 + 0.579133i
\(324\) 0 0
\(325\) −9.41081 + 21.4881i −0.0289564 + 0.0661173i
\(326\) −42.8466 74.2126i −0.131431 0.227646i
\(327\) 0 0
\(328\) −21.9859 + 5.89110i −0.0670301 + 0.0179607i
\(329\) −715.612 413.159i −2.17511 1.25580i
\(330\) 0 0
\(331\) −210.145 363.982i −0.634879 1.09964i −0.986541 0.163516i \(-0.947716\pi\)
0.351661 0.936127i \(-0.385617\pi\)
\(332\) −465.783 + 465.783i −1.40296 + 1.40296i
\(333\) 0 0
\(334\) 271.067i 0.811578i
\(335\) −208.810 242.984i −0.623314 0.725325i
\(336\) 0 0
\(337\) −75.2392 280.796i −0.223262 0.833224i −0.983094 0.183104i \(-0.941385\pi\)
0.759832 0.650120i \(-0.225281\pi\)
\(338\) 468.906 125.643i 1.38730 0.371725i
\(339\) 0 0
\(340\) 173.948 149.484i 0.511612 0.439658i
\(341\) −355.248 −1.04178
\(342\) 0 0
\(343\) −370.578 370.578i −1.08040 1.08040i
\(344\) 13.8961 8.02293i 0.0403957 0.0233225i
\(345\) 0 0
\(346\) −287.731 + 498.365i −0.831592 + 1.44036i
\(347\) 142.089 + 530.282i 0.409477 + 1.52819i 0.795646 + 0.605762i \(0.207132\pi\)
−0.386168 + 0.922428i \(0.626202\pi\)
\(348\) 0 0
\(349\) −377.101 + 217.720i −1.08052 + 0.623838i −0.931036 0.364926i \(-0.881094\pi\)
−0.149483 + 0.988764i \(0.547761\pi\)
\(350\) 801.141 313.138i 2.28897 0.894680i
\(351\) 0 0
\(352\) −398.945 + 398.945i −1.13337 + 1.13337i
\(353\) −86.1412 + 321.483i −0.244026 + 0.910718i 0.729844 + 0.683613i \(0.239593\pi\)
−0.973870 + 0.227104i \(0.927074\pi\)
\(354\) 0 0
\(355\) 400.002 192.288i 1.12677 0.541656i
\(356\) −255.690 + 442.869i −0.718231 + 1.24401i
\(357\) 0 0
\(358\) −34.0886 + 127.220i −0.0952196 + 0.355364i
\(359\) 114.922i 0.320116i −0.987108 0.160058i \(-0.948832\pi\)
0.987108 0.160058i \(-0.0511682\pi\)
\(360\) 0 0
\(361\) −264.815 −0.733559
\(362\) 292.281 + 78.3166i 0.807407 + 0.216344i
\(363\) 0 0
\(364\) 42.0022 + 24.2500i 0.115391 + 0.0666209i
\(365\) 85.5258 + 29.9936i 0.234317 + 0.0821743i
\(366\) 0 0
\(367\) −505.064 135.331i −1.37620 0.368750i −0.506458 0.862265i \(-0.669045\pi\)
−0.869738 + 0.493515i \(0.835712\pi\)
\(368\) 263.226 + 263.226i 0.715289 + 0.715289i
\(369\) 0 0
\(370\) 29.8871 43.7708i 0.0807759 0.118299i
\(371\) −233.301 404.089i −0.628843 1.08919i
\(372\) 0 0
\(373\) −205.720 + 55.1226i −0.551529 + 0.147782i −0.523812 0.851834i \(-0.675491\pi\)
−0.0277173 + 0.999616i \(0.508824\pi\)
\(374\) −325.251 187.784i −0.869656 0.502096i
\(375\) 0 0
\(376\) −33.8150 58.5693i −0.0899336 0.155770i
\(377\) −2.24492 + 2.24492i −0.00595470 + 0.00595470i
\(378\) 0 0
\(379\) 672.519i 1.77446i −0.461331 0.887228i \(-0.652628\pi\)
0.461331 0.887228i \(-0.347372\pi\)
\(380\) −40.9231 + 541.026i −0.107692 + 1.42375i
\(381\) 0 0
\(382\) 75.7019 + 282.523i 0.198173 + 0.739590i
\(383\) 294.108 78.8060i 0.767906 0.205760i 0.146460 0.989217i \(-0.453212\pi\)
0.621446 + 0.783457i \(0.286545\pi\)
\(384\) 0 0
\(385\) −477.601 555.765i −1.24052 1.44354i
\(386\) 816.881 2.11627
\(387\) 0 0
\(388\) −58.6876 58.6876i −0.151257 0.151257i
\(389\) 616.350 355.850i 1.58445 0.914780i 0.590247 0.807223i \(-0.299030\pi\)
0.994199 0.107558i \(-0.0343031\pi\)
\(390\) 0 0
\(391\) −135.417 + 234.549i −0.346335 + 0.599870i
\(392\) −23.4696 87.5898i −0.0598715 0.223443i
\(393\) 0 0
\(394\) −18.6128 + 10.7461i −0.0472406 + 0.0272744i
\(395\) −85.5959 + 125.359i −0.216699 + 0.317363i
\(396\) 0 0
\(397\) −41.4605 + 41.4605i −0.104435 + 0.104435i −0.757393 0.652959i \(-0.773527\pi\)
0.652959 + 0.757393i \(0.273527\pi\)
\(398\) −105.428 + 393.462i −0.264894 + 0.988599i
\(399\) 0 0
\(400\) −359.240 54.6584i −0.898099 0.136646i
\(401\) 83.1858 144.082i 0.207446 0.359307i −0.743463 0.668777i \(-0.766818\pi\)
0.950909 + 0.309470i \(0.100152\pi\)
\(402\) 0 0
\(403\) 7.01451 26.1785i 0.0174057 0.0649591i
\(404\) 85.2394i 0.210989i
\(405\) 0 0
\(406\) 116.412 0.286729
\(407\) −43.6140 11.6863i −0.107160 0.0287133i
\(408\) 0 0
\(409\) 20.5577 + 11.8690i 0.0502632 + 0.0290195i 0.524921 0.851151i \(-0.324095\pi\)
−0.474658 + 0.880170i \(0.657428\pi\)
