Properties

Label 405.3
Level 405
Weight 3
Dimension 8280
Nonzero newspaces 12
Newform subspaces 50
Sturm bound 34992
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 50 \)
Sturm bound: \(34992\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(405))\).

Total New Old
Modular forms 12096 8616 3480
Cusp forms 11232 8280 2952
Eisenstein series 864 336 528

Trace form

\( 8280 q - 24 q^{2} - 36 q^{3} - 48 q^{4} - 45 q^{5} - 108 q^{6} - 46 q^{7} - 30 q^{8} - 36 q^{9} - 83 q^{10} - 72 q^{11} - 36 q^{12} - 58 q^{13} - 42 q^{14} - 54 q^{15} - 56 q^{16} - 30 q^{17} + 108 q^{18}+ \cdots + 3060 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(405))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
405.3.c \(\chi_{405}(161, \cdot)\) 405.3.c.a 16 1
405.3.c.b 16
405.3.d \(\chi_{405}(404, \cdot)\) 405.3.d.a 20 1
405.3.d.b 24
405.3.g \(\chi_{405}(82, \cdot)\) 405.3.g.a 4 2
405.3.g.b 4
405.3.g.c 8
405.3.g.d 8
405.3.g.e 8
405.3.g.f 16
405.3.g.g 20
405.3.g.h 20
405.3.h \(\chi_{405}(134, \cdot)\) 405.3.h.a 2 2
405.3.h.b 2
405.3.h.c 4
405.3.h.d 4
405.3.h.e 4
405.3.h.f 4
405.3.h.g 4
405.3.h.h 4
405.3.h.i 8
405.3.h.j 8
405.3.h.k 48
405.3.i \(\chi_{405}(26, \cdot)\) 405.3.i.a 4 2
405.3.i.b 4
405.3.i.c 8
405.3.i.d 8
405.3.i.e 8
405.3.i.f 32
405.3.l \(\chi_{405}(28, \cdot)\) 405.3.l.a 4 4
405.3.l.b 4
405.3.l.c 4
405.3.l.d 4
405.3.l.e 8
405.3.l.f 8
405.3.l.g 8
405.3.l.h 8
405.3.l.i 8
405.3.l.j 16
405.3.l.k 16
405.3.l.l 16
405.3.l.m 16
405.3.l.n 32
405.3.l.o 32
405.3.n \(\chi_{405}(44, \cdot)\) 405.3.n.a 204 6
405.3.o \(\chi_{405}(71, \cdot)\) 405.3.o.a 144 6
405.3.s \(\chi_{405}(37, \cdot)\) 405.3.s.a 408 12
405.3.u \(\chi_{405}(11, \cdot)\) 405.3.u.a 1296 18
405.3.v \(\chi_{405}(14, \cdot)\) 405.3.v.a 1908 18
405.3.w \(\chi_{405}(7, \cdot)\) 405.3.w.a 3816 36

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(405))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(405)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(405))\)\(^{\oplus 1}\)