Properties

Label 135.3.g.b.82.7
Level $135$
Weight $3$
Character 135.82
Analytic conductor $3.678$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(28,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 286x^{12} + 16269x^{8} + 85684x^{4} + 62500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.7
Root \(2.04178 + 2.04178i\) of defining polynomial
Character \(\chi\) \(=\) 135.82
Dual form 135.3.g.b.28.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.04178 + 2.04178i) q^{2} +4.33774i q^{4} +(-4.12923 + 2.81948i) q^{5} +(8.42562 + 8.42562i) q^{7} +(-0.689596 + 0.689596i) q^{8} +(-14.1877 - 2.67423i) q^{10} -12.2996 q^{11} +(0.663508 - 0.663508i) q^{13} +34.4066i q^{14} +14.5350 q^{16} +(7.47753 + 7.47753i) q^{17} -25.0163i q^{19} +(-12.2302 - 17.9115i) q^{20} +(-25.1131 - 25.1131i) q^{22} +(18.1099 - 18.1099i) q^{23} +(9.10111 - 23.2845i) q^{25} +2.70947 q^{26} +(-36.5482 + 36.5482i) q^{28} -3.38342i q^{29} +28.8829 q^{31} +(32.4356 + 32.4356i) q^{32} +30.5350i q^{34} +(-58.5472 - 11.0355i) q^{35} +(-2.59583 - 2.59583i) q^{37} +(51.0778 - 51.0778i) q^{38} +(0.903202 - 4.79180i) q^{40} -23.3394 q^{41} +(-11.6343 + 11.6343i) q^{43} -53.3525i q^{44} +73.9528 q^{46} +(-49.0360 - 49.0360i) q^{47} +92.9823i q^{49} +(66.1244 - 28.9595i) q^{50} +(2.87812 + 2.87812i) q^{52} +(27.6894 - 27.6894i) q^{53} +(50.7879 - 34.6784i) q^{55} -11.6205 q^{56} +(6.90820 - 6.90820i) q^{58} +87.7539i q^{59} -79.0489 q^{61} +(58.9725 + 58.9725i) q^{62} +74.3129i q^{64} +(-0.869033 + 4.61052i) q^{65} +(-45.3085 - 45.3085i) q^{67} +(-32.4356 + 32.4356i) q^{68} +(-97.0085 - 142.073i) q^{70} +88.7641 q^{71} +(12.8174 - 12.8174i) q^{73} -10.6002i q^{74} +108.514 q^{76} +(-103.632 - 103.632i) q^{77} +30.3588i q^{79} +(-60.0182 + 40.9810i) q^{80} +(-47.6540 - 47.6540i) q^{82} +(-107.379 + 107.379i) q^{83} +(-51.9592 - 9.79374i) q^{85} -47.5092 q^{86} +(8.48175 - 8.48175i) q^{88} -117.891i q^{89} +11.1809 q^{91} +(78.5559 + 78.5559i) q^{92} -200.242i q^{94} +(70.5328 + 103.298i) q^{95} +(13.5295 + 13.5295i) q^{97} +(-189.850 + 189.850i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 40 q^{10} + 40 q^{13} - 152 q^{16} - 136 q^{22} - 32 q^{25} - 112 q^{28} + 200 q^{31} + 16 q^{37} - 48 q^{40} + 136 q^{43} + 152 q^{46} + 640 q^{52} + 248 q^{55} + 48 q^{58} - 280 q^{61}+ \cdots + 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.04178 + 2.04178i 1.02089 + 1.02089i 0.999777 + 0.0211136i \(0.00672116\pi\)
0.0211136 + 0.999777i \(0.493279\pi\)
\(3\) 0 0
\(4\) 4.33774i 1.08444i
\(5\) −4.12923 + 2.81948i −0.825846 + 0.563895i
\(6\) 0 0
\(7\) 8.42562 + 8.42562i 1.20366 + 1.20366i 0.973045 + 0.230616i \(0.0740740\pi\)
0.230616 + 0.973045i \(0.425926\pi\)
\(8\) −0.689596 + 0.689596i −0.0861995 + 0.0861995i
\(9\) 0 0
\(10\) −14.1877 2.67423i −1.41877 0.267423i
\(11\) −12.2996 −1.11815 −0.559073 0.829119i \(-0.688843\pi\)
−0.559073 + 0.829119i \(0.688843\pi\)
\(12\) 0 0
\(13\) 0.663508 0.663508i 0.0510390 0.0510390i −0.681127 0.732166i \(-0.738510\pi\)
0.732166 + 0.681127i \(0.238510\pi\)
\(14\) 34.4066i 2.45761i
\(15\) 0 0
\(16\) 14.5350 0.908435
\(17\) 7.47753 + 7.47753i 0.439855 + 0.439855i 0.891963 0.452108i \(-0.149328\pi\)
−0.452108 + 0.891963i \(0.649328\pi\)
\(18\) 0 0
\(19\) 25.0163i 1.31665i −0.752735 0.658323i \(-0.771266\pi\)
0.752735 0.658323i \(-0.228734\pi\)
\(20\) −12.2302 17.9115i −0.611508 0.895577i
\(21\) 0 0
\(22\) −25.1131 25.1131i −1.14150 1.14150i
\(23\) 18.1099 18.1099i 0.787386 0.787386i −0.193679 0.981065i \(-0.562042\pi\)
0.981065 + 0.193679i \(0.0620421\pi\)
\(24\) 0 0
\(25\) 9.10111 23.2845i 0.364044 0.931382i
\(26\) 2.70947 0.104211
\(27\) 0 0
\(28\) −36.5482 + 36.5482i −1.30529 + 1.30529i
\(29\) 3.38342i 0.116670i −0.998297 0.0583348i \(-0.981421\pi\)
0.998297 0.0583348i \(-0.0185791\pi\)
\(30\) 0 0
\(31\) 28.8829 0.931705 0.465853 0.884862i \(-0.345748\pi\)
0.465853 + 0.884862i \(0.345748\pi\)
\(32\) 32.4356 + 32.4356i 1.01361 + 1.01361i
\(33\) 0 0
\(34\) 30.5350i 0.898087i
\(35\) −58.5472 11.0355i −1.67278 0.315300i
\(36\) 0 0
\(37\) −2.59583 2.59583i −0.0701575 0.0701575i 0.671157 0.741315i \(-0.265797\pi\)
−0.741315 + 0.671157i \(0.765797\pi\)
\(38\) 51.0778 51.0778i 1.34415 1.34415i
\(39\) 0 0
\(40\) 0.903202 4.79180i 0.0225800 0.119795i
\(41\) −23.3394 −0.569255 −0.284627 0.958638i \(-0.591870\pi\)
−0.284627 + 0.958638i \(0.591870\pi\)
\(42\) 0 0
\(43\) −11.6343 + 11.6343i −0.270564 + 0.270564i −0.829327 0.558763i \(-0.811276\pi\)
0.558763 + 0.829327i \(0.311276\pi\)
\(44\) 53.3525i 1.21256i
\(45\) 0 0
\(46\) 73.9528 1.60767
\(47\) −49.0360 49.0360i −1.04332 1.04332i −0.999018 0.0443011i \(-0.985894\pi\)
−0.0443011 0.999018i \(-0.514106\pi\)
\(48\) 0 0
\(49\) 92.9823i 1.89760i
\(50\) 66.1244 28.9595i 1.32249 0.579189i
\(51\) 0 0
\(52\) 2.87812 + 2.87812i 0.0553486 + 0.0553486i
\(53\) 27.6894 27.6894i 0.522442 0.522442i −0.395866 0.918308i \(-0.629556\pi\)
0.918308 + 0.395866i \(0.129556\pi\)
\(54\) 0 0
\(55\) 50.7879 34.6784i 0.923416 0.630517i
\(56\) −11.6205 −0.207510
\(57\) 0 0
\(58\) 6.90820 6.90820i 0.119107 0.119107i
\(59\) 87.7539i 1.48735i 0.668539 + 0.743677i \(0.266920\pi\)
−0.668539 + 0.743677i \(0.733080\pi\)
\(60\) 0 0
\(61\) −79.0489 −1.29588 −0.647942 0.761690i \(-0.724370\pi\)
−0.647942 + 0.761690i \(0.724370\pi\)
\(62\) 58.9725 + 58.9725i 0.951169 + 0.951169i
\(63\) 0 0
\(64\) 74.3129i 1.16114i
\(65\) −0.869033 + 4.61052i −0.0133697 + 0.0709311i
\(66\) 0 0
\(67\) −45.3085 45.3085i −0.676246 0.676246i 0.282902 0.959149i \(-0.408703\pi\)
−0.959149 + 0.282902i \(0.908703\pi\)
\(68\) −32.4356 + 32.4356i −0.476994 + 0.476994i
\(69\) 0 0
\(70\) −97.0085 142.073i −1.38584 2.02961i
\(71\) 88.7641 1.25020 0.625099 0.780546i \(-0.285059\pi\)