\(410\) −111.514 + 317.978i −0.271985 + 0.775556i
\(411\) 0 0
\(412\) 718.281 + 192.463i 1.74340 + 0.467143i
\(413\) −739.382 739.382i −1.79027 1.79027i
\(414\) 0 0
\(415\) 140.640 + 746.147i 0.338893 + 1.79794i
\(416\) −21.5213 37.2759i −0.0517338 0.0896056i
\(417\) 0 0
\(418\) 858.187 229.950i 2.05308 0.550121i
\(419\) −432.642 249.786i −1.03256 0.596147i −0.114841 0.993384i \(-0.536636\pi\)
−0.917716 + 0.397236i \(0.869969\pi\)
\(420\) 0 0
\(421\) 1.90482 + 3.29924i 0.00452450 + 0.00783667i 0.868279 0.496077i \(-0.165226\pi\)
−0.863754 + 0.503913i \(0.831893\pi\)
\(422\) −92.0983 + 92.0983i −0.218242 + 0.218242i
\(423\) 0 0
\(424\) 38.1890i 0.0900685i
\(425\) −29.2342 262.749i −0.0687865 0.618234i
\(426\) 0 0
\(427\) −243.786 909.822i −0.570928 2.13073i
\(428\) 62.7149 16.8044i 0.146530 0.0392626i
\(429\) 0 0
\(430\) 17.9168 236.869i 0.0416669 0.550859i
\(431\) −767.834 −1.78152 −0.890759 0.454477i \(-0.849826\pi\)
−0.890759 + 0.454477i \(0.849826\pi\)
\(432\) 0 0
\(433\) 367.840 + 367.840i 0.849516 + 0.849516i 0.990073 0.140557i \(-0.0448893\pi\)
−0.140557 + 0.990073i \(0.544889\pi\)
\(434\) −860.622 + 496.880i −1.98300 + 1.14489i
\(435\) 0 0
\(436\) −19.6945 + 34.1118i −0.0451708 + 0.0782381i
\(437\) −165.825 618.867i −0.379462 1.41617i
\(438\) 0 0
\(439\) 119.042 68.7289i 0.271166 0.156558i −0.358251 0.933625i \(-0.616627\pi\)
0.629418 + 0.777067i \(0.283294\pi\)
\(440\) −11.1090 58.9372i −0.0252478 0.133948i
\(441\) 0 0
\(442\) 20.2602 20.2602i 0.0458375 0.0458375i
\(443\) −114.403 + 426.956i −0.258245 + 0.963783i 0.708011 + 0.706201i \(0.249592\pi\)
−0.966256 + 0.257582i \(0.917074\pi\)
\(444\) 0 0
\(445\) 255.385 + 531.259i 0.573899 + 1.19384i
\(446\) 8.10216 14.0334i 0.0181663 0.0314649i
\(447\) 0 0
\(448\) −229.181 + 855.314i −0.511564 + 1.90918i
\(449\) 827.291i 1.84252i −0.388949 0.921259i \(-0.627162\pi\)
0.388949 0.921259i \(-0.372838\pi\)
\(450\) 0 0
\(451\) 287.066 0.636509
\(452\) −644.769 172.765i −1.42648 0.382224i
\(453\) 0 0
\(454\) 190.084 + 109.745i 0.418688 + 0.241730i
\(455\) 50.3852 24.2210i 0.110737 0.0532331i
\(456\) 0 0
\(457\) 855.367 + 229.195i 1.87170 + 0.501521i 0.999933 + 0.0116012i \(0.00369286\pi\)
0.871768 + 0.489919i \(0.162974\pi\)
\(458\) 112.685 + 112.685i 0.246038 + 0.246038i
\(459\) 0 0
\(460\) −545.862 + 102.889i −1.18666 + 0.223672i
\(461\) −130.919 226.759i −0.283990 0.491885i 0.688374 0.725356i \(-0.258325\pi\)
−0.972364 + 0.233471i \(0.924992\pi\)
\(462\) 0 0
\(463\) −162.814 + 43.6260i −0.351651 + 0.0942246i −0.430321 0.902676i \(-0.641599\pi\)
0.0786695 + 0.996901i \(0.474933\pi\)
\(464\) −42.5893 24.5889i −0.0917872 0.0529934i
\(465\) 0 0
\(466\) −197.000 341.213i −0.422746 0.732217i
\(467\) −63.7603 + 63.7603i −0.136532 + 0.136532i −0.772070 0.635538i \(-0.780778\pi\)
0.635538 + 0.772070i \(0.280778\pi\)
\(468\) 0 0
\(469\) 763.505i 1.62794i
\(470\) −998.356 75.5155i −2.12416 0.160671i
\(471\) 0 0
\(472\) −22.1499 82.6647i −0.0469278 0.175137i
\(473\) −195.474 + 52.3770i −0.413264 + 0.110734i
\(474\) 0 0
\(475\) 488.420 + 390.616i 1.02825 + 0.822349i
\(476\) −546.580 −1.14828
\(477\) 0 0
\(478\) −301.013 301.013i −0.629734 0.629734i
\(479\) 33.6305 19.4166i 0.0702099 0.0405357i −0.464484 0.885581i \(-0.653760\pi\)
0.534694 + 0.845046i \(0.320427\pi\)
\(480\) 0 0
\(481\) 1.72235 2.98320i 0.00358077 0.00620208i
\(482\) −268.295 1001.29i −0.556628 2.07736i
\(483\) 0 0
\(484\) −113.750 + 65.6736i −0.235021 + 0.135689i
\(485\) −94.0127 + 17.7204i −0.193841 + 0.0365369i
\(486\) 0 0
\(487\) 394.799 394.799i 0.810676 0.810676i −0.174059 0.984735i \(-0.555688\pi\)
0.984735 + 0.174059i \(0.0556883\pi\)
\(488\) 19.9527 74.4644i 0.0408867 0.152591i
\(489\) 0 0
\(490\) −1266.80 444.262i −2.58530 0.906656i
\(491\) −230.371 + 399.015i −0.469188 + 0.812658i −0.999380 0.0352201i \(-0.988787\pi\)
0.530191 + 0.847878i \(0.322120\pi\)
\(492\) 0 0
\(493\) 9.26030 34.5599i 0.0187836 0.0701012i
\(494\) 67.7810i 0.137209i
