Properties

Label 405.3.l.n.217.2
Level $405$
Weight $3$
Character 405.217
Analytic conductor $11.035$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(28,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 9])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.28"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 217.2
Character \(\chi\) \(=\) 405.217
Dual form 405.3.l.n.28.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.78913 + 0.747344i) q^{2} +(3.75659 - 2.16887i) q^{4} +(4.50635 + 2.16628i) q^{5} +(-11.5096 + 3.08399i) q^{7} +(-0.689596 + 0.689596i) q^{8} +(-14.1877 - 2.67423i) q^{10} +(6.14980 - 10.6518i) q^{11} +(-0.906368 - 0.242861i) q^{13} +(29.7970 - 17.2033i) q^{14} +(-7.26748 + 12.5876i) q^{16} +(7.47753 + 7.47753i) q^{17} -25.0163i q^{19} +(21.6269 - 1.63586i) q^{20} +(-9.19203 + 34.3051i) q^{22} +(-24.7385 - 6.62867i) q^{23} +(15.6144 + 19.5241i) q^{25} +2.70947 q^{26} +(-36.5482 + 36.5482i) q^{28} +(2.93013 + 1.69171i) q^{29} +(-14.4414 - 25.0133i) q^{31} +(11.8723 - 44.3078i) q^{32} +(-26.4441 - 15.2675i) q^{34} +(-58.5472 - 11.0355i) q^{35} +(-2.59583 - 2.59583i) q^{37} +(18.6958 + 69.7736i) q^{38} +(-4.60142 + 1.61370i) q^{40} +(11.6697 + 20.2125i) q^{41} +(-4.25843 - 15.8927i) q^{43} -53.3525i q^{44} +73.9528 q^{46} +(66.9844 - 17.9484i) q^{47} +(80.5250 - 46.4912i) q^{49} +(-58.1418 - 42.7857i) q^{50} +(-3.93159 + 1.05347i) q^{52} +(27.6894 - 27.6894i) q^{53} +(50.7879 - 34.6784i) q^{55} +(5.81027 - 10.0637i) q^{56} +(-9.43678 - 2.52858i) q^{58} +(75.9971 - 43.8770i) q^{59} +(39.5244 - 68.4583i) q^{61} +(58.9725 + 58.9725i) q^{62} +74.3129i q^{64} +(-3.55831 - 3.05786i) q^{65} +(-16.5841 + 61.8926i) q^{67} +(44.3078 + 11.8723i) q^{68} +(171.543 - 12.9755i) q^{70} +88.7641 q^{71} +(12.8174 - 12.8174i) q^{73} +(9.18007 + 5.30012i) q^{74} +(-54.2571 - 93.9761i) q^{76} +(-37.9319 + 141.564i) q^{77} +(-26.2915 - 15.1794i) q^{79} +(-60.0182 + 40.9810i) q^{80} +(-47.6540 - 47.6540i) q^{82} +(-39.3035 - 146.683i) q^{83} +(17.4980 + 49.8948i) q^{85} +(23.7546 + 41.1442i) q^{86} +(3.10454 + 11.5863i) q^{88} -117.891i q^{89} +11.1809 q^{91} +(-107.309 + 28.7535i) q^{92} +(-173.414 + 100.121i) q^{94} +(54.1923 - 112.732i) q^{95} +(-18.4817 + 4.95215i) q^{97} +(-189.850 + 189.850i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{7} + 80 q^{10} - 40 q^{13} + 152 q^{16} + 136 q^{22} + 32 q^{25} - 224 q^{28} - 200 q^{31} + 32 q^{37} + 48 q^{40} - 136 q^{43} + 304 q^{46} - 640 q^{52} + 496 q^{55} - 48 q^{58} + 280 q^{61}+ \cdots - 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.78913 + 0.747344i −1.39456 + 0.373672i −0.876389 0.481604i \(-0.840054\pi\)
−0.518173 + 0.855276i \(0.673388\pi\)
\(3\) 0 0
\(4\) 3.75659 2.16887i 0.939149 0.542218i
\(5\) 4.50635 + 2.16628i 0.901271 + 0.433256i
\(6\) 0 0
\(7\) −11.5096 + 3.08399i −1.64423 + 0.440570i −0.957989 0.286803i \(-0.907407\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(8\) −0.689596 + 0.689596i −0.0861995 + 0.0861995i
\(9\) 0 0
\(10\) −14.1877 2.67423i −1.41877 0.267423i
\(11\) 6.14980 10.6518i 0.559073 0.968342i −0.438502 0.898730i \(-0.644491\pi\)
0.997574 0.0696117i \(-0.0221760\pi\)
\(12\) 0 0
\(13\) −0.906368 0.242861i −0.0697206 0.0186816i 0.223790 0.974637i \(-0.428157\pi\)
−0.293511 + 0.955956i \(0.594824\pi\)
\(14\) 29.7970 17.2033i 2.12835 1.22881i
\(15\) 0 0
\(16\) −7.26748 + 12.5876i −0.454218 + 0.786728i
\(17\) 7.47753 + 7.47753i 0.439855 + 0.439855i 0.891963 0.452108i \(-0.149328\pi\)
−0.452108 + 0.891963i \(0.649328\pi\)
\(18\) 0 0
\(19\) 25.0163i 1.31665i −0.752735 0.658323i \(-0.771266\pi\)
0.752735 0.658323i \(-0.228734\pi\)
\(20\) 21.6269 1.63586i 1.08135 0.0817929i
\(21\) 0 0
\(22\) −9.19203 + 34.3051i −0.417819 + 1.55932i
\(23\) −24.7385 6.62867i −1.07559 0.288203i −0.322801 0.946467i \(-0.604625\pi\)
−0.752788 + 0.658264i \(0.771291\pi\)
\(24\) 0 0
\(25\) 15.6144 + 19.5241i 0.624578 + 0.780962i
\(26\) 2.70947 0.104211
\(27\) 0 0
\(28\) −36.5482 + 36.5482i −1.30529 + 1.30529i
\(29\) 2.93013 + 1.69171i 0.101039 + 0.0583348i 0.549668 0.835383i \(-0.314754\pi\)
−0.448629 + 0.893718i \(0.648088\pi\)
\(30\) 0 0
\(31\) −14.4414 25.0133i −0.465853 0.806881i 0.533387 0.845871i \(-0.320919\pi\)
−0.999240 + 0.0389908i \(0.987586\pi\)
\(32\) 11.8723 44.3078i 0.371008 1.38462i
\(33\) 0 0
\(34\) −26.4441 15.2675i −0.777766 0.449044i
\(35\) −58.5472 11.0355i −1.67278 0.315300i
\(36\) 0 0
\(37\) −2.59583 2.59583i −0.0701575 0.0701575i 0.671157 0.741315i \(-0.265797\pi\)
−0.741315 + 0.671157i \(0.765797\pi\)
\(38\) 18.6958 + 69.7736i 0.491994 + 1.83615i
\(39\) 0 0
\(40\) −4.60142 + 1.61370i −0.115036 + 0.0403426i
\(41\) 11.6697 + 20.2125i 0.284627 + 0.492989i 0.972519 0.232825i \(-0.0747968\pi\)
−0.687891 + 0.725814i \(0.741463\pi\)
\(42\) 0 0
\(43\) −4.25843 15.8927i −0.0990334 0.369598i 0.898567 0.438837i \(-0.144609\pi\)
−0.997600 + 0.0692394i \(0.977943\pi\)
\(44\) 53.3525i 1.21256i
\(45\) 0 0
\(46\) 73.9528 1.60767
\(47\) 66.9844 17.9484i 1.42520 0.381881i 0.537875 0.843025i \(-0.319227\pi\)
0.887326 + 0.461143i \(0.152561\pi\)
\(48\) 0 0
\(49\) 80.5250 46.4912i 1.64337 0.948799i
\(50\) −58.1418 42.7857i −1.16284 0.855714i
\(51\) 0 0
\(52\) −3.93159 + 1.05347i −0.0756075 + 0.0202590i
\(53\) 27.6894 27.6894i 0.522442 0.522442i −0.395866 0.918308i \(-0.629556\pi\)