0.625099 + 0.780546i \(0.285059\pi\)
\(72\) 0 0
\(73\) 12.8174 12.8174i 0.175581 0.175581i −0.613845 0.789426i \(-0.710378\pi\)
0.789426 + 0.613845i \(0.210378\pi\)
\(74\) 10.6002i 0.143246i
\(75\) 0 0
\(76\) 108.514 1.42782
\(77\) −103.632 103.632i −1.34587 1.34587i
\(78\) 0 0
\(79\) 30.3588i 0.384289i 0.981367 + 0.192144i \(0.0615442\pi\)
−0.981367 + 0.192144i \(0.938456\pi\)
\(80\) −60.0182 + 40.9810i −0.750228 + 0.512262i
\(81\) 0 0
\(82\) −47.6540 47.6540i −0.581147 0.581147i
\(83\) −107.379 + 107.379i −1.29373 + 1.29373i −0.361260 + 0.932465i \(0.617653\pi\)
−0.932465 + 0.361260i \(0.882347\pi\)
\(84\) 0 0
\(85\) −51.9592 9.79374i −0.611284 0.115220i
\(86\) −47.5092 −0.552433
\(87\) 0 0
\(88\) 8.48175 8.48175i 0.0963835 0.0963835i
\(89\) 117.891i 1.32462i −0.749231 0.662309i \(-0.769577\pi\)
0.749231 0.662309i \(-0.230423\pi\)
\(90\) 0 0
\(91\) 11.1809 0.122867
\(92\) 78.5559 + 78.5559i 0.853869 + 0.853869i
\(93\) 0 0
\(94\) 200.242i 2.13023i
\(95\) 70.5328 + 103.298i 0.742451 + 1.08735i
\(96\) 0 0
\(97\) 13.5295 + 13.5295i 0.139480 + 0.139480i 0.773399 0.633919i \(-0.218555\pi\)
−0.633919 + 0.773399i \(0.718555\pi\)
\(98\) −189.850 + 189.850i −1.93724 + 1.93724i
\(99\) 0 0
\(100\) 101.002 + 39.4783i 1.01002 + 0.394783i
\(101\) 19.6506 0.194561 0.0972804 0.995257i \(-0.468986\pi\)
0.0972804 + 0.995257i \(0.468986\pi\)
\(102\) 0 0
\(103\) −121.219 + 121.219i −1.17689 + 1.17689i −0.196354 + 0.980533i \(0.562910\pi\)
−0.980533 + 0.196354i \(0.937090\pi\)
\(104\) 0.915104i 0.00879908i
\(105\) 0 0
\(106\) 113.072 1.06671
\(107\) 10.5840 + 10.5840i 0.0989155 + 0.0989155i 0.754833 0.655917i \(-0.227718\pi\)
−0.655917 + 0.754833i \(0.727718\pi\)
\(108\) 0 0
\(109\) 9.08051i 0.0833075i −0.999132 0.0416537i \(-0.986737\pi\)
0.999132 0.0416537i \(-0.0132626\pi\)
\(110\) 174.503 + 32.8920i 1.58640 + 0.299018i
\(111\) 0 0
\(112\) 122.466 + 122.466i 1.09345 + 1.09345i
\(113\) 108.813 108.813i 0.962949 0.962949i −0.0363886 0.999338i \(-0.511585\pi\)
0.999338 + 0.0363886i \(0.0115854\pi\)
\(114\) 0 0
\(115\) −23.7195 + 125.840i −0.206257 + 1.09426i
\(116\) 14.6764 0.126521
\(117\) 0 0
\(118\) −179.174 + 179.174i −1.51843 + 1.51843i
\(119\) 126.006i 1.05887i
\(120\) 0 0
\(121\) 30.2801 0.250248
\(122\) −161.400 161.400i −1.32295 1.32295i
\(123\) 0 0
\(124\) 125.286i 1.01037i
\(125\) 28.0696 + 121.808i 0.224557 + 0.974461i
\(126\) 0 0
\(127\) −115.169 115.169i −0.906841 0.906841i 0.0891750 0.996016i \(-0.471577\pi\)
−0.996016 + 0.0891750i \(0.971577\pi\)
\(128\) −21.9884 + 21.9884i −0.171784 + 0.171784i
\(129\) 0 0
\(130\) −11.1880 + 7.63930i −0.0860619 + 0.0587638i
\(131\) −18.8578 −0.143952 −0.0719762 0.997406i \(-0.522931\pi\)
−0.0719762 + 0.997406i \(0.522931\pi\)
\(132\) 0 0
\(133\) 210.778 210.778i 1.58480 1.58480i
\(134\) 185.020i 1.38075i
\(135\) 0 0
\(136\) −10.3129 −0.0758305
\(137\) −53.4836 53.4836i −0.390391 0.390391i 0.484436 0.874827i \(-0.339025\pi\)
−0.874827 + 0.484436i \(0.839025\pi\)
\(138\) 0 0
\(139\) 44.9528i 0.323401i 0.986840 + 0.161701i \(0.0516979\pi\)
−0.986840 + 0.161701i \(0.948302\pi\)
\(140\) 47.8692 253.963i 0.341923 1.81402i
\(141\) 0 0
\(142\) 181.237 + 181.237i 1.27632 + 1.27632i
\(143\) −8.16088 + 8.16088i −0.0570691 + 0.0570691i
\(144\) 0 0
\(145\) 9.53947 + 13.9709i 0.0657894 + 0.0963512i
\(146\) 52.3406 0.358498
\(147\) 0 0
\(148\) 11.2600 11.2600i 0.0760813 0.0760813i
\(149\) 164.230i 1.10222i −0.834434 0.551108i \(-0.814205\pi\)
0.834434 0.551108i \(-0.185795\pi\)
\(150\) 0 0
\(151\) 38.4022 0.254319 0.127159 0.991882i \(-0.459414\pi\)
0.127159 + 0.991882i \(0.459414\pi\)
\(152\) 17.2511 + 17.2511i 0.113494 + 0.113494i
\(153\) 0 0
\(154\) 423.187i 2.74797i
\(155\) −119.264 + 81.4346i −0.769446 + 0.525384i
\(156\) 0 0
\(157\) −46.0663 46.0663i −0.293416 0.293416i 0.545012 0.838428i \(-0.316525\pi\)
−0.838428 + 0.545012i \(0.816525\pi\)
\(158\) −61.9860 + 61.9860i −0.392317 + 0.392317i
\(159\) 0 0
\(160\) −225.385 42.4827i −1.40866 0.265517i
\(161\) 305.174 1.89549
\(162\) 0 0
\(163\) 20.9849 20.9849i 0.128742 0.128742i −0.639800 0.768542i \(-0.720983\pi\)
0.768542 + 0.639800i \(0.220983\pi\)
\(164\) 101.240i 0.617320i
\(165\) 0 0
\(166\) −438.490 −2.64150
\(167\) 66.3800 + 66.3800i 0.397485 + 0.397485i 0.877345 0.479860i \(-0.159313\pi\)
−0.479860 + 0.877345i \(0.659313\pi\)
\(168\) 0 0
\(169\) 168.120i 0.994790i
\(170\) −86.0926 126.086i −0.506427 0.741682i
\(171\) 0 0
\(172\) −50.4664 50.4664i −0.293409 0.293409i
\(173\) 140.922 140.922i 0.814575 0.814575i −0.170741 0.985316i \(-0.554616\pi\)
0.985316 + 0.170741i \(0.0546160\pi\)
\(174\) 0 0
\(175\) 272.869 119.504i 1.55925 0.682882i
\(176\) −178.774 −1.01576
\(177\) 0 0
\(178\) 240.708 240.708i 1.35229 1.35229i
\(179\) 45.6130i 0.254821i 0.991850 + 0.127411i \(0.0406666\pi\)
−0.991850 + 0.127411i \(0.959333\pi\)
\(180\) 0 0
\(181\) −104.793 −0.578968 −0.289484 0.957183i \(-0.593484\pi\)
−0.289484 + 0.957183i \(0.593484\pi\)
\(182\) 22.8290 + 22.8290i 0.125434 + 0.125434i
\(183\) 0 0
\(184\) 24.9770i 0.135744i
\(185\) 18.0377 + 3.39990i 0.0975009 + 0.0183778i
\(186\) 0 0
\(187\) −91.9706 91.9706i −0.491821 0.491821i
\(188\) 212.706 212.706i 1.13141 1.13141i
\(189\) 0 0
\(190\) −66.8994 + 354.925i −0.352102 + 1.86802i
\(191\) 101.295 0.530338 0.265169 0.964202i \(-0.414572\pi\)
0.265169 + 0.964202i \(0.414572\pi\)
\(192\) 0 0
\(193\) 200.041 200.041i 1.03648 1.03648i 0.0371741 0.999309i \(-0.488164\pi\)
0.999309 0.0371741i \(-0.0118356\pi\)
\(194\) 55.2487i 0.284787i
\(195\) 0 0
\(196\) −403.333 −2.05782
\(197\) 5.26310 + 5.26310i 0.0267163 + 0.0267163i 0.720339 0.693622i \(-0.243986\pi\)
−0.693622 + 0.720339i \(0.743986\pi\)
\(198\) 0 0
\(199\) 141.070i 0.708895i 0.935076 + 0.354448i \(0.115331\pi\)