\(495\) 0 0
\(496\) 419.811 0.846394
\(497\) −1021.64 273.748i −2.05561 0.550800i
\(498\) 0 0
\(499\) 736.679 + 425.322i 1.47631 + 0.852349i 0.999643 0.0267345i \(-0.00851087\pi\)
0.476669 + 0.879083i \(0.341844\pi\)
\(500\) 369.631 396.703i 0.739262 0.793405i
\(501\) 0 0
\(502\) 429.640 + 115.122i 0.855857 + 0.229326i
\(503\) 196.093 + 196.093i 0.389847 + 0.389847i 0.874633 0.484786i \(-0.161103\pi\)
−0.484786 + 0.874633i \(0.661103\pi\)
\(504\) 0 0
\(505\) −81.1420 55.4045i −0.160677 0.109712i
\(506\) 454.795 + 787.728i 0.898804 + 1.55677i
\(507\) 0 0
\(508\) −682.429 + 182.856i −1.34336 + 0.359953i
\(509\) 338.026 + 195.159i 0.664098 + 0.383417i 0.793837 0.608131i \(-0.208080\pi\)
−0.129738 + 0.991548i \(0.541414\pi\)
\(510\) 0 0
\(511\) −107.995 187.052i −0.211340 0.366051i
\(512\) 511.543 511.543i 0.999108 0.999108i
\(513\) 0 0
\(514\) 997.044i 1.93977i
\(515\) 650.085 558.656i 1.26230 1.08477i
\(516\) 0 0
\(517\) 220.758 + 823.881i 0.426999 + 1.59358i
\(518\) −122.005 + 32.6910i −0.235530 + 0.0631101i
\(519\) 0 0
\(520\) 4.56249 + 0.345106i 0.00877401 + 0.000663665i
\(521\) 679.963 1.30511 0.652556 0.757741i \(-0.273697\pi\)
0.652556 + 0.757741i \(0.273697\pi\)
\(522\) 0 0
\(523\) 442.612 + 442.612i 0.846295 + 0.846295i 0.989669 0.143374i \(-0.0457951\pi\)
−0.143374 + 0.989669i \(0.545795\pi\)
\(524\) 70.8410 40.9001i 0.135193 0.0780536i
\(525\) 0 0
\(526\) 376.307 651.783i 0.715413 1.23913i
\(527\) 79.0514 + 295.024i 0.150003 + 0.559818i
\(528\) 0 0
\(529\) 109.929 63.4674i 0.207805 0.119976i
\(530\) −466.899 318.803i −0.880941 0.601514i
\(531\) 0 0
\(532\) 914.300 914.300i 1.71861 1.71861i
\(533\) −5.66823 + 21.1541i −0.0106346 + 0.0396888i
\(534\) 0 0
\(535\) 24.7672 70.6229i 0.0462939 0.132005i
\(536\) −31.2445 + 54.1171i −0.0582921 + 0.100965i
\(537\) 0 0
\(538\) −145.609 + 543.421i −0.270649 + 1.01008i
\(539\) 1143.64i 2.12179i
\(540\) 0 0
\(541\) 780.447 1.44260 0.721300 0.692623i \(-0.243545\pi\)
0.721300 + 0.692623i \(0.243545\pi\)
\(542\) 856.624 + 229.532i 1.58049 + 0.423490i
\(543\) 0 0
\(544\) 420.088 + 242.538i 0.772221 + 0.445842i
\(545\) 19.6709 + 40.9200i 0.0360935 + 0.0750826i
\(546\) 0 0
\(547\) 335.470 + 89.8890i 0.613291 + 0.164331i 0.552076 0.833794i \(-0.313836\pi\)
0.0612152 + 0.998125i \(0.480502\pi\)
\(548\) 231.998 + 231.998i 0.423354 + 0.423354i
\(549\) 0 0
\(550\) −813.304 356.190i −1.47873 0.647618i
\(551\) 42.3203 + 73.3009i 0.0768063 + 0.133032i
\(552\) 0 0
\(553\) 349.418 93.6263i 0.631859 0.169306i
\(554\) −265.538 153.308i −0.479311 0.276730i
\(555\) 0 0
\(556\) 97.4968 + 168.869i 0.175354 + 0.303722i
\(557\) 670.322 670.322i 1.20345 1.20345i 0.230341 0.973110i \(-0.426016\pi\)
0.973110 0.230341i \(-0.0739840\pi\)
\(558\) 0 0
\(559\) 15.4388i 0.0276187i
\(560\) 564.402 + 656.771i 1.00786 + 1.17281i
\(561\) 0 0
\(562\) −0.859143 3.20637i −0.00152872 0.00570528i
\(563\) −420.955 + 112.795i −0.747700 + 0.200346i −0.612498 0.790472i \(-0.709835\pi\)
−0.135202 + 0.990818i \(0.543168\pi\)
\(564\) 0 0
\(565\) −583.552 + 501.481i −1.03284 + 0.887576i
\(566\) 926.373 1.63670
\(567\) 0 0
\(568\) −61.2113 61.2113i −0.107766 0.107766i
\(569\) −670.282 + 386.987i −1.17800 + 0.680118i −0.955551 0.294826i \(-0.904738\pi\)
−0.222448 + 0.974944i \(0.571405\pi\)
\(570\) 0 0
\(571\) −233.901 + 405.128i −0.409633 + 0.709506i −0.994849 0.101372i \(-0.967677\pi\)
0.585215 + 0.810878i \(0.301010\pi\)
\(572\) −12.9572 48.3570i −0.0226525 0.0845402i
\(573\) 0 0
\(574\) 695.444 401.515i 1.21158 0.699503i
\(575\) −256.860 + 586.500i −0.446713 + 1.02000i
\(576\) 0 0
\(577\) 272.029 272.029i 0.471454 0.471454i −0.430931 0.902385i \(-0.641815\pi\)
0.902385 + 0.430931i \(0.141815\pi\)
\(578\) 132.409 494.158i 0.229082 0.854945i
\(579\) 0 0
\(580\) 66.1370 31.7932i 0.114029 0.0548159i
\(581\) 904.737 1567.05i 1.55721 2.69716i
\(582\) 0 0
\(583\) −124.657 + 465.226i −0.213820 + 0.797986i
\(584\) 17.6776i 0.0302699i
\(585\) 0 0
\(586\) 296.855 0.506578