0.918308 + 0.395866i \(0.129556\pi\)
\(54\) 0 0
\(55\) 50.7879 34.6784i 0.923416 0.630517i
\(56\) 5.81027 10.0637i 0.103755 0.179709i
\(57\) 0 0
\(58\) −9.43678 2.52858i −0.162703 0.0435962i
\(59\) 75.9971 43.8770i 1.28809 0.743677i 0.309774 0.950810i \(-0.399747\pi\)
0.978313 + 0.207133i \(0.0664132\pi\)
\(60\) 0 0
\(61\) 39.5244 68.4583i 0.647942 1.12227i −0.335672 0.941979i \(-0.608963\pi\)
0.983614 0.180289i \(-0.0577032\pi\)
\(62\) 58.9725 + 58.9725i 0.951169 + 0.951169i
\(63\) 0 0
\(64\) 74.3129i 1.16114i
\(65\) −3.55831 3.05786i −0.0547432 0.0470441i
\(66\) 0 0
\(67\) −16.5841 + 61.8926i −0.247523 + 0.923769i 0.724575 + 0.689196i \(0.242036\pi\)
−0.972098 + 0.234574i \(0.924631\pi\)
\(68\) 44.3078 + 11.8723i 0.651586 + 0.174592i
\(69\) 0 0
\(70\) 171.543 12.9755i 2.45061 0.185364i
\(71\) 88.7641 1.25020 0.625099 0.780546i \(-0.285059\pi\)
0.625099 + 0.780546i \(0.285059\pi\)
\(72\) 0 0
\(73\) 12.8174 12.8174i 0.175581 0.175581i −0.613845 0.789426i \(-0.710378\pi\)
0.789426 + 0.613845i \(0.210378\pi\)
\(74\) 9.18007 + 5.30012i 0.124055 + 0.0716232i
\(75\) 0 0
\(76\) −54.2571 93.9761i −0.713909 1.23653i
\(77\) −37.9319 + 141.564i −0.492622 + 1.83849i
\(78\) 0 0
\(79\) −26.2915 15.1794i −0.332804 0.192144i 0.324281 0.945961i \(-0.394878\pi\)
−0.657085 + 0.753816i \(0.728211\pi\)
\(80\) −60.0182 + 40.9810i −0.750228 + 0.512262i
\(81\) 0 0
\(82\) −47.6540 47.6540i −0.581147 0.581147i
\(83\) −39.3035 146.683i −0.473536 1.76726i −0.626909 0.779093i \(-0.715680\pi\)
0.153372 0.988168i \(-0.450987\pi\)
\(84\) 0 0
\(85\) 17.4980 + 49.8948i 0.205858 + 0.586998i
\(86\) 23.7546 + 41.1442i 0.276216 + 0.478421i
\(87\) 0 0
\(88\) 3.10454 + 11.5863i 0.0352788 + 0.131662i
\(89\) 117.891i 1.32462i −0.749231 0.662309i \(-0.769577\pi\)
0.749231 0.662309i \(-0.230423\pi\)
\(90\) 0 0
\(91\) 11.1809 0.122867
\(92\) −107.309 + 28.7535i −1.16641 + 0.312538i
\(93\) 0 0
\(94\) −173.414 + 100.121i −1.84483 + 1.06511i
\(95\) 54.1923 112.732i 0.570445 1.18666i
\(96\) 0 0
\(97\) −18.4817 + 4.95215i −0.190533 + 0.0510531i −0.352824 0.935690i \(-0.614778\pi\)
0.162291 + 0.986743i \(0.448112\pi\)
\(98\) −189.850 + 189.850i −1.93724 + 1.93724i
\(99\) 0 0
\(100\) 101.002 + 39.4783i 1.01002 + 0.394783i
\(101\) −9.82532 + 17.0179i −0.0972804 + 0.168495i −0.910558 0.413381i \(-0.864348\pi\)
0.813278 + 0.581876i \(0.197681\pi\)
\(102\) 0 0
\(103\) 165.589 + 44.3694i 1.60766 + 0.430770i 0.947343 0.320219i \(-0.103757\pi\)
0.660314 + 0.750990i \(0.270423\pi\)
\(104\) 0.792503 0.457552i 0.00762022 0.00439954i
\(105\) 0 0
\(106\) −56.5358 + 97.9229i −0.533357 + 0.923801i
\(107\) 10.5840 + 10.5840i 0.0989155 + 0.0989155i 0.754833 0.655917i \(-0.227718\pi\)
−0.655917 + 0.754833i \(0.727718\pi\)
\(108\) 0 0
\(109\) 9.08051i 0.0833075i −0.999132 0.0416537i \(-0.986737\pi\)
0.999132 0.0416537i \(-0.0132626\pi\)
\(110\) −115.737 + 134.678i −1.05216 + 1.22435i
\(111\) 0 0
\(112\) 44.8257 167.292i 0.400230 1.49368i
\(113\) −148.642 39.8284i −1.31541 0.352464i −0.468155 0.883646i \(-0.655081\pi\)
−0.847258 + 0.531182i \(0.821748\pi\)
\(114\) 0 0
\(115\) −97.1211 83.4618i −0.844531 0.725755i
\(116\) 14.6764 0.126521
\(117\) 0 0
\(118\) −179.174 + 179.174i −1.51843 + 1.51843i
\(119\) −109.124 63.0029i −0.917010 0.529436i
\(120\) 0 0
\(121\) −15.1400 26.2233i −0.125124 0.216722i
\(122\) −59.0767 + 220.477i −0.484235 + 1.80719i
\(123\) 0 0
\(124\) −108.501 62.6432i −0.875010 0.505187i
\(125\) 28.0696 + 121.808i 0.224557 + 0.974461i
\(126\) 0 0
\(127\) −115.169 115.169i −0.906841 0.906841i 0.0891750 0.996016i \(-0.471577\pi\)
−0.996016 + 0.0891750i \(0.971577\pi\)
\(128\) −8.04831 30.0367i −0.0628774 0.234662i
\(129\) 0 0
\(130\) 12.2099 + 5.86949i 0.0939219 + 0.0451499i
\(131\) 9.42889 + 16.3313i 0.0719762 + 0.124667i 0.899767 0.436370i \(-0.143736\pi\)
−0.827791 + 0.561036i \(0.810403\pi\)
\(132\) 0 0
\(133\) 77.1500 + 287.928i 0.580076 + 2.16487i
\(134\) 185.020i 1.38075i
\(135\) 0 0
\(136\) −10.3129 −0.0758305
\(137\) 73.0600 19.5764i 0.533284 0.142893i 0.0178799 0.999840i \(-0.494308\pi\)
0.515405 + 0.856947i \(0.327642\pi\)
\(138\) 0 0
\(139\) 38.9303 22.4764i 0.280074 0.161701i −0.353383 0.935479i \(-0.614969\pi\)
0.633457 + 0.773778i \(0.281635\pi\)
\(140\) −243.873 + 85.5254i −1.74195 + 0.610896i
\(141\) 0 0
\(142\) −247.574 + 66.3373i −1.74348 + 0.467164i
\(143\) −8.16088 + 8.16088i −0.0570691 + 0.0570691i
\(144\) 0 0
\(145\) 9.53947 + 13.9709i 0.0657894 + 0.0963512i
\(146\) −26.1703 + 45.3283i −0.179249 + 0.310468i
\(147\) 0 0
\(148\) −15.3815 4.12146i −0.103929 0.0278477i
\(149\) −142.228 + 82.1151i −0.954547 + 0.551108i −0.894491 0.447087i \(-0.852461\pi\)
−0.0600567 + 0.998195i \(0.519128\pi\)
\(150\) 0 0
\(151\) −19.2011 + 33.2572i −0.127159 + 0.220247i −0.922575 0.385818i \(-0.873919\pi\)
0.795416 + 0.606064i \(0.207253\pi\)
\(152\) 17.2511 + 17.2511i 0.113494 + 0.113494i
\(153\) 0 0
\(154\) 423.187i 2.74797i
\(155\) −10.8924 144.003i −0.0702733 0.929052i
\(156\) 0 0
\(157\) −16.8614 + 62.9277i −0.107398 + 0.400814i −0.998606 0.0527803i \(-0.983192\pi\)
0.891208 + 0.453594i \(0.149858\pi\)
\(158\) 84.6745 + 22.6885i 0.535915 + 0.143598i
\(159\) 0 0
\(160\) 149.484 173.948i 0.934274 1.08718i
\(161\) 305.174 1.89549
\(162\) 0 0