−0.935076 + 0.354448i \(0.884669\pi\)
\(200\) 9.78083 + 22.3330i 0.0489042 + 0.111665i
\(201\) 0 0
\(202\) 40.1223 + 40.1223i 0.198625 + 0.198625i
\(203\) 28.5074 28.5074i 0.140431 0.140431i
\(204\) 0 0
\(205\) 96.3739 65.8050i 0.470117 0.321000i
\(206\) −495.007 −2.40295
\(207\) 0 0
\(208\) 9.64406 9.64406i 0.0463657 0.0463657i
\(209\) 307.690i 1.47220i
\(210\) 0 0
\(211\) −45.1068 −0.213777 −0.106888 0.994271i \(-0.534089\pi\)
−0.106888 + 0.994271i \(0.534089\pi\)
\(212\) 120.110 + 120.110i 0.566555 + 0.566555i
\(213\) 0 0
\(214\) 43.2203i 0.201964i
\(215\) 15.2380 80.8431i 0.0708746 0.376014i
\(216\) 0 0
\(217\) 243.356 + 243.356i 1.12146 + 1.12146i
\(218\) 18.5404 18.5404i 0.0850478 0.0850478i
\(219\) 0 0
\(220\) 150.426 + 220.305i 0.683755 + 1.00139i
\(221\) 9.92280 0.0448995
\(222\) 0 0
\(223\) −3.96818 + 3.96818i −0.0177945 + 0.0177945i −0.715948 0.698154i \(-0.754005\pi\)
0.698154 + 0.715948i \(0.254005\pi\)
\(224\) 546.580i 2.44009i
\(225\) 0 0
\(226\) 444.346 1.96613
\(227\) 53.7498 + 53.7498i 0.236783 + 0.236783i 0.815517 0.578734i \(-0.196453\pi\)
−0.578734 + 0.815517i \(0.696453\pi\)
\(228\) 0 0
\(229\) 55.1897i 0.241003i −0.992713 0.120502i \(-0.961550\pi\)
0.992713 0.120502i \(-0.0384503\pi\)
\(230\) −305.368 + 208.508i −1.32769 + 0.906557i
\(231\) 0 0
\(232\) 2.33319 + 2.33319i 0.0100569 + 0.0100569i
\(233\) 96.4842 96.4842i 0.414095 0.414095i −0.469067 0.883162i \(-0.655410\pi\)
0.883162 + 0.469067i \(0.155410\pi\)
\(234\) 0 0
\(235\) 340.737 + 64.2252i 1.44994 + 0.273299i
\(236\) −380.654 −1.61294
\(237\) 0 0
\(238\) −257.276 + 257.276i −1.08099 + 1.08099i
\(239\) 147.427i 0.616848i 0.951249 + 0.308424i \(0.0998015\pi\)
−0.951249 + 0.308424i \(0.900198\pi\)
\(240\) 0 0
\(241\) −358.998 −1.48962 −0.744809 0.667278i \(-0.767459\pi\)
−0.744809 + 0.667278i \(0.767459\pi\)
\(242\) 61.8253 + 61.8253i 0.255476 + 0.255476i
\(243\) 0 0
\(244\) 342.894i 1.40530i
\(245\) −262.161 383.945i −1.07005 1.56712i
\(246\) 0 0
\(247\) −16.5985 16.5985i −0.0672004 0.0672004i
\(248\) −19.9175 + 19.9175i −0.0803125 + 0.0803125i
\(249\) 0 0
\(250\) −191.393 + 306.017i −0.765570 + 1.22407i
\(251\) −154.041 −0.613710 −0.306855 0.951756i \(-0.599277\pi\)
−0.306855 + 0.951756i \(0.599277\pi\)
\(252\) 0 0
\(253\) −222.744 + 222.744i −0.880411 + 0.880411i
\(254\) 470.299i 1.85157i
\(255\) 0 0
\(256\) 207.461 0.810394
\(257\) 244.160 + 244.160i 0.950040 + 0.950040i 0.998810 0.0487696i \(-0.0155300\pi\)
−0.0487696 + 0.998810i \(0.515530\pi\)
\(258\) 0 0
\(259\) 43.7430i 0.168892i
\(260\) −19.9992 3.76964i −0.0769202 0.0144986i
\(261\) 0 0
\(262\) −38.5035 38.5035i −0.146960 0.146960i
\(263\) −184.303 + 184.303i −0.700773 + 0.700773i −0.964577 0.263803i \(-0.915023\pi\)
0.263803 + 0.964577i \(0.415023\pi\)
\(264\) 0 0
\(265\) −36.2664 + 192.406i −0.136854 + 0.726060i
\(266\) 860.725 3.23581
\(267\) 0 0
\(268\) 196.537 196.537i 0.733345 0.733345i
\(269\) 194.835i 0.724296i 0.932121 + 0.362148i \(0.117956\pi\)
−0.932121 + 0.362148i \(0.882044\pi\)
\(270\) 0 0
\(271\) −307.130 −1.13332 −0.566661 0.823951i \(-0.691765\pi\)
−0.566661 + 0.823951i \(0.691765\pi\)
\(272\) 108.686 + 108.686i 0.399579 + 0.399579i
\(273\) 0 0
\(274\) 218.404i 0.797094i
\(275\) −111.940 + 286.390i −0.407054 + 1.04142i
\(276\) 0 0
\(277\) −75.0856 75.0856i −0.271067 0.271067i 0.558462 0.829530i \(-0.311391\pi\)
−0.829530 + 0.558462i \(0.811391\pi\)
\(278\) −91.7838 + 91.7838i −0.330157 + 0.330157i
\(279\) 0 0
\(280\) 47.9839 32.7639i 0.171371 0.117014i
\(281\) −1.14960 −0.00409109 −0.00204554 0.999998i \(-0.500651\pi\)
−0.00204554 + 0.999998i \(0.500651\pi\)
\(282\) 0 0
\(283\) 226.854 226.854i 0.801605 0.801605i −0.181742 0.983346i \(-0.558173\pi\)
0.983346 + 0.181742i \(0.0581734\pi\)
\(284\) 385.036i 1.35576i
\(285\) 0 0
\(286\) −33.3254 −0.116523
\(287\) −196.649 196.649i −0.685189 0.685189i
\(288\) 0 0
\(289\) 177.173i 0.613056i
\(290\) −9.04805 + 48.0031i −0.0312002 + 0.165528i
\(291\) 0 0
\(292\) 55.5986 + 55.5986i 0.190406 + 0.190406i
\(293\) 72.6950 72.6950i 0.248106 0.248106i −0.572087 0.820193i \(-0.693866\pi\)
0.820193 + 0.572087i \(0.193866\pi\)
\(294\) 0 0
\(295\) −247.420 362.356i −0.838712 1.22833i
\(296\) 3.58015 0.0120951
\(297\) 0 0
\(298\) 335.322 335.322i 1.12524 1.12524i
\(299\) 24.0321i 0.0803748i
\(300\) 0 0
\(301\) −196.052 −0.651335
\(302\) 78.4088 + 78.4088i 0.259632 + 0.259632i
\(303\) 0 0
\(304\) 363.611i 1.19609i
\(305\) 326.411 222.876i 1.07020 0.730742i
\(306\) 0 0
\(307\) −74.6079 74.6079i −0.243023 0.243023i 0.575077 0.818099i \(-0.304972\pi\)
−0.818099 + 0.575077i \(0.804972\pi\)
\(308\) 449.528 449.528i 1.45951 1.45951i
\(309\) 0 0
\(310\) −409.783 77.2396i −1.32188 0.249160i
\(311\) −597.260 −1.92045 −0.960225 0.279227i \(-0.909922\pi\)
−0.960225 + 0.279227i \(0.909922\pi\)
\(312\) 0 0
\(313\) −119.926 + 119.926i −0.383149 + 0.383149i −0.872235 0.489086i \(-0.837330\pi\)
0.489086 + 0.872235i \(0.337330\pi\)
\(314\) 188.115i 0.599091i
\(315\) 0 0
\(316\) −131.689 −0.416736
\(317\) −288.991 288.991i −0.911643 0.911643i 0.0847581 0.996402i \(-0.472988\pi\)
−0.996402 + 0.0847581i \(0.972988\pi\)
\(318\) 0 0
\(319\) 41.6147i 0.130454i
\(320\) −209.524 306.855i −0.654761 0.958923i
\(321\) 0 0
\(322\) 623.098 + 623.098i 1.93509 + 1.93509i
\(323\) 187.060 187.060i 0.579133 0.579133i
\(324\) 0 0
\(325\) −9.41081 21.4881i −0.0289564 0.0661173i
\(326\) 85.6933 0.262863
\(327\) 0 0
\(328\) 16.0948 16.0948i 0.0490694 0.0490694i
\(329\) 826.318i 2.51160i
\(330\) 0 0
\(331\) 420.290 1.26976 0.634879 0.772611i \(-0.281050\pi\)
0.634879 + 0.772611i \(0.281050\pi\)
\(332\) −465.783 465.783i −1.40296 1.40296i
\(333\) 0 0
\(334\) 271.067i 0.811578i
\(335\) 314.835 + 59.3431i 0.939807 + 0.177143i