\(587\) 136.489 + 36.5721i 0.232520 + 0.0623034i 0.373197 0.927752i \(-0.378261\pi\)
−0.140678 + 0.990055i \(0.544928\pi\)
\(588\) 0 0
\(589\) −625.740 361.271i −1.06238 0.613363i
\(590\) −1195.57 419.281i −2.02638 0.710646i
\(591\) 0 0
\(592\) 51.5405 + 13.8102i 0.0870617 + 0.0233281i
\(593\) 94.3094 + 94.3094i 0.159038 + 0.159038i 0.782140 0.623102i \(-0.214128\pi\)
−0.623102 + 0.782140i \(0.714128\pi\)
\(594\) 0 0
\(595\) −355.270 + 520.307i −0.597093 + 0.874465i
\(596\) −356.194 616.946i −0.597641 1.03514i
\(597\) 0 0
\(598\) −67.0285 + 17.9602i −0.112088 + 0.0300338i
\(599\) 723.537 + 417.734i 1.20791 + 0.697386i 0.962302 0.271984i \(-0.0876797\pi\)
0.245606 + 0.969370i \(0.421013\pi\)
\(600\) 0 0
\(601\) −179.809 311.438i −0.299183 0.518200i 0.676766 0.736198i \(-0.263381\pi\)
−0.975949 + 0.217998i \(0.930047\pi\)
\(602\) −400.295 + 400.295i −0.664942 + 0.664942i
\(603\) 0 0
\(604\) 166.579i 0.275793i
\(605\) −11.4193 + 150.969i −0.0188748 + 0.249536i
\(606\) 0 0
\(607\) 133.400 + 497.854i 0.219769 + 0.820188i 0.984433 + 0.175759i \(0.0562380\pi\)
−0.764665 + 0.644428i \(0.777095\pi\)
\(608\) −1108.42 + 297.000i −1.82306 + 0.488486i
\(609\) 0 0
\(610\) −743.836 865.571i −1.21940 1.41897i
\(611\) −65.0715 −0.106500
\(612\) 0 0
\(613\) −470.150 470.150i −0.766965 0.766965i 0.210606 0.977571i \(-0.432456\pi\)
−0.977571 + 0.210606i \(0.932456\pi\)
\(614\) 263.849 152.333i 0.429721 0.248099i
\(615\) 0 0
\(616\) −71.4640 + 123.779i −0.116013 + 0.200940i
\(617\) 65.6036 + 244.836i 0.106327 + 0.396817i 0.998492 0.0548918i \(-0.0174814\pi\)
−0.892166 + 0.451708i \(0.850815\pi\)
\(618\) 0 0
\(619\) −88.9466 + 51.3534i −0.143694 + 0.0829618i −0.570123 0.821559i \(-0.693105\pi\)
0.426429 + 0.904521i \(0.359771\pi\)
\(620\) −353.242 + 517.337i −0.569745 + 0.834414i
\(621\) 0 0
\(622\) −1219.47 + 1219.47i −1.96057 + 1.96057i
\(623\) 363.575 1356.88i 0.583587 2.17798i
\(624\) 0 0
\(625\) −137.378 609.715i −0.219805 0.975544i
\(626\) 244.862 424.113i 0.391153 0.677497i
\(627\) 0 0
\(628\) 73.1406 272.964i 0.116466 0.434657i
\(629\) 38.8208i 0.0617183i
\(630\) 0 0
\(631\) −1201.04 −1.90339 −0.951696 0.307042i \(-0.900661\pi\)
−0.951696 + 0.307042i \(0.900661\pi\)
\(632\) 28.5981 + 7.66285i 0.0452502 + 0.0121248i
\(633\) 0 0
\(634\) −1022.01 590.056i −1.61200 0.930688i
\(635\) −269.503 + 768.479i −0.424415 + 1.21020i
\(636\) 0 0
\(637\) −84.2762 22.5817i −0.132302 0.0354501i
\(638\) −84.9681 84.9681i −0.133179 0.133179i
\(639\) 0 0
\(640\) 28.7994 + 152.791i 0.0449991 + 0.238736i
\(641\) −285.201 493.982i −0.444931 0.770643i 0.553117 0.833104i \(-0.313438\pi\)
−0.998047 + 0.0624611i \(0.980105\pi\)
\(642\) 0 0
\(643\) 856.111 229.394i 1.33143 0.356756i 0.478183 0.878260i \(-0.341296\pi\)
0.853249 + 0.521504i \(0.174629\pi\)
\(644\) 1146.41 + 661.883i 1.78015 + 1.02777i
\(645\) 0 0
\(646\) −381.936 661.532i −0.591232 1.02404i
\(647\) −254.010 + 254.010i −0.392596 + 0.392596i −0.875612 0.483016i \(-0.839541\pi\)
0.483016 + 0.875612i \(0.339541\pi\)
\(648\) 0 0
\(649\) 1079.34i 1.66308i
\(650\) 42.3070 52.9000i 0.0650876 0.0813845i
\(651\) 0 0
\(652\) 33.3183 + 124.346i 0.0511017 + 0.190714i
\(653\) −295.968 + 79.3045i −0.453244 + 0.121446i −0.478217 0.878242i \(-0.658717\pi\)
0.0249729 + 0.999688i \(0.492050\pi\)
\(654\) 0 0
\(655\) 7.11168 94.0203i 0.0108575 0.143542i
\(656\) −339.238 −0.517131
\(657\) 0 0
\(658\) 1687.16 + 1687.16i 2.56407 + 2.56407i
\(659\) −344.367 + 198.821i −0.522561 + 0.301701i −0.737982 0.674821i \(-0.764221\pi\)
0.215421 + 0.976521i \(0.430888\pi\)
\(660\) 0 0
\(661\) 347.289 601.522i 0.525399 0.910019i −0.474163 0.880437i \(-0.657249\pi\)
0.999562 0.0295815i \(-0.00941745\pi\)
\(662\) 314.101 + 1172.24i 0.474473 + 1.77076i
\(663\) 0 0
\(664\) 128.255 74.0482i 0.193156 0.111518i
\(665\) −276.067 1464.63i −0.415139 2.20246i
\(666\) 0 0
\(667\) −61.2733 + 61.2733i −0.0918640 + 0.0918640i
\(668\) −105.393 + 393.333i −0.157774 + 0.588821i