\(163\) 20.9849 20.9849i 0.128742 0.128742i −0.639800 0.768542i \(-0.720983\pi\)
0.768542 + 0.639800i \(0.220983\pi\)
\(164\) 87.6768 + 50.6202i 0.534615 + 0.308660i
\(165\) 0 0
\(166\) 219.245 + 379.743i 1.32075 + 2.28761i
\(167\) 24.2968 90.6768i 0.145490 0.542975i −0.854243 0.519873i \(-0.825979\pi\)
0.999733 0.0231017i \(-0.00735415\pi\)
\(168\) 0 0
\(169\) −145.596 84.0598i −0.861513 0.497395i
\(170\) −86.0926 126.086i −0.506427 0.741682i
\(171\) 0 0
\(172\) −50.4664 50.4664i −0.293409 0.293409i
\(173\) 51.5809 + 192.502i 0.298155 + 1.11273i 0.938679 + 0.344792i \(0.112051\pi\)
−0.640524 + 0.767938i \(0.721283\pi\)
\(174\) 0 0
\(175\) −239.928 176.560i −1.37102 1.00891i
\(176\) 89.3871 + 154.823i 0.507881 + 0.879676i
\(177\) 0 0
\(178\) 88.1051 + 328.813i 0.494973 + 1.84726i
\(179\) 45.6130i 0.254821i 0.991850 + 0.127411i \(0.0406666\pi\)
−0.991850 + 0.127411i \(0.959333\pi\)
\(180\) 0 0
\(181\) −104.793 −0.578968 −0.289484 0.957183i \(-0.593484\pi\)
−0.289484 + 0.957183i \(0.593484\pi\)
\(182\) −31.1850 + 8.35600i −0.171346 + 0.0459121i
\(183\) 0 0
\(184\) 21.6307 12.4885i 0.117558 0.0678722i
\(185\) −6.07443 17.3210i −0.0328347 0.0936271i
\(186\) 0 0
\(187\) 125.634 33.6636i 0.671840 0.180019i
\(188\) 212.706 212.706i 1.13141 1.13141i
\(189\) 0 0
\(190\) −66.8994 + 354.925i −0.352102 + 1.86802i
\(191\) −50.6473 + 87.7237i −0.265169 + 0.459286i −0.967608 0.252458i \(-0.918761\pi\)
0.702439 + 0.711744i \(0.252094\pi\)
\(192\) 0 0
\(193\) −273.261 73.2202i −1.41586 0.379379i −0.531848 0.846840i \(-0.678502\pi\)
−0.884014 + 0.467461i \(0.845169\pi\)
\(194\) 47.8468 27.6243i 0.246633 0.142394i
\(195\) 0 0
\(196\) 201.667 349.297i 1.02891 1.78213i
\(197\) 5.26310 + 5.26310i 0.0267163 + 0.0267163i 0.720339 0.693622i \(-0.243986\pi\)
−0.693622 + 0.720339i \(0.743986\pi\)
\(198\) 0 0
\(199\) 141.070i 0.708895i 0.935076 + 0.354448i \(0.115331\pi\)
−0.935076 + 0.354448i \(0.884669\pi\)
\(200\) −24.2314 2.69605i −0.121157 0.0134803i
\(201\) 0 0
\(202\) 14.6858 54.8081i 0.0727019 0.271327i
\(203\) −38.9419 10.4344i −0.191832 0.0514012i
\(204\) 0 0
\(205\) 8.80182 + 116.365i 0.0429357 + 0.567633i
\(206\) −495.007 −2.40295
\(207\) 0 0
\(208\) 9.64406 9.64406i 0.0463657 0.0463657i
\(209\) −266.468 153.845i −1.27496 0.736101i
\(210\) 0 0
\(211\) 22.5534 + 39.0637i 0.106888 + 0.185136i 0.914508 0.404568i \(-0.132578\pi\)
−0.807620 + 0.589703i \(0.799245\pi\)
\(212\) 43.9632 164.073i 0.207374 0.773929i
\(213\) 0 0
\(214\) −37.4298 21.6101i −0.174906 0.100982i
\(215\) 15.2380 80.8431i 0.0708746 0.376014i
\(216\) 0 0
\(217\) 243.356 + 243.356i 1.12146 + 1.12146i
\(218\) 6.78627 + 25.3267i 0.0311297 + 0.116177i
\(219\) 0 0
\(220\) 115.576 240.425i 0.525348 1.09284i
\(221\) −4.96140 8.59339i −0.0224498 0.0388841i
\(222\) 0 0
\(223\) −1.45246 5.42064i −0.00651326 0.0243078i 0.962593 0.270952i \(-0.0873386\pi\)
−0.969106 + 0.246645i \(0.920672\pi\)
\(224\) 546.580i 2.44009i
\(225\) 0 0
\(226\) 444.346 1.96613
\(227\) −73.4236 + 19.6738i −0.323452 + 0.0866686i −0.416891 0.908956i \(-0.636880\pi\)
0.0934396 + 0.995625i \(0.470214\pi\)
\(228\) 0 0
\(229\) −47.7957 + 27.5948i −0.208715 + 0.120502i −0.600714 0.799464i \(-0.705117\pi\)
0.391999 + 0.919966i \(0.371784\pi\)
\(230\) 333.257 + 160.203i 1.44895 + 0.696533i
\(231\) 0 0
\(232\) −3.18720 + 0.854007i −0.0137379 + 0.00368107i
\(233\) 96.4842 96.4842i 0.414095 0.414095i −0.469067 0.883162i \(-0.655410\pi\)
0.883162 + 0.469067i \(0.155410\pi\)
\(234\) 0 0
\(235\) 340.737 + 64.2252i 1.44994 + 0.273299i
\(236\) 190.327 329.656i 0.806470 1.39685i
\(237\) 0 0
\(238\) 351.446 + 94.1696i 1.47666 + 0.395671i
\(239\) 127.675 73.7133i 0.534206 0.308424i −0.208522 0.978018i \(-0.566865\pi\)
0.742727 + 0.669594i \(0.233532\pi\)
\(240\) 0 0
\(241\) 179.499 310.901i 0.744809 1.29005i −0.205475 0.978662i \(-0.565874\pi\)
0.950284 0.311384i \(-0.100793\pi\)
\(242\) 61.8253 + 61.8253i 0.255476 + 0.255476i
\(243\) 0 0
\(244\) 342.894i 1.40530i
\(245\) 463.587 35.0657i 1.89219 0.143125i
\(246\) 0 0
\(247\) −6.07547 + 22.6740i −0.0245970 + 0.0917974i
\(248\) 27.2078 + 7.29031i 0.109709 + 0.0293964i
\(249\) 0 0
\(250\) −169.322 318.759i −0.677287 1.27504i
\(251\) −154.041 −0.613710 −0.306855 0.951756i \(-0.599277\pi\)
−0.306855 + 0.951756i \(0.599277\pi\)
\(252\) 0 0
\(253\) −222.744 + 222.744i −0.880411 + 0.880411i
\(254\) 407.291 + 235.150i 1.60351 + 0.925785i
\(255\) 0 0
\(256\) −103.730 179.666i −0.405197 0.701821i
\(257\) 89.3689 333.529i 0.347739 1.29778i −0.541641 0.840610i \(-0.682197\pi\)
0.889380 0.457169i \(-0.151137\pi\)
\(258\) 0 0
\(259\) 37.8825 + 21.8715i 0.146265 + 0.0844459i
\(260\) −19.9992 3.76964i −0.0769202 0.0144986i
\(261\) 0 0
\(262\) −38.5035 38.5035i −0.146960 0.146960i
\(263\) −67.4597 251.763i −0.256501 0.957274i −0.967249 0.253828i \(-0.918310\pi\)
0.710748 0.703446i \(-0.248356\pi\)
\(264\) 0 0
\(265\) 184.762 64.7953i 0.697213 0.244511i
\(266\) −430.362 745.409i −1.61790 2.80229i
\(267\) 0 0
\(268\) 71.9374 + 268.474i 0.268423 + 1.00177i
\(269\) 194.835i 0.724296i 0.932121 + 0.362148i \(0.117956\pi\)
−0.932121 + 0.362148i \(0.882044\pi\)
\(270\) 0 0
\(271\) −307.130 −1.13332 −0.566661 0.823951i \(-0.691765\pi\)
−0.566661 + 0.823951i \(0.691765\pi\)
\(272\) −148.467 + 39.7817i −0.545836 + 0.146256i
\(273\) 0 0