\(336\) 0 0
\(337\) −205.557 205.557i −0.609962 0.609962i 0.332974 0.942936i \(-0.391948\pi\)
−0.942936 + 0.332974i \(0.891948\pi\)
\(338\) −343.263 + 343.263i −1.01557 + 1.01557i
\(339\) 0 0
\(340\) 42.4827 225.385i 0.124949 0.662898i
\(341\) −355.248 −1.04178
\(342\) 0 0
\(343\) −370.578 + 370.578i −1.08040 + 1.08040i
\(344\) 16.0459i 0.0466450i
\(345\) 0 0
\(346\) 575.462 1.66318
\(347\) 388.193 + 388.193i 1.11871 + 1.11871i 0.991931 + 0.126783i \(0.0404651\pi\)
0.126783 + 0.991931i \(0.459535\pi\)
\(348\) 0 0
\(349\) 435.439i 1.24768i 0.781554 + 0.623838i \(0.214428\pi\)
−0.781554 + 0.623838i \(0.785572\pi\)
\(350\) 801.141 + 313.138i 2.28897 + 0.894680i
\(351\) 0 0
\(352\) −398.945 398.945i −1.13337 1.13337i
\(353\) −235.342 + 235.342i −0.666692 + 0.666692i −0.956949 0.290257i \(-0.906259\pi\)
0.290257 + 0.956949i \(0.406259\pi\)
\(354\) 0 0
\(355\) −366.527 + 250.268i −1.03247 + 0.704981i
\(356\) 511.381 1.43646
\(357\) 0 0
\(358\) −93.1318 + 93.1318i −0.260145 + 0.260145i
\(359\) 114.922i 0.320116i 0.987108 + 0.160058i \(0.0511682\pi\)
−0.987108 + 0.160058i \(0.948832\pi\)
\(360\) 0 0
\(361\) −264.815 −0.733559
\(362\) −213.965 213.965i −0.591063 0.591063i
\(363\) 0 0
\(364\) 48.5000i 0.133242i
\(365\) −16.7877 + 89.0643i −0.0459936 + 0.244012i
\(366\) 0 0
\(367\) 369.732 + 369.732i 1.00744 + 1.00744i 0.999972 + 0.00747267i \(0.00237865\pi\)
0.00747267 + 0.999972i \(0.497621\pi\)
\(368\) 263.226 263.226i 0.715289 0.715289i
\(369\) 0 0
\(370\) 29.8871 + 43.7708i 0.0807759 + 0.118299i
\(371\) 466.602 1.25769
\(372\) 0 0
\(373\) 150.598 150.598i 0.403747 0.403747i −0.475804 0.879551i \(-0.657843\pi\)
0.879551 + 0.475804i \(0.157843\pi\)
\(374\) 375.568i 1.00419i
\(375\) 0 0
\(376\) 67.6300 0.179867
\(377\) −2.24492 2.24492i −0.00595470 0.00595470i
\(378\) 0 0
\(379\) 672.519i 1.77446i 0.461331 + 0.887228i \(0.347372\pi\)
−0.461331 + 0.887228i \(0.652628\pi\)
\(380\) −448.080 + 305.953i −1.17916 + 0.805140i
\(381\) 0 0
\(382\) 206.821 + 206.821i 0.541417 + 0.541417i
\(383\) −215.302 + 215.302i −0.562146 + 0.562146i −0.929917 0.367771i \(-0.880121\pi\)
0.367771 + 0.929917i \(0.380121\pi\)
\(384\) 0 0
\(385\) 720.107 + 135.732i 1.87041 + 0.352551i
\(386\) 816.881 2.11627
\(387\) 0 0
\(388\) −58.6876 + 58.6876i −0.151257 + 0.151257i
\(389\) 711.699i 1.82956i −0.403952 0.914780i \(-0.632364\pi\)
0.403952 0.914780i \(-0.367636\pi\)
\(390\) 0 0
\(391\) 270.834 0.692671
\(392\) −64.1202 64.1202i −0.163572 0.163572i
\(393\) 0 0
\(394\) 21.4922i 0.0545488i
\(395\) −85.5959 125.359i −0.216699 0.317363i
\(396\) 0 0
\(397\) −41.4605 41.4605i −0.104435 0.104435i 0.652959 0.757393i \(-0.273527\pi\)
−0.757393 + 0.652959i \(0.773527\pi\)
\(398\) −288.034 + 288.034i −0.723705 + 0.723705i
\(399\) 0 0
\(400\) 132.284 338.440i 0.330711 0.846100i
\(401\) −166.372 −0.414892 −0.207446 0.978246i \(-0.566515\pi\)
−0.207446 + 0.978246i \(0.566515\pi\)
\(402\) 0 0
\(403\) 19.1640 19.1640i 0.0475534 0.0475534i
\(404\) 85.2394i 0.210989i
\(405\) 0 0
\(406\) 116.412 0.286729
\(407\) 31.9277 + 31.9277i 0.0784463 + 0.0784463i
\(408\) 0 0
\(409\) 23.7379i 0.0580390i 0.999579 + 0.0290195i \(0.00923848\pi\)
−0.999579 + 0.0290195i \(0.990762\pi\)
\(410\) 331.134 + 62.4151i 0.807644 + 0.152232i
\(411\) 0 0
\(412\) −525.818 525.818i −1.27626 1.27626i
\(413\) −739.382 + 739.382i −1.79027 + 1.79027i
\(414\) 0 0
\(415\) 140.640 746.147i 0.338893 1.79794i
\(416\) 43.0425 0.103468
\(417\) 0 0
\(418\) −628.236 + 628.236i −1.50296 + 1.50296i
\(419\) 499.572i 1.19229i −0.802875 0.596147i \(-0.796697\pi\)
0.802875 0.596147i \(-0.203303\pi\)
\(420\) 0 0
\(421\) −3.80963 −0.00904901 −0.00452450 0.999990i \(-0.501440\pi\)
−0.00452450 + 0.999990i \(0.501440\pi\)
\(422\) −92.0983 92.0983i −0.218242 0.218242i
\(423\) 0 0
\(424\) 38.1890i 0.0900685i
\(425\) 242.165 106.057i 0.569799 0.249546i
\(426\) 0 0
\(427\) −666.036 666.036i −1.55980 1.55980i
\(428\) −45.9105 + 45.9105i −0.107267 + 0.107267i
\(429\) 0 0
\(430\) 196.177 133.951i 0.456225 0.311514i
\(431\) −767.834 −1.78152 −0.890759 0.454477i \(-0.849826\pi\)
−0.890759 + 0.454477i \(0.849826\pi\)
\(432\) 0 0
\(433\) 367.840 367.840i 0.849516 0.849516i −0.140557 0.990073i \(-0.544889\pi\)
0.990073 + 0.140557i \(0.0448893\pi\)
\(434\) 993.760i 2.28977i
\(435\) 0 0
\(436\) 39.3889 0.0903416
\(437\) −453.042 453.042i −1.03671 1.03671i
\(438\) 0 0
\(439\) 137.458i 0.313116i −0.987669 0.156558i \(-0.949960\pi\)
0.987669 0.156558i \(-0.0500398\pi\)
\(440\) −11.1090 + 58.9372i −0.0252478 + 0.133948i
\(441\) 0 0
\(442\) 20.2602 + 20.2602i 0.0458375 + 0.0458375i
\(443\) −312.553 + 312.553i −0.705538 + 0.705538i −0.965594 0.260055i \(-0.916259\pi\)
0.260055 + 0.965594i \(0.416259\pi\)
\(444\) 0 0
\(445\) 332.391 + 486.799i 0.746946 + 1.09393i
\(446\) −16.2043 −0.0363326
\(447\) 0 0
\(448\) −626.133 + 626.133i −1.39762 + 1.39762i
\(449\) 827.291i 1.84252i 0.388949 + 0.921259i \(0.372838\pi\)
−0.388949 + 0.921259i \(0.627162\pi\)
\(450\) 0 0
\(451\) 287.066 0.636509
\(452\) 472.004 + 472.004i 1.04426 + 1.04426i
\(453\) 0 0
\(454\) 219.491i 0.483459i
\(455\) −46.1687 + 31.5244i −0.101470 + 0.0692843i
\(456\) 0 0
\(457\) −626.172 626.172i −1.37018 1.37018i −0.860167 0.510013i \(-0.829640\pi\)
−0.510013 0.860167i \(-0.670360\pi\)
\(458\) 112.685 112.685i 0.246038 0.246038i
\(459\) 0 0
\(460\) −545.862 102.889i −1.18666 0.223672i
\(461\) 261.839 0.567980 0.283990 0.958827i \(-0.408342\pi\)
0.283990 + 0.958827i \(0.408342\pi\)
\(462\) 0 0
\(463\) 119.188 119.188i 0.257426 0.257426i −0.566580 0.824007i \(-0.691734\pi\)
0.824007 + 0.566580i \(0.191734\pi\)
\(464\) 49.1779i 0.105987i
\(465\) 0 0
\(466\) 393.999 0.845492
\(467\) −63.7603 63.7603i −0.136532 0.136532i 0.635538 0.772070i \(-0.280778\pi\)