\(669\) 0 0
\(670\) 400.806 + 833.766i 0.598217 + 1.24443i
\(671\) −486.135 + 842.010i −0.724493 + 1.25486i
\(672\) 0 0
\(673\) −43.7189 + 163.161i −0.0649612 + 0.242439i −0.990770 0.135554i \(-0.956719\pi\)
0.925809 + 0.377992i \(0.123385\pi\)
\(674\) 839.406i 1.24541i
\(675\) 0 0
\(676\) −729.259 −1.07879
\(677\) 252.537 + 67.6670i 0.373023 + 0.0999513i 0.440460 0.897772i \(-0.354815\pi\)
−0.0674366 + 0.997724i \(0.521482\pi\)
\(678\) 0 0
\(679\) 197.445 + 113.995i 0.290787 + 0.167886i
\(680\) −46.4738 + 22.3407i −0.0683438 + 0.0328540i
\(681\) 0 0
\(682\) 990.830 + 265.492i 1.45283 + 0.389285i
\(683\) −545.616 545.616i −0.798852 0.798852i 0.184062 0.982915i \(-0.441075\pi\)
−0.982915 + 0.184062i \(0.941075\pi\)
\(684\) 0 0
\(685\) 371.642 70.0505i 0.542543 0.102263i
\(686\) 756.640 + 1310.54i 1.10297 + 1.91041i
\(687\) 0 0
\(688\) 231.000 61.8962i 0.335755 0.0899654i
\(689\) −31.8215 18.3722i −0.0461851 0.0266650i
\(690\) 0 0
\(691\) −178.080 308.443i −0.257713 0.446372i 0.707916 0.706297i \(-0.249636\pi\)
−0.965629 + 0.259925i \(0.916302\pi\)
\(692\) 611.281 611.281i 0.883355 0.883355i
\(693\) 0 0
\(694\) 1585.21i 2.28417i
\(695\) 224.124 + 16.9527i 0.322480 + 0.0243924i
\(696\) 0 0
\(697\) −63.8792 238.401i −0.0916488 0.342038i
\(698\) 1214.49 325.423i 1.73996 0.466222i
\(699\) 0 0
\(700\) −1284.25 + 142.889i −1.83464 + 0.204128i
\(701\) −357.763 −0.510361 −0.255180 0.966893i \(-0.582135\pi\)
−0.255180 + 0.966893i \(0.582135\pi\)
\(702\) 0 0
\(703\) −64.9380 64.9380i −0.0923727 0.0923727i
\(704\) 791.564 457.010i 1.12438 0.649161i
\(705\) 0 0
\(706\) 480.517 832.280i 0.680619 1.17887i
\(707\) 60.6024 + 226.171i 0.0857177 + 0.319903i
\(708\) 0 0
\(709\) 324.344 187.260i 0.457467 0.264119i −0.253511 0.967332i \(-0.581586\pi\)
0.710979 + 0.703213i \(0.248252\pi\)
\(710\) −1259.36 + 237.376i −1.77375 + 0.334332i
\(711\) 0 0
\(712\) 81.2971 81.2971i 0.114181 0.114181i
\(713\) 191.455 714.520i 0.268520 1.00213i
\(714\) 0 0
\(715\) −54.4545 19.0970i −0.0761602 0.0267091i
\(716\) 98.9288 171.350i 0.138169 0.239315i
\(717\) 0 0
\(718\) −85.8861 + 320.531i −0.119619 + 0.446422i
\(719\) 889.235i 1.23677i 0.785877 + 0.618383i \(0.212212\pi\)
−0.785877 + 0.618383i \(0.787788\pi\)
\(720\) 0 0
\(721\) −2042.70 −2.83314
\(722\) 738.601 + 197.908i 1.02299 + 0.274110i
\(723\) 0 0
\(724\) −393.666 227.283i −0.543737 0.313927i
\(725\) 12.7233 83.6231i 0.0175493 0.115342i
\(726\) 0 0
\(727\) −433.617 116.187i −0.596447 0.159818i −0.0520491 0.998645i \(-0.516575\pi\)
−0.544398 + 0.838827i \(0.683242\pi\)
\(728\) −7.71032 7.71032i −0.0105911 0.0105911i
\(729\) 0 0
\(730\) −216.127 147.573i −0.296064 0.202155i
\(731\) 86.9955 + 150.681i 0.119009 + 0.206129i
\(732\) 0 0
\(733\) −664.342 + 178.010i −0.906333 + 0.242851i −0.681734 0.731600i \(-0.738774\pi\)
−0.224599 + 0.974451i \(0.572107\pi\)
\(734\) 1307.55 + 754.912i 1.78140 + 1.02849i
\(735\) 0 0
\(736\) −587.404 1017.41i −0.798104 1.38236i
\(737\) 557.276 557.276i 0.756141 0.756141i
\(738\) 0 0
\(739\) 337.793i 0.457095i −0.973533 0.228547i \(-0.926602\pi\)
0.973533 0.228547i \(-0.0733976\pi\)
\(740\) −60.3862 + 51.8934i −0.0816030 + 0.0701262i
\(741\) 0 0
\(742\) 348.712 + 1301.41i 0.469962 + 1.75392i
\(743\) −101.468 + 27.1883i −0.136565 + 0.0365926i −0.326454 0.945213i \(-0.605854\pi\)
0.189889 + 0.981806i \(0.439187\pi\)
\(744\) 0 0
\(745\) −818.812 61.9348i −1.09908 0.0831340i
\(746\) 614.975 0.824364
\(747\) 0 0
\(748\) 398.945 + 398.945i 0.533349 + 0.533349i
\(749\) −154.458 + 89.1765i −0.206219 + 0.119061i
\(750\) 0 0
\(751\) −370.192 + 641.191i −0.492932 + 0.853783i −0.999967 0.00814279i \(-0.997408\pi\)
0.507035 + 0.861925i \(0.330741\pi\)
\(752\) −260.880 973.616i −0.346914 1.29470i
\(753\) 0 0
\(754\) 7.93910 4.58364i 0.0105293 0.00607910i
\(755\) −158.571 108.274i −0.210028 0.143409i
\(756\) 0 0
\(757\) 957.088 957.088i 1.26432 1.26432i 0.315337 0.948980i \(-0.397882\pi\)
0.948980 0.315337i \(-0.102118\pi\)