\(274\) −189.143 + 109.202i −0.690303 + 0.398547i
\(275\) 303.991 46.2524i 1.10542 0.168190i
\(276\) 0 0
\(277\) 102.569 27.4833i 0.370285 0.0992175i −0.0688778 0.997625i \(-0.521942\pi\)
0.439163 + 0.898408i \(0.355275\pi\)
\(278\) −91.7838 + 91.7838i −0.330157 + 0.330157i
\(279\) 0 0
\(280\) 47.9839 32.7639i 0.171371 0.117014i
\(281\) 0.574798 0.995579i 0.00204554 0.00354299i −0.865001 0.501770i \(-0.832682\pi\)
0.867046 + 0.498227i \(0.166016\pi\)
\(282\) 0 0
\(283\) −309.889 83.0344i −1.09501 0.293408i −0.334280 0.942474i \(-0.608493\pi\)
−0.760732 + 0.649066i \(0.775160\pi\)
\(284\) 333.451 192.518i 1.17412 0.677880i
\(285\) 0 0
\(286\) 16.6627 28.8607i 0.0582613 0.100911i
\(287\) −196.649 196.649i −0.685189 0.685189i
\(288\) 0 0
\(289\) 177.173i 0.613056i
\(290\) −37.0478 31.8374i −0.127751 0.109784i
\(291\) 0 0
\(292\) 20.3505 75.9490i 0.0696934 0.260099i
\(293\) −99.3033 26.6082i −0.338919 0.0908131i 0.0853454 0.996351i \(-0.472801\pi\)
−0.424264 + 0.905538i \(0.639467\pi\)
\(294\) 0 0
\(295\) 437.520 33.0939i 1.48312 0.112183i
\(296\) 3.58015 0.0120951
\(297\) 0 0
\(298\) 335.322 335.322i 1.12524 1.12524i
\(299\) 20.8124 + 12.0160i 0.0696066 + 0.0401874i
\(300\) 0 0
\(301\) 98.0259 + 169.786i 0.325667 + 0.564073i
\(302\) 28.6996 107.108i 0.0950319 0.354664i
\(303\) 0 0
\(304\) 314.896 + 181.805i 1.03584 + 0.598044i
\(305\) 326.411 222.876i 1.07020 0.730742i
\(306\) 0 0
\(307\) −74.6079 74.6079i −0.243023 0.243023i 0.575077 0.818099i \(-0.304972\pi\)
−0.818099 + 0.575077i \(0.804972\pi\)
\(308\) 164.539 + 614.067i 0.534216 + 1.99372i
\(309\) 0 0
\(310\) 138.000 + 393.502i 0.445161 + 1.26936i
\(311\) 298.630 + 517.242i 0.960225 + 1.66316i 0.721930 + 0.691966i \(0.243255\pi\)
0.238295 + 0.971193i \(0.423411\pi\)
\(312\) 0 0
\(313\) −43.8958 163.821i −0.140242 0.523391i −0.999921 0.0125563i \(-0.996003\pi\)
0.859679 0.510835i \(-0.170664\pi\)
\(314\) 188.115i 0.599091i
\(315\) 0 0
\(316\) −131.689 −0.416736
\(317\) 394.769 105.778i 1.24533 0.333685i 0.424798 0.905288i \(-0.360345\pi\)
0.820530 + 0.571603i \(0.193678\pi\)
\(318\) 0 0
\(319\) 36.0394 20.8073i 0.112976 0.0652268i
\(320\) −160.983 + 334.880i −0.503071 + 1.04650i
\(321\) 0 0
\(322\) −851.168 + 228.070i −2.64338 + 0.708292i
\(323\) 187.060 187.060i 0.579133 0.579133i
\(324\) 0 0
\(325\) −9.41081 21.4881i −0.0289564 0.0661173i
\(326\) −42.8466 + 74.2126i −0.131431 + 0.227646i
\(327\) 0 0
\(328\) −21.9859 5.89110i −0.0670301 0.0179607i
\(329\) −715.612 + 413.159i −2.17511 + 1.25580i
\(330\) 0 0
\(331\) −210.145 + 363.982i −0.634879 + 1.09964i 0.351661 + 0.936127i \(0.385617\pi\)
−0.986541 + 0.163516i \(0.947716\pi\)
\(332\) −465.783 465.783i −1.40296 1.40296i
\(333\) 0 0
\(334\) 271.067i 0.811578i
\(335\) −208.810 + 242.984i −0.623314 + 0.725325i
\(336\) 0 0
\(337\) −75.2392 + 280.796i −0.223262 + 0.833224i 0.759832 + 0.650120i \(0.225281\pi\)
−0.983094 + 0.183104i \(0.941385\pi\)
\(338\) 468.906 + 125.643i 1.38730 + 0.371725i
\(339\) 0 0
\(340\) 173.948 + 149.484i 0.511612 + 0.439658i
\(341\) −355.248 −1.04178
\(342\) 0 0
\(343\) −370.578 + 370.578i −1.08040 + 1.08040i
\(344\) 13.8961 + 8.02293i 0.0403957 + 0.0233225i
\(345\) 0 0
\(346\) −287.731 498.365i −0.831592 1.44036i
\(347\) 142.089 530.282i 0.409477 1.52819i −0.386168 0.922428i \(-0.626202\pi\)
0.795646 0.605762i \(-0.207132\pi\)
\(348\) 0 0
\(349\) −377.101 217.720i −1.08052 0.623838i −0.149483 0.988764i \(-0.547761\pi\)
−0.931036 + 0.364926i \(0.881094\pi\)
\(350\) 801.141 + 313.138i 2.28897 + 0.894680i
\(351\) 0 0
\(352\) −398.945 398.945i −1.13337 1.13337i
\(353\) −86.1412 321.483i −0.244026 0.910718i −0.973870 0.227104i \(-0.927074\pi\)
0.729844 0.683613i \(-0.239593\pi\)
\(354\) 0 0
\(355\) 400.002 + 192.288i 1.12677 + 0.541656i
\(356\) −255.690 442.869i −0.718231 1.24401i
\(357\) 0 0
\(358\) −34.0886 127.220i −0.0952196 0.355364i
\(359\) 114.922i 0.320116i 0.987108 + 0.160058i \(0.0511682\pi\)
−0.987108 + 0.160058i \(0.948832\pi\)
\(360\) 0 0
\(361\) −264.815 −0.733559
\(362\) 292.281 78.3166i 0.807407 0.216344i
\(363\) 0 0
\(364\) 42.0022 24.2500i 0.115391 0.0666209i
\(365\) 85.5258 29.9936i 0.234317 0.0821743i
\(366\) 0 0
\(367\) −505.064 + 135.331i −1.37620 + 0.368750i −0.869738 0.493515i \(-0.835712\pi\)
−0.506458 + 0.862265i \(0.669045\pi\)
\(368\) 263.226 263.226i 0.715289 0.715289i
\(369\) 0 0
\(370\) 29.8871 + 43.7708i 0.0807759 + 0.118299i
\(371\) −233.301 + 404.089i −0.628843 + 1.08919i
\(372\) 0 0
\(373\) −205.720 55.1226i −0.551529 0.147782i −0.0277173 0.999616i \(-0.508824\pi\)
−0.523812 + 0.851834i \(0.675491\pi\)
\(374\) −325.251 + 187.784i −0.869656 + 0.502096i
\(375\) 0 0
\(376\) −33.8150 + 58.5693i −0.0899336 + 0.155770i
\(377\) −2.24492 2.24492i −0.00595470 0.00595470i
\(378\) 0 0
\(379\) 672.519i 1.77446i 0.461331 + 0.887228i \(0.347372\pi\)
−0.461331 + 0.887228i \(0.652628\pi\)
\(380\) −40.9231 541.026i −0.107692 1.42375i
\(381\) 0 0
\(382\) 75.7019 282.523i 0.198173 0.739590i
\(383\) 294.108 + 78.8060i 0.767906 + 0.205760i 0.621446 0.783457i \(-0.286545\pi\)
0.146460 + 0.989217i \(0.453212\pi\)
\(384\) 0 0
\(385\) −477.601 + 555.765i −1.24052 + 1.44354i
\(386\) 816.881 2.11627
\(387\) 0 0
\(388\) −58.6876 + 58.6876i −0.151257 + 0.151257i
\(389\) 616.350 + 355.850i 1.58445 + 0.914780i 0.994199 + 0.107558i \(0.0343031\pi\)