−0.772070 + 0.635538i \(0.780778\pi\)
\(468\) 0 0
\(469\) 763.505i 1.62794i
\(470\) 564.576 + 826.844i 1.20123 + 1.75924i
\(471\) 0 0
\(472\) −60.5147 60.5147i −0.128209 0.128209i
\(473\) 143.097 143.097i 0.302530 0.302530i
\(474\) 0 0
\(475\) −582.493 227.676i −1.22630 0.479318i
\(476\) −546.580 −1.14828
\(477\) 0 0
\(478\) −301.013 + 301.013i −0.629734 + 0.629734i
\(479\) 38.8332i 0.0810714i −0.999178 0.0405357i \(-0.987094\pi\)
0.999178 0.0405357i \(-0.0129064\pi\)
\(480\) 0 0
\(481\) −3.44470 −0.00716155
\(482\) −732.995 732.995i −1.52074 1.52074i
\(483\) 0 0
\(484\) 131.347i 0.271378i
\(485\) −94.0127 17.7204i −0.193841 0.0365369i
\(486\) 0 0
\(487\) 394.799 + 394.799i 0.810676 + 0.810676i 0.984735 0.174059i \(-0.0556883\pi\)
−0.174059 + 0.984735i \(0.555688\pi\)
\(488\) 54.5118 54.5118i 0.111704 0.111704i
\(489\) 0 0
\(490\) 248.657 1319.21i 0.507462 2.69226i
\(491\) 460.743 0.938377 0.469188 0.883098i \(-0.344547\pi\)
0.469188 + 0.883098i \(0.344547\pi\)
\(492\) 0 0
\(493\) 25.2996 25.2996i 0.0513177 0.0513177i
\(494\) 67.7810i 0.137209i
\(495\) 0 0
\(496\) 419.811 0.846394
\(497\) 747.893 + 747.893i 1.50481 + 1.50481i
\(498\) 0 0
\(499\) 850.644i 1.70470i 0.522974 + 0.852349i \(0.324822\pi\)
−0.522974 + 0.852349i \(0.675178\pi\)
\(500\) −528.370 + 121.759i −1.05674 + 0.243518i
\(501\) 0 0
\(502\) −314.519 314.519i −0.626531 0.626531i
\(503\) 196.093 196.093i 0.389847 0.389847i −0.484786 0.874633i \(-0.661103\pi\)
0.874633 + 0.484786i \(0.161103\pi\)
\(504\) 0 0
\(505\) −81.1420 + 55.4045i −0.160677 + 0.109712i
\(506\) −909.589 −1.79761
\(507\) 0 0
\(508\) 499.573 499.573i 0.983411 0.983411i
\(509\) 390.319i 0.766835i 0.923575 + 0.383417i \(0.125253\pi\)
−0.923575 + 0.383417i \(0.874747\pi\)
\(510\) 0 0
\(511\) 215.989 0.422679
\(512\) 511.543 + 511.543i 0.999108 + 0.999108i
\(513\) 0 0
\(514\) 997.044i 1.93977i
\(515\) 158.768 842.318i 0.308287 1.63557i
\(516\) 0 0
\(517\) 603.123 + 603.123i 1.16658 + 1.16658i
\(518\) 89.3136 89.3136i 0.172420 0.172420i
\(519\) 0 0
\(520\) −2.58011 3.77868i −0.00496176 0.00726668i
\(521\) 679.963 1.30511 0.652556 0.757741i \(-0.273697\pi\)
0.652556 + 0.757741i \(0.273697\pi\)
\(522\) 0 0
\(523\) 442.612 442.612i 0.846295 0.846295i −0.143374 0.989669i \(-0.545795\pi\)
0.989669 + 0.143374i \(0.0457951\pi\)
\(524\) 81.8002i 0.156107i
\(525\) 0 0
\(526\) −752.615 −1.43083
\(527\) 215.973 + 215.973i 0.409815 + 0.409815i
\(528\) 0 0
\(529\) 126.935i 0.239952i
\(530\) −466.899 + 318.803i −0.880941 + 0.601514i
\(531\) 0 0
\(532\) 914.300 + 914.300i 1.71861 + 1.71861i
\(533\) −15.4859 + 15.4859i −0.0290542 + 0.0290542i
\(534\) 0 0
\(535\) −73.5448 13.8624i −0.137467 0.0259110i
\(536\) 62.4891 0.116584
\(537\) 0 0
\(538\) −397.811 + 397.811i −0.739427 + 0.739427i
\(539\) 1143.64i 2.12179i
\(540\) 0 0
\(541\) 780.447 1.44260 0.721300 0.692623i \(-0.243545\pi\)
0.721300 + 0.692623i \(0.243545\pi\)
\(542\) −627.093 627.093i −1.15700 1.15700i
\(543\) 0 0
\(544\) 485.076i 0.891684i
\(545\) 25.6023 + 37.4955i 0.0469767 + 0.0687992i
\(546\) 0 0
\(547\) −245.581 245.581i −0.448960 0.448960i 0.446048 0.895009i \(-0.352831\pi\)
−0.895009 + 0.446048i \(0.852831\pi\)
\(548\) 231.998 231.998i 0.423354 0.423354i
\(549\) 0 0
\(550\) −813.304 + 356.190i −1.47873 + 0.647618i
\(551\) −84.6406 −0.153613
\(552\) 0 0
\(553\) −255.792 + 255.792i −0.462553 + 0.462553i
\(554\) 306.617i 0.553460i
\(555\) 0 0
\(556\) −194.994 −0.350708
\(557\) 670.322 + 670.322i 1.20345 + 1.20345i 0.973110 + 0.230341i \(0.0739840\pi\)
0.230341 + 0.973110i \(0.426016\pi\)
\(558\) 0 0
\(559\) 15.4388i 0.0276187i
\(560\) −850.981 160.401i −1.51961 0.286430i
\(561\) 0 0
\(562\) −2.34722 2.34722i −0.00417655 0.00417655i
\(563\) 308.161 308.161i 0.547354 0.547354i −0.378320 0.925675i \(-0.623498\pi\)
0.925675 + 0.378320i \(0.123498\pi\)
\(564\) 0 0
\(565\) −142.519 + 756.111i −0.252246 + 1.33825i
\(566\) 926.373 1.63670
\(567\) 0 0
\(568\) −61.2113 + 61.2113i −0.107766 + 0.107766i
\(569\) 773.974i 1.36024i 0.733103 + 0.680118i \(0.238072\pi\)
−0.733103 + 0.680118i \(0.761928\pi\)
\(570\) 0 0
\(571\) 467.801 0.819267 0.409633 0.912250i \(-0.365657\pi\)
0.409633 + 0.912250i \(0.365657\pi\)
\(572\) −35.3998 35.3998i −0.0618877 0.0618877i
\(573\) 0 0
\(574\) 803.030i 1.39901i
\(575\) −256.860 586.500i −0.446713 1.02000i
\(576\) 0 0
\(577\) 272.029 + 272.029i 0.471454 + 0.471454i 0.902385 0.430931i \(-0.141815\pi\)
−0.430931 + 0.902385i \(0.641815\pi\)
\(578\) 361.749 361.749i 0.625863 0.625863i
\(579\) 0 0
\(580\) −60.6022 + 41.3798i −0.104487 + 0.0713444i
\(581\) −1809.47 −3.11441
\(582\) 0 0
\(583\) −340.569 + 340.569i −0.584166 + 0.584166i
\(584\) 17.6776i 0.0302699i
\(585\) 0 0
\(586\) 296.855 0.506578
\(587\) −99.9169 99.9169i −0.170216 0.170216i 0.616858 0.787074i \(-0.288405\pi\)
−0.787074 + 0.616858i \(0.788405\pi\)
\(588\) 0 0
\(589\) 722.542i 1.22673i
\(590\) 234.675 1245.03i 0.397754 2.11022i
\(591\) 0 0
\(592\) −37.7303 37.7303i −0.0637336 0.0637336i
\(593\) 94.3094 94.3094i 0.159038 0.159038i −0.623102 0.782140i \(-0.714128\pi\)
0.782140 + 0.623102i \(0.214128\pi\)
\(594\) 0 0
\(595\) −355.270 520.307i −0.597093 0.874465i
\(596\) 712.388 1.19528
\(597\) 0 0
\(598\) 49.0682 49.0682i 0.0820539 0.0820539i
\(599\) 835.468i 1.39477i 0.716696 + 0.697386i \(0.245654\pi\)
−0.716696 + 0.697386i \(0.754346\pi\)
\(600\) 0 0
\(601\) 359.618 0.598366 0.299183 0.954196i \(-0.403286\pi\)
0.299183 + 0.954196i \(0.403286\pi\)
\(602\) −400.295 400.295i −0.664942 0.664942i
\(603\) 0 0
\(604\) 166.579i 0.275793i
\(605\) −125.033 + 85.3739i −0.206667 + 0.141114i
\(606\) 0 0
\(607\) 364.454 + 364.454i 0.600419 + 0.600419i 0.940424 0.340005i \(-0.110429\pi\)
−0.340005 + 0.940424i \(0.610429\pi\)