\(758\) −502.603 + 1875.74i −0.663065 + 2.47459i
\(759\) 0 0
\(760\) 40.3689 115.110i 0.0531169 0.151461i
\(761\) −202.869 + 351.380i −0.266582 + 0.461734i −0.967977 0.251039i \(-0.919228\pi\)
0.701395 + 0.712773i \(0.252561\pi\)
\(762\) 0 0
\(763\) 28.0042 104.513i 0.0367028 0.136977i
\(764\) 439.390i 0.575118i
\(765\) 0 0
\(766\) −879.199 −1.14778
\(767\) −79.5374 21.3120i −0.103699 0.0277861i
\(768\) 0 0
\(769\) 731.602 + 422.391i 0.951368 + 0.549273i 0.893506 0.449052i \(-0.148238\pi\)
0.0578626 + 0.998325i \(0.481571\pi\)
\(770\) 916.742 + 1907.03i 1.19057 + 2.47666i
\(771\) 0 0
\(772\) −1185.34 317.610i −1.53541 0.411412i
\(773\) −501.313 501.313i −0.648529 0.648529i 0.304108 0.952637i \(-0.401642\pi\)
−0.952637 + 0.304108i \(0.901642\pi\)
\(774\) 0 0
\(775\) 262.866 + 672.524i 0.339182 + 0.867773i
\(776\) 9.32990 + 16.1599i 0.0120231 + 0.0208246i
\(777\) 0 0
\(778\) −1985.02 + 531.884i −2.55144 + 0.683655i
\(779\) 505.643 + 291.933i 0.649092 + 0.374754i
\(780\) 0 0
\(781\) 545.881 + 945.494i 0.698951 + 1.21062i
\(782\) 552.984 552.984i 0.707141 0.707141i
\(783\) 0 0
\(784\) 1351.49i 1.72384i
\(785\) −212.303 247.048i −0.270449 0.314711i
\(786\) 0 0
\(787\) −263.430 983.133i −0.334726 1.24922i −0.904165 0.427183i \(-0.859506\pi\)
0.569439 0.822034i \(-0.307161\pi\)
\(788\) 31.1863 8.35636i 0.0395766 0.0106045i
\(789\) 0 0
\(790\) 332.424 285.671i 0.420789 0.361609i
\(791\) 1833.64 2.31813
\(792\) 0 0
\(793\) −52.4495 52.4495i −0.0661406 0.0661406i
\(794\) 146.624 84.6533i 0.184665 0.106616i
\(795\) 0 0
\(796\) 305.963 529.943i 0.384376 0.665758i
\(797\) −369.343 1378.41i −0.463416 1.72949i −0.662087 0.749427i \(-0.730329\pi\)
0.198670 0.980066i \(-0.436338\pi\)
\(798\) 0 0
\(799\) 635.088 366.668i 0.794854 0.458909i
\(800\) 1050.45 + 460.048i 1.31306 + 0.575060i
\(801\) 0 0
\(802\) −339.695 + 339.695i −0.423559 + 0.423559i
\(803\) −57.7035 + 215.352i −0.0718599 + 0.268185i
\(804\) 0 0
\(805\) 1375.22 661.093i 1.70835 0.821233i
\(806\) −39.1287 + 67.7729i −0.0485468 + 0.0840855i
\(807\) 0 0
\(808\) −4.96001 + 18.5110i −0.00613862 + 0.0229097i
\(809\) 549.873i 0.679694i −0.940481 0.339847i \(-0.889625\pi\)
0.940481 0.339847i \(-0.110375\pi\)
\(810\) 0 0
\(811\) 1542.32 1.90175 0.950876 0.309573i \(-0.100186\pi\)
0.950876 + 0.309573i \(0.100186\pi\)
\(812\) −168.920 45.2619i −0.208029 0.0557413i
\(813\) 0 0
\(814\) 112.911 + 65.1893i 0.138711 + 0.0800851i
\(815\) 140.025 + 49.1063i 0.171810 + 0.0602531i
\(816\) 0 0
\(817\) −397.576 106.530i −0.486629 0.130392i
\(818\) −48.4677 48.4677i −0.0592514 0.0592514i
\(819\) 0 0
\(820\) 285.445 418.045i 0.348104 0.509811i
\(821\) 405.012 + 701.501i 0.493316 + 0.854448i 0.999970 0.00770144i \(-0.00245147\pi\)
−0.506655 + 0.862149i \(0.669118\pi\)
\(822\) 0 0
\(823\) 79.3084 21.2506i 0.0963650 0.0258209i −0.210314 0.977634i \(-0.567449\pi\)
0.306679 + 0.951813i \(0.400782\pi\)
\(824\) −144.786 83.5923i −0.175711 0.101447i
\(825\) 0 0
\(826\) 1509.66 + 2614.80i 1.82767 + 3.16562i
\(827\) −924.549 + 924.549i −1.11796 + 1.11796i −0.125915 + 0.992041i \(0.540187\pi\)
−0.992041 + 0.125915i \(0.959813\pi\)
\(828\) 0 0
\(829\) 114.907i 0.138610i 0.997596 + 0.0693048i \(0.0220781\pi\)
−0.997596 + 0.0693048i \(0.977922\pi\)
\(830\) 165.364 2186.20i 0.199234 2.63398i
\(831\) 0 0
\(832\) 18.0477 + 67.3549i 0.0216919 + 0.0809554i
\(833\) 949.767 254.489i 1.14018 0.305509i
\(834\) 0 0
\(835\) 305.921 + 355.988i 0.366373 + 0.426333i
\(836\) −1334.68 −1.59651
\(837\) 0 0
\(838\) 1020.02 + 1020.02i 1.21720 + 1.21720i
\(839\) 661.782 382.080i 0.788774 0.455399i −0.0507566 0.998711i \(-0.516163\pi\)
0.839531 + 0.543312i \(0.182830\pi\)
\(840\) 0 0
\(841\) −414.776 + 718.414i −0.493194 + 0.854237i
\(842\) −2.84711 10.6255i −0.00338136 0.0126194i
\(843\) 0 0
\(844\) 169.448 97.8309i 0.200768 0.115913i
\(845\) −474.009 + 694.204i −0.560957 + 0.821544i
\(846\) 0 0
\(847\) 255.128 255.128i 0.301214 0.301214i