0.590247 + 0.807223i \(0.299030\pi\)
\(390\) 0 0
\(391\) −135.417 234.549i −0.346335 0.599870i
\(392\) −23.4696 + 87.5898i −0.0598715 + 0.223443i
\(393\) 0 0
\(394\) −18.6128 10.7461i −0.0472406 0.0272744i
\(395\) −85.5959 125.359i −0.216699 0.317363i
\(396\) 0 0
\(397\) −41.4605 41.4605i −0.104435 0.104435i 0.652959 0.757393i \(-0.273527\pi\)
−0.757393 + 0.652959i \(0.773527\pi\)
\(398\) −105.428 393.462i −0.264894 0.988599i
\(399\) 0 0
\(400\) −359.240 + 54.6584i −0.898099 + 0.136646i
\(401\) 83.1858 + 144.082i 0.207446 + 0.359307i 0.950909 0.309470i \(-0.100152\pi\)
−0.743463 + 0.668777i \(0.766818\pi\)
\(402\) 0 0
\(403\) 7.01451 + 26.1785i 0.0174057 + 0.0649591i
\(404\) 85.2394i 0.210989i
\(405\) 0 0
\(406\) 116.412 0.286729
\(407\) −43.6140 + 11.6863i −0.107160 + 0.0287133i
\(408\) 0 0
\(409\) 20.5577 11.8690i 0.0502632 0.0290195i −0.474658 0.880170i \(-0.657428\pi\)
0.524921 + 0.851151i \(0.324095\pi\)
\(410\) −111.514 317.978i −0.271985 0.775556i
\(411\) 0 0
\(412\) 718.281 192.463i 1.74340 0.467143i
\(413\) −739.382 + 739.382i −1.79027 + 1.79027i
\(414\) 0 0
\(415\) 140.640 746.147i 0.338893 1.79794i
\(416\) −21.5213 + 37.2759i −0.0517338 + 0.0896056i
\(417\) 0 0
\(418\) 858.187 + 229.950i 2.05308 + 0.550121i
\(419\) −432.642 + 249.786i −1.03256 + 0.596147i −0.917716 0.397236i \(-0.869969\pi\)
−0.114841 + 0.993384i \(0.536636\pi\)
\(420\) 0 0
\(421\) 1.90482 3.29924i 0.00452450 0.00783667i −0.863754 0.503913i \(-0.831893\pi\)
0.868279 + 0.496077i \(0.165226\pi\)
\(422\) −92.0983 92.0983i −0.218242 0.218242i
\(423\) 0 0
\(424\) 38.1890i 0.0900685i
\(425\) −29.2342 + 262.749i −0.0687865 + 0.618234i
\(426\) 0 0
\(427\) −243.786 + 909.822i −0.570928 + 2.13073i
\(428\) 62.7149 + 16.8044i 0.146530 + 0.0392626i
\(429\) 0 0
\(430\) 17.9168 + 236.869i 0.0416669 + 0.550859i
\(431\) −767.834 −1.78152 −0.890759 0.454477i \(-0.849826\pi\)
−0.890759 + 0.454477i \(0.849826\pi\)
\(432\) 0 0
\(433\) 367.840 367.840i 0.849516 0.849516i −0.140557 0.990073i \(-0.544889\pi\)
0.990073 + 0.140557i \(0.0448893\pi\)
\(434\) −860.622 496.880i −1.98300 1.14489i
\(435\) 0 0
\(436\) −19.6945 34.1118i −0.0451708 0.0782381i
\(437\) −165.825 + 618.867i −0.379462 + 1.41617i
\(438\) 0 0
\(439\) 119.042 + 68.7289i 0.271166 + 0.156558i 0.629418 0.777067i \(-0.283294\pi\)
−0.358251 + 0.933625i \(0.616627\pi\)
\(440\) −11.1090 + 58.9372i −0.0252478 + 0.133948i
\(441\) 0 0
\(442\) 20.2602 + 20.2602i 0.0458375 + 0.0458375i
\(443\) −114.403 426.956i −0.258245 0.963783i −0.966256 0.257582i \(-0.917074\pi\)
0.708011 0.706201i \(-0.249592\pi\)
\(444\) 0 0
\(445\) 255.385 531.259i 0.573899 1.19384i
\(446\) 8.10216 + 14.0334i 0.0181663 + 0.0314649i
\(447\) 0 0
\(448\) −229.181 855.314i −0.511564 1.90918i
\(449\) 827.291i 1.84252i 0.388949 + 0.921259i \(0.372838\pi\)
−0.388949 + 0.921259i \(0.627162\pi\)
\(450\) 0 0
\(451\) 287.066 0.636509
\(452\) −644.769 + 172.765i −1.42648 + 0.382224i
\(453\) 0 0
\(454\) 190.084 109.745i 0.418688 0.241730i
\(455\) 50.3852 + 24.2210i 0.110737 + 0.0532331i
\(456\) 0 0
\(457\) 855.367 229.195i 1.87170 0.501521i 0.871768 0.489919i \(-0.162974\pi\)
0.999933 0.0116012i \(-0.00369286\pi\)
\(458\) 112.685 112.685i 0.246038 0.246038i
\(459\) 0 0
\(460\) −545.862 102.889i −1.18666 0.223672i
\(461\) −130.919 + 226.759i −0.283990 + 0.491885i −0.972364 0.233471i \(-0.924992\pi\)
0.688374 + 0.725356i \(0.258325\pi\)
\(462\) 0 0
\(463\) −162.814 43.6260i −0.351651 0.0942246i 0.0786695 0.996901i \(-0.474933\pi\)
−0.430321 + 0.902676i \(0.641599\pi\)
\(464\) −42.5893 + 24.5889i −0.0917872 + 0.0529934i
\(465\) 0 0
\(466\) −197.000 + 341.213i −0.422746 + 0.732217i
\(467\) −63.7603 63.7603i −0.136532 0.136532i 0.635538 0.772070i \(-0.280778\pi\)
−0.772070 + 0.635538i \(0.780778\pi\)
\(468\) 0 0
\(469\) 763.505i 1.62794i
\(470\) −998.356 + 75.5155i −2.12416 + 0.160671i
\(471\) 0 0
\(472\) −22.1499 + 82.6647i −0.0469278 + 0.175137i
\(473\) −195.474 52.3770i −0.413264 0.110734i
\(474\) 0 0
\(475\) 488.420 390.616i 1.02825 0.822349i
\(476\) −546.580 −1.14828
\(477\) 0 0
\(478\) −301.013 + 301.013i −0.629734 + 0.629734i
\(479\) 33.6305 + 19.4166i 0.0702099 + 0.0405357i 0.534694 0.845046i \(-0.320427\pi\)
−0.464484 + 0.885581i \(0.653760\pi\)
\(480\) 0 0
\(481\) 1.72235 + 2.98320i 0.00358077 + 0.00620208i
\(482\) −268.295 + 1001.29i −0.556628 + 2.07736i
\(483\) 0 0
\(484\) −113.750 65.6736i −0.235021 0.135689i
\(485\) −94.0127 17.7204i −0.193841 0.0365369i
\(486\) 0 0
\(487\) 394.799 + 394.799i 0.810676 + 0.810676i 0.984735 0.174059i \(-0.0556883\pi\)
−0.174059 + 0.984735i \(0.555688\pi\)
\(488\) 19.9527 + 74.4644i 0.0408867 + 0.152591i
\(489\) 0 0
\(490\) −1266.80 + 444.262i −2.58530 + 0.906656i
\(491\) −230.371 399.015i −0.469188 0.812658i 0.530191 0.847878i \(-0.322120\pi\)
−0.999380 + 0.0352201i \(0.988787\pi\)
\(492\) 0 0
\(493\) 9.26030 + 34.5599i 0.0187836 + 0.0701012i
\(494\) 67.7810i 0.137209i
\(495\) 0 0
\(496\) 419.811 0.846394
\(497\) −1021.64 + 273.748i −2.05561 + 0.550800i
\(498\) 0 0
\(499\) 736.679 425.322i 1.47631 0.852349i 0.476669 0.879083i \(-0.341844\pi\)
0.999643 + 0.0267345i \(0.00851087\pi\)
\(500\) 369.631 + 396.703i 0.739262 + 0.793405i
\(501\) 0 0
\(502\) 429.640 115.122i 0.855857 0.229326i