\(608\) 811.418 811.418i 1.33457 1.33457i
\(609\) 0 0
\(610\) 1121.52 + 211.395i 1.83857 + 0.346550i
\(611\) −65.0715 −0.106500
\(612\) 0 0
\(613\) −470.150 + 470.150i −0.766965 + 0.766965i −0.977571 0.210606i \(-0.932456\pi\)
0.210606 + 0.977571i \(0.432456\pi\)
\(614\) 304.666i 0.496199i
\(615\) 0 0
\(616\) 142.928 0.232026
\(617\) 179.232 + 179.232i 0.290490 + 0.290490i 0.837274 0.546784i \(-0.184148\pi\)
−0.546784 + 0.837274i \(0.684148\pi\)
\(618\) 0 0
\(619\) 102.707i 0.165924i 0.996553 + 0.0829618i \(0.0264380\pi\)
−0.996553 + 0.0829618i \(0.973562\pi\)
\(620\) −353.242 517.337i −0.569745 0.834414i
\(621\) 0 0
\(622\) −1219.47 1219.47i −1.96057 1.96057i
\(623\) 993.305 993.305i 1.59439 1.59439i
\(624\) 0 0
\(625\) −459.340 423.830i −0.734943 0.678128i
\(626\) −489.724 −0.782306
\(627\) 0 0
\(628\) 199.824 199.824i 0.318191 0.318191i
\(629\) 38.8208i 0.0617183i
\(630\) 0 0
\(631\) −1201.04 −1.90339 −0.951696 0.307042i \(-0.900661\pi\)
−0.951696 + 0.307042i \(0.900661\pi\)
\(632\) −20.9353 20.9353i −0.0331255 0.0331255i
\(633\) 0 0
\(634\) 1180.11i 1.86138i
\(635\) 800.274 + 150.843i 1.26027 + 0.237548i
\(636\) 0 0
\(637\) 61.6945 + 61.6945i 0.0968516 + 0.0968516i
\(638\) −84.9681 + 84.9681i −0.133179 + 0.133179i
\(639\) 0 0
\(640\) 28.7994 152.791i 0.0449991 0.238736i
\(641\) 570.401 0.889862 0.444931 0.895565i \(-0.353228\pi\)
0.444931 + 0.895565i \(0.353228\pi\)
\(642\) 0 0
\(643\) −626.716 + 626.716i −0.974676 + 0.974676i −0.999687 0.0250116i \(-0.992038\pi\)
0.0250116 + 0.999687i \(0.492038\pi\)
\(644\) 1323.77i 2.05554i
\(645\) 0 0
\(646\) 763.871 1.18246
\(647\) −254.010 254.010i −0.392596 0.392596i 0.483016 0.875612i \(-0.339541\pi\)
−0.875612 + 0.483016i \(0.839541\pi\)
\(648\) 0 0
\(649\) 1079.34i 1.66308i
\(650\) 24.6592 63.0889i 0.0379373 0.0970598i
\(651\) 0 0
\(652\) 91.0272 + 91.0272i 0.139612 + 0.139612i
\(653\) 216.664 216.664i 0.331798 0.331798i −0.521471 0.853269i \(-0.674617\pi\)
0.853269 + 0.521471i \(0.174617\pi\)
\(654\) 0 0
\(655\) 77.8681 53.1690i 0.118883 0.0811741i
\(656\) −339.238 −0.517131
\(657\) 0 0
\(658\) 1687.16 1687.16i 2.56407 2.56407i
\(659\) 397.641i 0.603401i 0.953403 + 0.301701i \(0.0975543\pi\)
−0.953403 + 0.301701i \(0.902446\pi\)
\(660\) 0 0
\(661\) −694.578 −1.05080 −0.525399 0.850856i \(-0.676084\pi\)
−0.525399 + 0.850856i \(0.676084\pi\)
\(662\) 858.141 + 858.141i 1.29628 + 1.29628i
\(663\) 0 0
\(664\) 148.096i 0.223037i
\(665\) −276.067 + 1464.63i −0.415139 + 2.20246i
\(666\) 0 0
\(667\) −61.2733 61.2733i −0.0918640 0.0918640i
\(668\) −287.939 + 287.939i −0.431047 + 0.431047i
\(669\) 0 0
\(670\) 521.660 + 763.991i 0.778597 + 1.14028i
\(671\) 972.269 1.44899
\(672\) 0 0
\(673\) −119.442 + 119.442i −0.177477 + 0.177477i −0.790255 0.612778i \(-0.790052\pi\)
0.612778 + 0.790255i \(0.290052\pi\)
\(674\) 839.406i 1.24541i
\(675\) 0 0
\(676\) −729.259 −1.07879
\(677\) −184.870 184.870i −0.273072 0.273072i 0.557264 0.830336i \(-0.311851\pi\)
−0.830336 + 0.557264i \(0.811851\pi\)
\(678\) 0 0
\(679\) 227.989i 0.335772i
\(680\) 42.5845 29.0771i 0.0626243 0.0427604i
\(681\) 0 0
\(682\) −725.338 725.338i −1.06355 1.06355i
\(683\) −545.616 + 545.616i −0.798852 + 0.798852i −0.982915 0.184062i \(-0.941075\pi\)
0.184062 + 0.982915i \(0.441075\pi\)
\(684\) 0 0
\(685\) 371.642 + 70.0505i 0.542543 + 0.102263i
\(686\) −1513.28 −2.20595
\(687\) 0 0
\(688\) −169.104 + 169.104i −0.245790 + 0.245790i
\(689\) 36.7443i 0.0533299i
\(690\) 0 0
\(691\) 356.160 0.515426 0.257713 0.966221i \(-0.417031\pi\)
0.257713 + 0.966221i \(0.417031\pi\)
\(692\) 611.281 + 611.281i 0.883355 + 0.883355i
\(693\) 0 0
\(694\) 1585.21i 2.28417i
\(695\) −126.743 185.620i −0.182364 0.267080i
\(696\) 0 0
\(697\) −174.521 174.521i −0.250389 0.250389i
\(698\) −889.071 + 889.071i −1.27374 + 1.27374i
\(699\) 0 0
\(700\) 518.379 + 1183.64i 0.740541 + 1.69091i
\(701\) −357.763 −0.510361 −0.255180 0.966893i \(-0.582135\pi\)
−0.255180 + 0.966893i \(0.582135\pi\)
\(702\) 0 0
\(703\) −64.9380 + 64.9380i −0.0923727 + 0.0923727i
\(704\) 914.019i 1.29832i
\(705\) 0 0
\(706\) −961.034 −1.36124
\(707\) 165.569 + 165.569i 0.234185 + 0.234185i
\(708\) 0 0
\(709\) 374.521i 0.528238i −0.964490 0.264119i \(-0.914919\pi\)
0.964490 0.264119i \(-0.0850812\pi\)
\(710\) −1259.36 237.376i −1.77375 0.334332i
\(711\) 0 0
\(712\) 81.2971 + 81.2971i 0.114181 + 0.114181i
\(713\) 523.065 523.065i 0.733612 0.733612i
\(714\) 0 0
\(715\) 10.6888 56.7075i 0.0149493 0.0793112i
\(716\) −197.858 −0.276337
\(717\) 0 0
\(718\) −234.645 + 234.645i −0.326804 + 0.326804i
\(719\) 889.235i 1.23677i −0.785877 0.618383i \(-0.787788\pi\)
0.785877 0.618383i \(-0.212212\pi\)
\(720\) 0 0
\(721\) −2042.70 −2.83314
\(722\) −540.694 540.694i −0.748883 0.748883i
\(723\) 0 0
\(724\) 454.566i 0.627854i
\(725\) −78.7813 30.7929i −0.108664 0.0424729i
\(726\) 0 0
\(727\) 317.430 + 317.430i 0.436630 + 0.436630i 0.890876 0.454246i \(-0.150091\pi\)
−0.454246 + 0.890876i \(0.650091\pi\)
\(728\) −7.71032 + 7.71032i −0.0105911 + 0.0105911i
\(729\) 0 0
\(730\) −216.127 + 147.573i −0.296064 + 0.202155i
\(731\) −173.991 −0.238018
\(732\) 0 0
\(733\) 486.332 486.332i 0.663482 0.663482i −0.292717 0.956199i \(-0.594559\pi\)
0.956199 + 0.292717i \(0.0945594\pi\)
\(734\) 1509.82i 2.05698i
\(735\) 0 0
\(736\) 1174.81 1.59621
\(737\) 557.276 + 557.276i 0.756141 + 0.756141i
\(738\) 0 0
\(739\) 337.793i 0.457095i 0.973533 + 0.228547i \(0.0733976\pi\)
−0.973533 + 0.228547i \(0.926602\pi\)
\(740\) −14.7479 + 78.2427i −0.0199296 + 0.105733i
\(741\) 0 0
\(742\) 952.699 + 952.699i 1.28396 + 1.28396i
\(743\) 74.2798 74.2798i 0.0999729 0.0999729i −0.655351 0.755324i \(-0.727479\pi\)
0.755324 + 0.655351i \(0.227479\pi\)
\(744\) 0 0