\(848\) 147.312 549.777i 0.173717 0.648322i
\(849\) 0 0
\(850\) −114.826 + 754.689i −0.135089 + 0.887869i
\(851\) 47.0101 81.4239i 0.0552410 0.0956803i
\(852\) 0 0
\(853\) 190.285 710.152i 0.223077 0.832534i −0.760089 0.649819i \(-0.774845\pi\)
0.983166 0.182715i \(-0.0584887\pi\)
\(854\) 2719.80i 3.18478i
\(855\) 0 0
\(856\) −14.5973 −0.0170529
\(857\) 694.443 + 186.075i 0.810319 + 0.217124i 0.640109 0.768284i \(-0.278889\pi\)
0.170209 + 0.985408i \(0.445556\pi\)
\(858\) 0 0
\(859\) −1043.29 602.342i −1.21454 0.701213i −0.250792 0.968041i \(-0.580691\pi\)
−0.963744 + 0.266828i \(0.914025\pi\)
\(860\) −118.095 + 336.744i −0.137320 + 0.391563i
\(861\) 0 0
\(862\) 2141.58 + 573.836i 2.48444 + 0.665703i
\(863\) 214.571 + 214.571i 0.248634 + 0.248634i 0.820410 0.571776i \(-0.193745\pi\)
−0.571776 + 0.820410i \(0.693745\pi\)
\(864\) 0 0
\(865\) −184.573 979.223i −0.213379 1.13205i
\(866\) −751.049 1300.86i −0.867263 1.50214i
\(867\) 0 0
\(868\) 1442.00 386.382i 1.66129 0.445141i
\(869\) −323.375 186.701i −0.372123 0.214845i
\(870\) 0 0
\(871\) 30.0625 + 52.0698i 0.0345150 + 0.0597817i
\(872\) 6.26188 6.26188i 0.00718106 0.00718106i
\(873\) 0 0
\(874\) 1850.02i 2.11673i
\(875\) −698.724 + 1315.39i −0.798542 + 1.50331i
\(876\) 0 0
\(877\) −81.8801 305.581i −0.0933638 0.348438i 0.903402 0.428794i \(-0.141061\pi\)
−0.996766 + 0.0803551i \(0.974395\pi\)
\(878\) −383.387 + 102.728i −0.436660 + 0.117003i
\(879\) 0 0
\(880\) 67.4197 891.325i 0.0766133 1.01287i
\(881\) 435.585 0.494421 0.247211 0.968962i \(-0.420486\pi\)
0.247211 + 0.968962i \(0.420486\pi\)
\(882\) 0 0
\(883\) −434.695 434.695i −0.492293 0.492293i 0.416735 0.909028i \(-0.363174\pi\)
−0.909028 + 0.416735i \(0.863174\pi\)
\(884\) −37.2759 + 21.5213i −0.0421673 + 0.0243453i
\(885\) 0 0
\(886\) 638.166 1105.34i 0.720277 1.24756i
\(887\) −148.261 553.319i −0.167149 0.623810i −0.997756 0.0669506i \(-0.978673\pi\)
0.830607 0.556859i \(-0.187994\pi\)
\(888\) 0 0
\(889\) 1680.73 970.369i 1.89058 1.09153i
\(890\) −315.268 1672.61i −0.354234 1.87933i
\(891\) 0 0
\(892\) −17.2130 + 17.2130i −0.0192970 + 0.0192970i
\(893\) −449.003 + 1675.70i −0.502803 + 1.87649i
\(894\) 0 0
\(895\) −98.8106 205.548i −0.110403 0.229663i
\(896\) 185.266 320.890i 0.206770 0.358136i
\(897\) 0 0
\(898\) −618.271 + 2307.42i −0.688497 + 2.56951i
\(899\) 97.7228i 0.108702i
\(900\) 0 0
\(901\) 414.097 0.459597
\(902\) −800.662 214.537i −0.887652 0.237846i
\(903\) 0 0
\(904\) 129.968 + 75.0371i 0.143770 + 0.0830057i
\(905\) −472.235 + 227.012i −0.521807 + 0.250842i
\(906\) 0 0
\(907\) −764.884 204.950i −0.843312 0.225965i −0.188799 0.982016i \(-0.560459\pi\)
−0.654513 + 0.756051i \(0.727126\pi\)
\(908\) −233.153 233.153i −0.256776 0.256776i
\(909\) 0 0
\(910\) −158.632 + 29.9004i −0.174321 + 0.0328576i
\(911\) −472.743 818.815i −0.518928 0.898809i −0.999758 0.0219955i \(-0.992998\pi\)
0.480830 0.876814i \(-0.340335\pi\)
\(912\) 0 0
\(913\) −1804.14 + 483.417i −1.97605 + 0.529482i
\(914\) −2214.44 1278.51i −2.42280 1.39880i
\(915\) 0 0
\(916\) −119.699 207.325i −0.130676 0.226338i
\(917\) −158.889 + 158.889i −0.173270 + 0.173270i
\(918\) 0 0
\(919\) 825.147i 0.897875i 0.893563 + 0.448937i \(0.148197\pi\)
−0.893563 + 0.448937i \(0.851803\pi\)
\(920\) 124.529 + 9.41937i 0.135358 + 0.0102384i
\(921\) 0 0
\(922\) 195.684 + 730.302i 0.212238 + 0.792084i
\(923\) −80.4529 + 21.5573i −0.0871646 + 0.0233557i
\(924\) 0 0
\(925\) 10.1487 + 91.2136i 0.0109716 + 0.0986093i
\(926\) 486.714 0.525609
\(927\) 0 0
\(928\) 109.743 + 109.743i 0.118258 + 0.118258i
\(929\) 799.415 461.543i 0.860511 0.496817i −0.00367207 0.999993i \(-0.501169\pi\)
0.864184 + 0.503177i \(0.167836\pi\)
\(930\) 0 0
\(931\) −1163.04 + 2014.44i −1.24923 + 2.16374i
\(932\) 153.190 + 571.714i 0.164367 + 0.613427i
\(933\) 0 0
\(934\) 225.486 130.185i 0.241420 0.139384i
\(935\) 639.077 120.459i 0.683505 0.128833i
\(936\) 0 0
\(937\) 967.522 967.522i 1.03257 1.03257i 0.0331234 0.999451i \(-0.489455\pi\)