\(503\) 196.093 196.093i 0.389847 0.389847i −0.484786 0.874633i \(-0.661103\pi\)
0.874633 + 0.484786i \(0.161103\pi\)
\(504\) 0 0
\(505\) −81.1420 + 55.4045i −0.160677 + 0.109712i
\(506\) 454.795 787.728i 0.898804 1.55677i
\(507\) 0 0
\(508\) −682.429 182.856i −1.34336 0.359953i
\(509\) 338.026 195.159i 0.664098 0.383417i −0.129738 0.991548i \(-0.541414\pi\)
0.793837 + 0.608131i \(0.208080\pi\)
\(510\) 0 0
\(511\) −107.995 + 187.052i −0.211340 + 0.366051i
\(512\) 511.543 + 511.543i 0.999108 + 0.999108i
\(513\) 0 0
\(514\) 997.044i 1.93977i
\(515\) 650.085 + 558.656i 1.26230 + 1.08477i
\(516\) 0 0
\(517\) 220.758 823.881i 0.426999 1.59358i
\(518\) −122.005 32.6910i −0.235530 0.0631101i
\(519\) 0 0
\(520\) 4.56249 0.345106i 0.00877401 0.000663665i
\(521\) 679.963 1.30511 0.652556 0.757741i \(-0.273697\pi\)
0.652556 + 0.757741i \(0.273697\pi\)
\(522\) 0 0
\(523\) 442.612 442.612i 0.846295 0.846295i −0.143374 0.989669i \(-0.545795\pi\)
0.989669 + 0.143374i \(0.0457951\pi\)
\(524\) 70.8410 + 40.9001i 0.135193 + 0.0780536i
\(525\) 0 0
\(526\) 376.307 + 651.783i 0.715413 + 1.23913i
\(527\) 79.0514 295.024i 0.150003 0.559818i
\(528\) 0 0
\(529\) 109.929 + 63.4674i 0.207805 + 0.119976i
\(530\) −466.899 + 318.803i −0.880941 + 0.601514i
\(531\) 0 0
\(532\) 914.300 + 914.300i 1.71861 + 1.71861i
\(533\) −5.66823 21.1541i −0.0106346 0.0396888i
\(534\) 0 0
\(535\) 24.7672 + 70.6229i 0.0462939 + 0.132005i
\(536\) −31.2445 54.1171i −0.0582921 0.100965i
\(537\) 0 0
\(538\) −145.609 543.421i −0.270649 1.01008i
\(539\) 1143.64i 2.12179i
\(540\) 0 0
\(541\) 780.447 1.44260 0.721300 0.692623i \(-0.243545\pi\)
0.721300 + 0.692623i \(0.243545\pi\)
\(542\) 856.624 229.532i 1.58049 0.423490i
\(543\) 0 0
\(544\) 420.088 242.538i 0.772221 0.445842i
\(545\) 19.6709 40.9200i 0.0360935 0.0750826i
\(546\) 0 0
\(547\) 335.470 89.8890i 0.613291 0.164331i 0.0612152 0.998125i \(-0.480502\pi\)
0.552076 + 0.833794i \(0.313836\pi\)
\(548\) 231.998 231.998i 0.423354 0.423354i
\(549\) 0 0
\(550\) −813.304 + 356.190i −1.47873 + 0.647618i
\(551\) 42.3203 73.3009i 0.0768063 0.133032i
\(552\) 0 0
\(553\) 349.418 + 93.6263i 0.631859 + 0.169306i
\(554\) −265.538 + 153.308i −0.479311 + 0.276730i
\(555\) 0 0
\(556\) 97.4968 168.869i 0.175354 0.303722i
\(557\) 670.322 + 670.322i 1.20345 + 1.20345i 0.973110 + 0.230341i \(0.0739840\pi\)
0.230341 + 0.973110i \(0.426016\pi\)
\(558\) 0 0
\(559\) 15.4388i 0.0276187i
\(560\) 564.402 656.771i 1.00786 1.17281i
\(561\) 0 0
\(562\) −0.859143 + 3.20637i −0.00152872 + 0.00570528i
\(563\) −420.955 112.795i −0.747700 0.200346i −0.135202 0.990818i \(-0.543168\pi\)
−0.612498 + 0.790472i \(0.709835\pi\)
\(564\) 0 0
\(565\) −583.552 501.481i −1.03284 0.887576i
\(566\) 926.373 1.63670
\(567\) 0 0
\(568\) −61.2113 + 61.2113i −0.107766 + 0.107766i
\(569\) −670.282 386.987i −1.17800 0.680118i −0.222448 0.974944i \(-0.571405\pi\)
−0.955551 + 0.294826i \(0.904738\pi\)
\(570\) 0 0
\(571\) −233.901 405.128i −0.409633 0.709506i 0.585215 0.810878i \(-0.301010\pi\)
−0.994849 + 0.101372i \(0.967677\pi\)
\(572\) −12.9572 + 48.3570i −0.0226525 + 0.0845402i
\(573\) 0 0
\(574\) 695.444 + 401.515i 1.21158 + 0.699503i
\(575\) −256.860 586.500i −0.446713 1.02000i
\(576\) 0 0
\(577\) 272.029 + 272.029i 0.471454 + 0.471454i 0.902385 0.430931i \(-0.141815\pi\)
−0.430931 + 0.902385i \(0.641815\pi\)
\(578\) 132.409 + 494.158i 0.229082 + 0.854945i
\(579\) 0 0
\(580\) 66.1370 + 31.7932i 0.114029 + 0.0548159i
\(581\) 904.737 + 1567.05i 1.55721 + 2.69716i
\(582\) 0 0
\(583\) −124.657 465.226i −0.213820 0.797986i
\(584\) 17.6776i 0.0302699i
\(585\) 0 0
\(586\) 296.855 0.506578
\(587\) 136.489 36.5721i 0.232520 0.0623034i −0.140678 0.990055i \(-0.544928\pi\)
0.373197 + 0.927752i \(0.378261\pi\)
\(588\) 0 0
\(589\) −625.740 + 361.271i −1.06238 + 0.613363i
\(590\) −1195.57 + 419.281i −2.02638 + 0.710646i
\(591\) 0 0
\(592\) 51.5405 13.8102i 0.0870617 0.0233281i
\(593\) 94.3094 94.3094i 0.159038 0.159038i −0.623102 0.782140i \(-0.714128\pi\)
0.782140 + 0.623102i \(0.214128\pi\)
\(594\) 0 0
\(595\) −355.270 520.307i −0.597093 0.874465i
\(596\) −356.194 + 616.946i −0.597641 + 1.03514i
\(597\) 0 0
\(598\) −67.0285 17.9602i −0.112088 0.0300338i
\(599\) 723.537 417.734i 1.20791 0.697386i 0.245606 0.969370i \(-0.421013\pi\)
0.962302 + 0.271984i \(0.0876797\pi\)
\(600\) 0 0
\(601\) −179.809 + 311.438i −0.299183 + 0.518200i −0.975949 0.217998i \(-0.930047\pi\)
0.676766 + 0.736198i \(0.263381\pi\)
\(602\) −400.295 400.295i −0.664942 0.664942i
\(603\) 0 0
\(604\) 166.579i 0.275793i
\(605\) −11.4193 150.969i −0.0188748 0.249536i
\(606\) 0 0
\(607\) 133.400 497.854i 0.219769 0.820188i −0.764665 0.644428i \(-0.777095\pi\)
0.984433 0.175759i \(-0.0562380\pi\)
\(608\) −1108.42 297.000i −1.82306 0.488486i
\(609\) 0 0
\(610\) −743.836 + 865.571i −1.21940 + 1.41897i
\(611\) −65.0715 −0.106500
\(612\) 0 0
\(613\) −470.150 + 470.150i −0.766965 + 0.766965i −0.977571 0.210606i \(-0.932456\pi\)
0.210606 + 0.977571i \(0.432456\pi\)
\(614\) 263.849 + 152.333i 0.429721 + 0.248099i
\(615\) 0 0
\(616\) −71.4640 123.779i −0.116013 0.200940i
\(617\) 65.6036 244.836i 0.106327 0.396817i −0.892166 0.451708i \(-0.850815\pi\)
0.998492 + 0.0548918i \(0.0174814\pi\)
\(618\) 0 0
\(619\) −88.9466 51.3534i −0.143694 0.0829618i 0.426429 0.904521i \(-0.359771\pi\)