\(745\) 463.043 + 678.145i 0.621534 + 0.910261i
\(746\) 614.975 0.824364
\(747\) 0 0
\(748\) 398.945 398.945i 0.533349 0.533349i
\(749\) 178.353i 0.238121i
\(750\) 0 0
\(751\) 740.383 0.985863 0.492932 0.870068i \(-0.335925\pi\)
0.492932 + 0.870068i \(0.335925\pi\)
\(752\) −712.736 712.736i −0.947788 0.947788i
\(753\) 0 0
\(754\) 9.16729i 0.0121582i
\(755\) −158.571 + 108.274i −0.210028 + 0.143409i
\(756\) 0 0
\(757\) 957.088 + 957.088i 1.26432 + 1.26432i 0.948980 + 0.315337i \(0.102118\pi\)
0.315337 + 0.948980i \(0.397882\pi\)
\(758\) −1373.14 + 1373.14i −1.81153 + 1.81153i
\(759\) 0 0
\(760\) −119.873 22.5948i −0.157728 0.0297299i
\(761\) 405.738 0.533165 0.266582 0.963812i \(-0.414106\pi\)
0.266582 + 0.963812i \(0.414106\pi\)
\(762\) 0 0
\(763\) 76.5090 76.5090i 0.100274 0.100274i
\(764\) 439.390i 0.575118i
\(765\) 0 0
\(766\) −879.199 −1.14778
\(767\) 58.2254 + 58.2254i 0.0759132 + 0.0759132i
\(768\) 0 0
\(769\) 844.782i 1.09855i 0.835643 + 0.549273i \(0.185095\pi\)
−0.835643 + 0.549273i \(0.814905\pi\)
\(770\) 1193.17 + 1747.44i 1.54957 + 2.26940i
\(771\) 0 0
\(772\) 867.727 + 867.727i 1.12400 + 1.12400i
\(773\) −501.313 + 501.313i −0.648529 + 0.648529i −0.952637 0.304108i \(-0.901642\pi\)
0.304108 + 0.952637i \(0.401642\pi\)
\(774\) 0 0
\(775\) 262.866 672.524i 0.339182 0.867773i
\(776\) −18.6598 −0.0240461
\(777\) 0 0
\(778\) 1453.13 1453.13i 1.86778 1.86778i
\(779\) 583.866i 0.749507i
\(780\) 0 0
\(781\) −1091.76 −1.39790
\(782\) 552.984 + 552.984i 0.707141 + 0.707141i
\(783\) 0 0
\(784\) 1351.49i 1.72384i
\(785\) 320.101 + 60.3356i 0.407772 + 0.0768606i
\(786\) 0 0
\(787\) −719.703 719.703i −0.914490 0.914490i 0.0821317 0.996621i \(-0.473827\pi\)
−0.996621 + 0.0821317i \(0.973827\pi\)
\(788\) −22.8300 + 22.8300i −0.0289721 + 0.0289721i
\(789\) 0 0
\(790\) 81.1866 430.723i 0.102768 0.545219i
\(791\) 1833.64 2.31813
\(792\) 0 0
\(793\) −52.4495 + 52.4495i −0.0661406 + 0.0661406i
\(794\) 169.307i 0.213233i
\(795\) 0 0
\(796\) −611.926 −0.768751
\(797\) −1009.06 1009.06i −1.26608 1.26608i −0.948097 0.317980i \(-0.896996\pi\)
−0.317980 0.948097i \(-0.603004\pi\)
\(798\) 0 0
\(799\) 733.336i 0.917818i
\(800\) 1050.45 460.048i 1.31306 0.575060i
\(801\) 0 0
\(802\) −339.695 339.695i −0.423559 0.423559i
\(803\) −157.649 + 157.649i −0.196325 + 0.196325i
\(804\) 0 0
\(805\) −1260.13 + 860.431i −1.56538 + 1.06886i
\(806\) 78.2574 0.0970936
\(807\) 0 0
\(808\) −13.5510 + 13.5510i −0.0167710 + 0.0167710i
\(809\) 549.873i 0.679694i 0.940481 + 0.339847i \(0.110375\pi\)
−0.940481 + 0.339847i \(0.889625\pi\)
\(810\) 0 0
\(811\) 1542.32 1.90175 0.950876 0.309573i \(-0.100186\pi\)
0.950876 + 0.309573i \(0.100186\pi\)
\(812\) 123.658 + 123.658i 0.152288 + 0.152288i
\(813\) 0 0
\(814\) 130.379i 0.160170i
\(815\) −27.4851 + 145.818i −0.0337241 + 0.178918i
\(816\) 0 0
\(817\) 291.046 + 291.046i 0.356237 + 0.356237i
\(818\) −48.4677 + 48.4677i −0.0592514 + 0.0592514i
\(819\) 0 0
\(820\) 285.445 + 418.045i 0.348104 + 0.509811i
\(821\) −810.024 −0.986631 −0.493316 0.869850i \(-0.664215\pi\)
−0.493316 + 0.869850i \(0.664215\pi\)
\(822\) 0 0
\(823\) −58.0577 + 58.0577i −0.0705440 + 0.0705440i −0.741499 0.670954i \(-0.765885\pi\)
0.670954 + 0.741499i \(0.265885\pi\)
\(824\) 167.185i 0.202894i
\(825\) 0 0
\(826\) −3019.31 −3.65534
\(827\) −924.549 924.549i −1.11796 1.11796i −0.992041 0.125915i \(-0.959813\pi\)
−0.125915 0.992041i \(-0.540187\pi\)
\(828\) 0 0
\(829\) 114.907i 0.138610i −0.997596 0.0693048i \(-0.977922\pi\)
0.997596 0.0693048i \(-0.0220781\pi\)
\(830\) 1810.63 1236.31i 2.18148 1.48953i
\(831\) 0 0
\(832\) 49.3072 + 49.3072i 0.0592635 + 0.0592635i
\(833\) −695.278 + 695.278i −0.834667 + 0.834667i
\(834\) 0 0
\(835\) −461.255 86.9416i −0.552402 0.104122i
\(836\) −1334.68 −1.59651
\(837\) 0 0
\(838\) 1020.02 1020.02i 1.21720 1.21720i
\(839\) 764.160i 0.910798i −0.890287 0.455399i \(-0.849497\pi\)
0.890287 0.455399i \(-0.150503\pi\)
\(840\) 0 0
\(841\) 829.552 0.986388
\(842\) −7.77844 7.77844i −0.00923805 0.00923805i
\(843\) 0 0
\(844\) 195.662i 0.231827i
\(845\) −474.009 694.204i −0.560957 0.821544i
\(846\) 0 0
\(847\) 255.128 + 255.128i 0.301214 + 0.301214i
\(848\) 402.465 402.465i 0.474605 0.474605i
\(849\) 0 0
\(850\) 710.993 + 277.902i 0.836462 + 0.326944i
\(851\) −94.0203 −0.110482
\(852\) 0 0
\(853\) 519.867 519.867i 0.609458 0.609458i −0.333347 0.942804i \(-0.608178\pi\)
0.942804 + 0.333347i \(0.108178\pi\)
\(854\) 2719.80i 3.18478i
\(855\) 0 0
\(856\) −14.5973 −0.0170529
\(857\) −508.368 508.368i −0.593194 0.593194i 0.345299 0.938493i \(-0.387778\pi\)
−0.938493 + 0.345299i \(0.887778\pi\)
\(858\) 0 0
\(859\) 1204.68i 1.40243i −0.712952 0.701213i \(-0.752642\pi\)
0.712952 0.701213i \(-0.247358\pi\)
\(860\) 350.676 + 66.0987i 0.407763 + 0.0768589i
\(861\) 0 0
\(862\) −1567.75 1567.75i −1.81873 1.81873i
\(863\) 214.571 214.571i 0.248634 0.248634i −0.571776 0.820410i \(-0.693745\pi\)
0.820410 + 0.571776i \(0.193745\pi\)
\(864\) 0 0
\(865\) −184.573 + 979.223i −0.213379 + 1.13205i
\(866\) 1502.10 1.73453
\(867\) 0 0
\(868\) −1055.62 + 1055.62i −1.21615 + 1.21615i
\(869\) 373.401i 0.429690i
\(870\) 0 0
\(871\) −60.1251 −0.0690299
\(872\) 6.26188 + 6.26188i 0.00718106 + 0.00718106i
\(873\) 0 0
\(874\) 1850.02i 2.11673i
\(875\) −789.801 + 1262.81i −0.902630 + 1.44321i
\(876\) 0 0
\(877\) −223.700 223.700i −0.255075 0.255075i 0.567973 0.823047i \(-0.307728\pi\)
−0.823047 + 0.567973i \(0.807728\pi\)
\(878\) 280.659 280.659i 0.319657 0.319657i
\(879\) 0 0
\(880\) 738.200 504.049i 0.838864 0.572783i
\(881\) 435.585 0.494421 0.247211 0.968962i \(-0.420486\pi\)
0.247211 + 0.968962i \(0.420486\pi\)
\(882\) 0 0
\(883\) −434.695 + 434.695i −0.492293 + 0.492293i −0.909028 0.416735i \(-0.863174\pi\)