0.999451 0.0331234i \(-0.0105454\pi\)
\(938\) 570.601 2129.51i 0.608316 2.27027i
\(939\) 0 0
\(940\) 1419.31 + 497.746i 1.50990 + 0.529517i
\(941\) −405.942 + 703.113i −0.431395 + 0.747197i −0.996994 0.0774830i \(-0.975312\pi\)
0.565599 + 0.824680i \(0.308645\pi\)
\(942\) 0 0
\(943\) −154.709 + 577.384i −0.164061 + 0.612284i
\(944\) 1275.50i 1.35117i
\(945\) 0 0
\(946\) 584.344 0.617700
\(947\) 1191.67 + 319.307i 1.25836 + 0.337177i 0.825562 0.564312i \(-0.190858\pi\)
0.432802 + 0.901489i \(0.357525\pi\)
\(948\) 0 0
\(949\) −14.7301 8.50444i −0.0155217 0.00896147i
\(950\) −1070.34 1454.49i −1.12667 1.53105i
\(951\) 0 0
\(952\) 118.698 + 31.8050i 0.124683 + 0.0334087i
\(953\) 719.749 + 719.749i 0.755245 + 0.755245i 0.975453 0.220208i \(-0.0706736\pi\)
−0.220208 + 0.975453i \(0.570674\pi\)
\(954\) 0 0
\(955\) −418.269 285.598i −0.437978 0.299055i
\(956\) 319.749 + 553.822i 0.334466 + 0.579312i
\(957\) 0 0
\(958\) −108.311 + 29.0218i −0.113059 + 0.0302941i
\(959\) −780.519 450.633i −0.813888 0.469899i
\(960\) 0 0
\(961\) 63.3899 + 109.795i 0.0659625 + 0.114250i
\(962\) −7.03333 + 7.03333i −0.00731116 + 0.00731116i
\(963\) 0 0
\(964\) 1557.24i 1.61539i
\(965\) −1072.80 + 921.917i −1.11171 + 0.955354i
\(966\) 0 0
\(967\) −383.836 1432.50i −0.396935 1.48138i −0.818460 0.574564i \(-0.805172\pi\)
0.421525 0.906817i \(-0.361495\pi\)
\(968\) 28.5240 7.64298i 0.0294669 0.00789564i
\(969\) 0 0
\(970\) 275.457 + 20.8355i 0.283976 + 0.0214799i
\(971\) −798.883 −0.822742 −0.411371 0.911468i \(-0.634950\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(972\) 0 0
\(973\) −378.755 378.755i −0.389266 0.389266i
\(974\) −1396.20 + 806.094i −1.43347 + 0.827612i
\(975\) 0 0
\(976\) 574.486 995.039i 0.588613 1.01951i
\(977\) 110.728 + 413.244i 0.113335 + 0.422972i 0.999157 0.0410533i \(-0.0130713\pi\)
−0.885822 + 0.464025i \(0.846405\pi\)
\(978\) 0 0
\(979\) −1255.75 + 725.006i −1.28268 + 0.740558i
\(980\) 1665.46 + 1137.19i 1.69945 + 1.16040i
\(981\) 0 0
\(982\) 940.736 940.736i 0.957980 0.957980i
\(983\) 111.413 415.799i 0.113340 0.422990i −0.885817 0.464034i \(-0.846402\pi\)
0.999157 + 0.0410437i \(0.0130683\pi\)
\(984\) 0 0
\(985\) 12.3160 35.1188i 0.0125036 0.0356536i
\(986\) −51.6563 + 89.4713i −0.0523897 + 0.0907417i
\(987\) 0 0
\(988\) 26.3538 98.3538i 0.0266739 0.0995484i
\(989\) 421.390i 0.426077i
\(990\) 0 0
\(991\) 575.226 0.580450 0.290225 0.956958i \(-0.406270\pi\)
0.290225 + 0.956958i \(0.406270\pi\)
\(992\) −1279.74 342.905i −1.29006 0.345670i
\(993\) 0 0
\(994\) 2644.90 + 1527.03i 2.66086 + 1.53625i
\(995\) −305.598 635.712i −0.307133 0.638907i
\(996\) 0 0
\(997\) −398.810 106.861i −0.400010 0.107182i 0.0532048 0.998584i \(-0.483056\pi\)
−0.453215 + 0.891401i \(0.649723\pi\)
\(998\) −1736.83 1736.83i −1.74031 1.74031i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.n.28.2 32
3.2 odd 2 inner 405.3.l.n.28.7 32
5.2 odd 4 inner 405.3.l.n.352.7 32
9.2 odd 6 inner 405.3.l.n.298.2 32
9.4 even 3 135.3.g.b.28.7 yes 16
9.5 odd 6 135.3.g.b.28.2 16
9.7 even 3 inner 405.3.l.n.298.7 32
15.2 even 4 inner 405.3.l.n.352.2 32
45.2 even 12 inner 405.3.l.n.217.7 32
45.4 even 6 675.3.g.j.568.2 16
45.7 odd 12 inner 405.3.l.n.217.2 32
45.13 odd 12 675.3.g.j.82.2 16
45.14 odd 6 675.3.g.j.568.7 16
45.22 odd 12 135.3.g.b.82.7 yes 16
45.23 even 12 675.3.g.j.82.7 16
45.32 even 12 135.3.g.b.82.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.2 16 9.5 odd 6
135.3.g.b.28.7 yes 16 9.4 even 3
135.3.g.b.82.2 yes 16 45.32 even 12
135.3.g.b.82.7 yes 16 45.22 odd 12
405.3.l.n.28.2 32 1.1 even 1 trivial
405.3.l.n.28.7 32 3.2 odd 2 inner
405.3.l.n.217.2 32 45.7 odd 12 inner
405.3.l.n.217.7 32 45.2 even 12 inner
405.3.l.n.298.2 32 9.2 odd 6 inner
405.3.l.n.298.7 32 9.7 even 3 inner
405.3.l.n.352.2 32 15.2 even 4 inner
405.3.l.n.352.7 32 5.2 odd 4 inner
675.3.g.j.82.2 16 45.13 odd 12
675.3.g.j.82.7 16 45.23 even 12
675.3.g.j.568.2 16 45.4 even 6
675.3.g.j.568.7 16 45.14 odd 6