−0.570123 + 0.821559i \(0.693105\pi\)
\(620\) −353.242 517.337i −0.569745 0.834414i
\(621\) 0 0
\(622\) −1219.47 1219.47i −1.96057 1.96057i
\(623\) 363.575 + 1356.88i 0.583587 + 2.17798i
\(624\) 0 0
\(625\) −137.378 + 609.715i −0.219805 + 0.975544i
\(626\) 244.862 + 424.113i 0.391153 + 0.677497i
\(627\) 0 0
\(628\) 73.1406 + 272.964i 0.116466 + 0.434657i
\(629\) 38.8208i 0.0617183i
\(630\) 0 0
\(631\) −1201.04 −1.90339 −0.951696 0.307042i \(-0.900661\pi\)
−0.951696 + 0.307042i \(0.900661\pi\)
\(632\) 28.5981 7.66285i 0.0452502 0.0121248i
\(633\) 0 0
\(634\) −1022.01 + 590.056i −1.61200 + 0.930688i
\(635\) −269.503 768.479i −0.424415 1.21020i
\(636\) 0 0
\(637\) −84.2762 + 22.5817i −0.132302 + 0.0354501i
\(638\) −84.9681 + 84.9681i −0.133179 + 0.133179i
\(639\) 0 0
\(640\) 28.7994 152.791i 0.0449991 0.238736i
\(641\) −285.201 + 493.982i −0.444931 + 0.770643i −0.998047 0.0624611i \(-0.980105\pi\)
0.553117 + 0.833104i \(0.313438\pi\)
\(642\) 0 0
\(643\) 856.111 + 229.394i 1.33143 + 0.356756i 0.853249 0.521504i \(-0.174629\pi\)
0.478183 + 0.878260i \(0.341296\pi\)
\(644\) 1146.41 661.883i 1.78015 1.02777i
\(645\) 0 0
\(646\) −381.936 + 661.532i −0.591232 + 1.02404i
\(647\) −254.010 254.010i −0.392596 0.392596i 0.483016 0.875612i \(-0.339541\pi\)
−0.875612 + 0.483016i \(0.839541\pi\)
\(648\) 0 0
\(649\) 1079.34i 1.66308i
\(650\) 42.3070 + 52.9000i 0.0650876 + 0.0813845i
\(651\) 0 0
\(652\) 33.3183 124.346i 0.0511017 0.190714i
\(653\) −295.968 79.3045i −0.453244 0.121446i 0.0249729 0.999688i \(-0.492050\pi\)
−0.478217 + 0.878242i \(0.658717\pi\)
\(654\) 0 0
\(655\) 7.11168 + 94.0203i 0.0108575 + 0.143542i
\(656\) −339.238 −0.517131
\(657\) 0 0
\(658\) 1687.16 1687.16i 2.56407 2.56407i
\(659\) −344.367 198.821i −0.522561 0.301701i 0.215421 0.976521i \(-0.430888\pi\)
−0.737982 + 0.674821i \(0.764221\pi\)
\(660\) 0 0
\(661\) 347.289 + 601.522i 0.525399 + 0.910019i 0.999562 + 0.0295815i \(0.00941745\pi\)
−0.474163 + 0.880437i \(0.657249\pi\)
\(662\) 314.101 1172.24i 0.474473 1.77076i
\(663\) 0 0
\(664\) 128.255 + 74.0482i 0.193156 + 0.111518i
\(665\) −276.067 + 1464.63i −0.415139 + 2.20246i
\(666\) 0 0
\(667\) −61.2733 61.2733i −0.0918640 0.0918640i
\(668\) −105.393 393.333i −0.157774 0.588821i
\(669\) 0 0
\(670\) 400.806 833.766i 0.598217 1.24443i
\(671\) −486.135 842.010i −0.724493 1.25486i
\(672\) 0 0
\(673\) −43.7189 163.161i −0.0649612 0.242439i 0.925809 0.377992i \(-0.123385\pi\)
−0.990770 + 0.135554i \(0.956719\pi\)
\(674\) 839.406i 1.24541i
\(675\) 0 0
\(676\) −729.259 −1.07879
\(677\) 252.537 67.6670i 0.373023 0.0999513i −0.0674366 0.997724i \(-0.521482\pi\)
0.440460 + 0.897772i \(0.354815\pi\)
\(678\) 0 0
\(679\) 197.445 113.995i 0.290787 0.167886i
\(680\) −46.4738 22.3407i −0.0683438 0.0328540i
\(681\) 0 0
\(682\) 990.830 265.492i 1.45283 0.389285i
\(683\) −545.616 + 545.616i −0.798852 + 0.798852i −0.982915 0.184062i \(-0.941075\pi\)
0.184062 + 0.982915i \(0.441075\pi\)
\(684\) 0 0
\(685\) 371.642 + 70.0505i 0.542543 + 0.102263i
\(686\) 756.640 1310.54i 1.10297 1.91041i
\(687\) 0 0
\(688\) 231.000 + 61.8962i 0.335755 + 0.0899654i
\(689\) −31.8215 + 18.3722i −0.0461851 + 0.0266650i
\(690\) 0 0
\(691\) −178.080 + 308.443i −0.257713 + 0.446372i −0.965629 0.259925i \(-0.916302\pi\)
0.707916 + 0.706297i \(0.249636\pi\)
\(692\) 611.281 + 611.281i 0.883355 + 0.883355i
\(693\) 0 0
\(694\) 1585.21i 2.28417i
\(695\) 224.124 16.9527i 0.322480 0.0243924i
\(696\) 0 0
\(697\) −63.8792 + 238.401i −0.0916488 + 0.342038i
\(698\) 1214.49 + 325.423i 1.73996 + 0.466222i
\(699\) 0 0
\(700\) −1284.25 142.889i −1.83464 0.204128i
\(701\) −357.763 −0.510361 −0.255180 0.966893i \(-0.582135\pi\)
−0.255180 + 0.966893i \(0.582135\pi\)
\(702\) 0 0
\(703\) −64.9380 + 64.9380i −0.0923727 + 0.0923727i
\(704\) 791.564 + 457.010i 1.12438 + 0.649161i
\(705\) 0 0
\(706\) 480.517 + 832.280i 0.680619 + 1.17887i
\(707\) 60.6024 226.171i 0.0857177 0.319903i
\(708\) 0 0
\(709\) 324.344 + 187.260i 0.457467 + 0.264119i 0.710979 0.703213i \(-0.248252\pi\)
−0.253511 + 0.967332i \(0.581586\pi\)
\(710\) −1259.36 237.376i −1.77375 0.334332i
\(711\) 0 0
\(712\) 81.2971 + 81.2971i 0.114181 + 0.114181i
\(713\) 191.455 + 714.520i 0.268520 + 1.00213i
\(714\) 0 0
\(715\) −54.4545 + 19.0970i −0.0761602 + 0.0267091i
\(716\) 98.9288 + 171.350i 0.138169 + 0.239315i
\(717\) 0 0
\(718\) −85.8861 320.531i −0.119619 0.446422i
\(719\) 889.235i 1.23677i −0.785877 0.618383i \(-0.787788\pi\)
0.785877 0.618383i \(-0.212212\pi\)
\(720\) 0 0
\(721\) −2042.70 −2.83314
\(722\) 738.601 197.908i 1.02299 0.274110i
\(723\) 0 0
\(724\) −393.666 + 227.283i −0.543737 + 0.313927i
\(725\) 12.7233 + 83.6231i 0.0175493 + 0.115342i
\(726\) 0 0
\(727\) −433.617 + 116.187i −0.596447 + 0.159818i −0.544398 0.838827i \(-0.683242\pi\)
−0.0520491 + 0.998645i \(0.516575\pi\)
\(728\) −7.71032 + 7.71032i −0.0105911 + 0.0105911i
\(729\) 0 0
\(730\) −216.127 + 147.573i −0.296064 + 0.202155i
\(731\) 86.9955 150.681i 0.119009 0.206129i
\(732\) 0 0
\(733\) −664.342 178.010i −0.906333 0.242851i −0.224599 0.974451i \(-0.572107\pi\)
−0.681734 + 0.731600i \(0.738774\pi\)
\(734\) 1307.55 754.912i 1.78140 1.02849i
\(735\) 0 0
\(736\) −587.404 + 1017.41i −0.798104 + 1.38236i
\(737\) 557.276 + 557.276i 0.756141 + 0.756141i