0.416735 + 0.909028i \(0.363174\pi\)
\(884\) 43.0425i 0.0486906i
\(885\) 0 0
\(886\) −1276.33 −1.44055
\(887\) −405.058 405.058i −0.456660 0.456660i 0.440897 0.897558i \(-0.354660\pi\)
−0.897558 + 0.440897i \(0.854660\pi\)
\(888\) 0 0
\(889\) 1940.74i 2.18306i
\(890\) −315.268 + 1672.61i −0.354234 + 1.87933i
\(891\) 0 0
\(892\) −17.2130 17.2130i −0.0192970 0.0192970i
\(893\) −1226.70 + 1226.70i −1.37368 + 1.37368i
\(894\) 0 0
\(895\) −128.605 188.347i −0.143693 0.210443i
\(896\) −370.532 −0.413540
\(897\) 0 0
\(898\) −1689.15 + 1689.15i −1.88101 + 1.88101i
\(899\) 97.7228i 0.108702i
\(900\) 0 0
\(901\) 414.097 0.459597
\(902\) 586.125 + 586.125i 0.649806 + 0.649806i
\(903\) 0 0
\(904\) 150.074i 0.166011i
\(905\) 432.716 295.462i 0.478139 0.326477i
\(906\) 0 0
\(907\) 559.934 + 559.934i 0.617347 + 0.617347i 0.944850 0.327503i \(-0.106207\pi\)
−0.327503 + 0.944850i \(0.606207\pi\)
\(908\) −233.153 + 233.153i −0.256776 + 0.256776i
\(909\) 0 0
\(910\) −158.632 29.9004i −0.174321 0.0328576i
\(911\) 945.486 1.03786 0.518928 0.854818i \(-0.326331\pi\)
0.518928 + 0.854818i \(0.326331\pi\)
\(912\) 0 0
\(913\) 1320.72 1320.72i 1.44657 1.44657i
\(914\) 2557.01i 2.79761i
\(915\) 0 0
\(916\) 239.399 0.261352
\(917\) −158.889 158.889i −0.173270 0.173270i
\(918\) 0 0
\(919\) 825.147i 0.897875i −0.893563 0.448937i \(-0.851803\pi\)
0.893563 0.448937i \(-0.148197\pi\)
\(920\) −70.4220 103.136i −0.0765456 0.112104i
\(921\) 0 0
\(922\) 534.618 + 534.618i 0.579846 + 0.579846i
\(923\) 58.8956 58.8956i 0.0638089 0.0638089i
\(924\) 0 0
\(925\) −84.0676 + 36.8178i −0.0908839 + 0.0398030i
\(926\) 486.714 0.525609
\(927\) 0 0
\(928\) 109.743 109.743i 0.118258 0.118258i
\(929\) 923.085i 0.993633i −0.867856 0.496817i \(-0.834502\pi\)
0.867856 0.496817i \(-0.165498\pi\)
\(930\) 0 0
\(931\) 2326.07 2.49847
\(932\) 418.523 + 418.523i 0.449059 + 0.449059i
\(933\) 0 0
\(934\) 260.369i 0.278768i
\(935\) 639.077 + 120.459i 0.683505 + 0.128833i
\(936\) 0 0
\(937\) 967.522 + 967.522i 1.03257 + 1.03257i 0.999451 + 0.0331234i \(0.0105454\pi\)
0.0331234 + 0.999451i \(0.489455\pi\)
\(938\) 1558.91 1558.91i 1.66195 1.66195i
\(939\) 0 0
\(940\) −278.592 + 1478.03i −0.296375 + 1.57237i
\(941\) 811.885 0.862789 0.431395 0.902163i \(-0.358022\pi\)
0.431395 + 0.902163i \(0.358022\pi\)
\(942\) 0 0
\(943\) −422.674 + 422.674i −0.448223 + 0.448223i
\(944\) 1275.50i 1.35117i
\(945\) 0 0
\(946\) 584.344 0.617700
\(947\) −872.363 872.363i −0.921186 0.921186i 0.0759275 0.997113i \(-0.475808\pi\)
−0.997113 + 0.0759275i \(0.975808\pi\)
\(948\) 0 0
\(949\) 17.0089i 0.0179229i
\(950\) −724.458 1654.19i −0.762588 1.74125i
\(951\) 0 0
\(952\) −86.8930 86.8930i −0.0912742 0.0912742i
\(953\) 719.749 719.749i 0.755245 0.755245i −0.220208 0.975453i \(-0.570674\pi\)
0.975453 + 0.220208i \(0.0706736\pi\)
\(954\) 0 0
\(955\) −418.269 + 285.598i −0.437978 + 0.299055i
\(956\) −639.499 −0.668932
\(957\) 0 0
\(958\) 79.2889 79.2889i 0.0827650 0.0827650i
\(959\) 901.266i 0.939797i
\(960\) 0 0
\(961\) −126.780 −0.131925
\(962\) −7.03333 7.03333i −0.00731116 0.00731116i
\(963\) 0 0
\(964\) 1557.24i 1.61539i
\(965\) −262.005 + 1390.03i −0.271508 + 1.44044i
\(966\) 0 0
\(967\) −1048.66 1048.66i −1.08445 1.08445i −0.996089 0.0883570i \(-0.971838\pi\)
−0.0883570 0.996089i \(-0.528162\pi\)
\(968\) −20.8810 + 20.8810i −0.0215713 + 0.0215713i
\(969\) 0 0
\(970\) −155.772 228.135i −0.160590 0.235190i
\(971\) −798.883 −0.822742 −0.411371 0.911468i \(-0.634950\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(972\) 0 0
\(973\) −378.755 + 378.755i −0.389266 + 0.389266i
\(974\) 1612.19i 1.65522i
\(975\) 0 0
\(976\) −1148.97 −1.17723
\(977\) 302.515 + 302.515i 0.309637 + 0.309637i 0.844769 0.535132i \(-0.179738\pi\)
−0.535132 + 0.844769i \(0.679738\pi\)
\(978\) 0 0
\(979\) 1450.01i 1.48112i
\(980\) 1665.46 1137.19i 1.69945 1.16040i
\(981\) 0 0
\(982\) 940.736 + 940.736i 0.957980 + 0.957980i
\(983\) 304.386 304.386i 0.309650 0.309650i −0.535124 0.844774i \(-0.679735\pi\)
0.844774 + 0.535124i \(0.179735\pi\)
\(984\) 0 0
\(985\) −36.5718 6.89338i −0.0371287 0.00699836i
\(986\) 103.313 0.104779
\(987\) 0 0
\(988\) 72.0000 72.0000i 0.0728745 0.0728745i
\(989\) 421.390i 0.426077i
\(990\) 0 0
\(991\) 575.226 0.580450 0.290225 0.956958i \(-0.406270\pi\)
0.290225 + 0.956958i \(0.406270\pi\)
\(992\) 936.833 + 936.833i 0.944388 + 0.944388i
\(993\) 0 0
\(994\) 3054.07i 3.07250i
\(995\) −397.744 582.511i −0.399743 0.585439i
\(996\) 0 0
\(997\) 291.949 + 291.949i 0.292828 + 0.292828i 0.838196 0.545369i \(-0.183610\pi\)
−0.545369 + 0.838196i \(0.683610\pi\)
\(998\) −1736.83 + 1736.83i −1.74031 + 1.74031i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.g.b.82.7 yes 16
3.2 odd 2 inner 135.3.g.b.82.2 yes 16
5.2 odd 4 675.3.g.j.568.2 16
5.3 odd 4 inner 135.3.g.b.28.7 yes 16
5.4 even 2 675.3.g.j.82.2 16
9.2 odd 6 405.3.l.n.352.2 32
9.4 even 3 405.3.l.n.217.2 32
9.5 odd 6 405.3.l.n.217.7 32
9.7 even 3 405.3.l.n.352.7 32
15.2 even 4 675.3.g.j.568.7 16
15.8 even 4 inner 135.3.g.b.28.2 16
15.14 odd 2 675.3.g.j.82.7 16
45.13 odd 12 405.3.l.n.298.7 32
45.23 even 12 405.3.l.n.298.2 32
45.38 even 12 405.3.l.n.28.7 32
45.43 odd 12 405.3.l.n.28.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.2 16 15.8 even 4 inner
135.3.g.b.28.7 yes 16 5.3 odd 4 inner
135.3.g.b.82.2 yes 16 3.2 odd 2 inner
135.3.g.b.82.7 yes 16 1.1 even 1 trivial
405.3.l.n.28.2 32 45.43 odd 12
405.3.l.n.28.7 32 45.38 even 12
405.3.l.n.217.2 32 9.4 even 3
405.3.l.n.217.7 32 9.5 odd 6
405.3.l.n.298.2 32 45.23 even 12
405.3.l.n.298.7 32 45.13 odd 12
405.3.l.n.352.2 32 9.2 odd 6
405.3.l.n.352.7 32 9.7 even 3
675.3.g.j.82.2 16 5.4 even 2
675.3.g.j.82.7 16 15.14 odd 2
675.3.g.j.568.2 16 5.2 odd 4
675.3.g.j.568.7 16 15.2 even 4