\(738\) 0 0
\(739\) 337.793i 0.457095i 0.973533 + 0.228547i \(0.0733976\pi\)
−0.973533 + 0.228547i \(0.926602\pi\)
\(740\) −60.3862 51.8934i −0.0816030 0.0701262i
\(741\) 0 0
\(742\) 348.712 1301.41i 0.469962 1.75392i
\(743\) −101.468 27.1883i −0.136565 0.0365926i 0.189889 0.981806i \(-0.439187\pi\)
−0.326454 + 0.945213i \(0.605854\pi\)
\(744\) 0 0
\(745\) −818.812 + 61.9348i −1.09908 + 0.0831340i
\(746\) 614.975 0.824364
\(747\) 0 0
\(748\) 398.945 398.945i 0.533349 0.533349i
\(749\) −154.458 89.1765i −0.206219 0.119061i
\(750\) 0 0
\(751\) −370.192 641.191i −0.492932 0.853783i 0.507035 0.861925i \(-0.330741\pi\)
−0.999967 + 0.00814279i \(0.997408\pi\)
\(752\) −260.880 + 973.616i −0.346914 + 1.29470i
\(753\) 0 0
\(754\) 7.93910 + 4.58364i 0.0105293 + 0.00607910i
\(755\) −158.571 + 108.274i −0.210028 + 0.143409i
\(756\) 0 0
\(757\) 957.088 + 957.088i 1.26432 + 1.26432i 0.948980 + 0.315337i \(0.102118\pi\)
0.315337 + 0.948980i \(0.397882\pi\)
\(758\) −502.603 1875.74i −0.663065 2.47459i
\(759\) 0 0
\(760\) 40.3689 + 115.110i 0.0531169 + 0.151461i
\(761\) −202.869 351.380i −0.266582 0.461734i 0.701395 0.712773i \(-0.252561\pi\)
−0.967977 + 0.251039i \(0.919228\pi\)
\(762\) 0 0
\(763\) 28.0042 + 104.513i 0.0367028 + 0.136977i
\(764\) 439.390i 0.575118i
\(765\) 0 0
\(766\) −879.199 −1.14778
\(767\) −79.5374 + 21.3120i −0.103699 + 0.0277861i
\(768\) 0 0
\(769\) 731.602 422.391i 0.951368 0.549273i 0.0578626 0.998325i \(-0.481571\pi\)
0.893506 + 0.449052i \(0.148238\pi\)
\(770\) 916.742 1907.03i 1.19057 2.47666i
\(771\) 0 0
\(772\) −1185.34 + 317.610i −1.53541 + 0.411412i
\(773\) −501.313 + 501.313i −0.648529 + 0.648529i −0.952637 0.304108i \(-0.901642\pi\)
0.304108 + 0.952637i \(0.401642\pi\)
\(774\) 0 0
\(775\) 262.866 672.524i 0.339182 0.867773i
\(776\) 9.32990 16.1599i 0.0120231 0.0208246i
\(777\) 0 0
\(778\) −1985.02 531.884i −2.55144 0.683655i
\(779\) 505.643 291.933i 0.649092 0.374754i
\(780\) 0 0
\(781\) 545.881 945.494i 0.698951 1.21062i
\(782\) 552.984 + 552.984i 0.707141 + 0.707141i
\(783\) 0 0
\(784\) 1351.49i 1.72384i
\(785\) −212.303 + 247.048i −0.270449 + 0.314711i
\(786\) 0 0
\(787\) −263.430 + 983.133i −0.334726 + 1.24922i 0.569439 + 0.822034i \(0.307161\pi\)
−0.904165 + 0.427183i \(0.859506\pi\)
\(788\) 31.1863 + 8.35636i 0.0395766 + 0.0106045i
\(789\) 0 0
\(790\) 332.424 + 285.671i 0.420789 + 0.361609i
\(791\) 1833.64 2.31813
\(792\) 0 0
\(793\) −52.4495 + 52.4495i −0.0661406 + 0.0661406i
\(794\) 146.624 + 84.6533i 0.184665 + 0.106616i
\(795\) 0 0
\(796\) 305.963 + 529.943i 0.384376 + 0.665758i
\(797\) −369.343 + 1378.41i −0.463416 + 1.72949i 0.198670 + 0.980066i \(0.436338\pi\)
−0.662087 + 0.749427i \(0.730329\pi\)
\(798\) 0 0
\(799\) 635.088 + 366.668i 0.794854 + 0.458909i
\(800\) 1050.45 460.048i 1.31306 0.575060i
\(801\) 0 0
\(802\) −339.695 339.695i −0.423559 0.423559i
\(803\) −57.7035 215.352i −0.0718599 0.268185i
\(804\) 0 0
\(805\) 1375.22 + 661.093i 1.70835 + 0.821233i
\(806\) −39.1287 67.7729i −0.0485468 0.0840855i
\(807\) 0 0
\(808\) −4.96001 18.5110i −0.00613862 0.0229097i
\(809\) 549.873i 0.679694i 0.940481 + 0.339847i \(0.110375\pi\)
−0.940481 + 0.339847i \(0.889625\pi\)
\(810\) 0 0
\(811\) 1542.32 1.90175 0.950876 0.309573i \(-0.100186\pi\)
0.950876 + 0.309573i \(0.100186\pi\)
\(812\) −168.920 + 45.2619i −0.208029 + 0.0557413i
\(813\) 0 0
\(814\) 112.911 65.1893i 0.138711 0.0800851i
\(815\) 140.025 49.1063i 0.171810 0.0602531i
\(816\) 0 0
\(817\) −397.576 + 106.530i −0.486629 + 0.130392i
\(818\) −48.4677 + 48.4677i −0.0592514 + 0.0592514i
\(819\) 0 0
\(820\) 285.445 + 418.045i 0.348104 + 0.509811i
\(821\) 405.012 701.501i 0.493316 0.854448i −0.506655 0.862149i \(-0.669118\pi\)
0.999970 + 0.00770144i \(0.00245147\pi\)
\(822\) 0 0
\(823\) 79.3084 + 21.2506i 0.0963650 + 0.0258209i 0.306679 0.951813i \(-0.400782\pi\)
−0.210314 + 0.977634i \(0.567449\pi\)
\(824\) −144.786 + 83.5923i −0.175711 + 0.101447i
\(825\) 0 0
\(826\) 1509.66 2614.80i 1.82767 3.16562i
\(827\) −924.549 924.549i −1.11796 1.11796i −0.992041 0.125915i \(-0.959813\pi\)
−0.125915 0.992041i \(-0.540187\pi\)
\(828\) 0 0
\(829\) 114.907i 0.138610i −0.997596 0.0693048i \(-0.977922\pi\)
0.997596 0.0693048i \(-0.0220781\pi\)
\(830\) 165.364 + 2186.20i 0.199234 + 2.63398i
\(831\) 0 0
\(832\) 18.0477 67.3549i 0.0216919 0.0809554i
\(833\) 949.767 + 254.489i 1.14018 + 0.305509i
\(834\) 0 0
\(835\) 305.921 355.988i 0.366373 0.426333i
\(836\) −1334.68 −1.59651
\(837\) 0 0
\(838\) 1020.02 1020.02i 1.21720 1.21720i
\(839\) 661.782 + 382.080i 0.788774 + 0.455399i 0.839531 0.543312i \(-0.182830\pi\)
−0.0507566 + 0.998711i \(0.516163\pi\)
\(840\) 0 0
\(841\) −414.776 718.414i −0.493194 0.854237i
\(842\) −2.84711 + 10.6255i −0.00338136 + 0.0126194i
\(843\) 0 0
\(844\) 169.448 + 97.8309i 0.200768 + 0.115913i
\(845\) −474.009 694.204i −0.560957 0.821544i
\(846\) 0 0
\(847\) 255.128 + 255.128i 0.301214 + 0.301214i
\(848\) 147.312 + 549.777i 0.173717 + 0.648322i
\(849\) 0 0
\(850\) −114.826 754.689i −0.135089 0.887869i
\(851\) 47.0101 + 81.4239i 0.0552410 + 0.0956803i
\(852\) 0 0
\(853\) 190.285 + 710.152i 0.223077 + 0.832534i 0.983166 + 0.182715i \(0.0584887\pi\)
−0.760089 + 0.649819i \(0.774845\pi\)
\(854\) 2719.80i 3.18478i
\(855\) 0 0
\(856\) −14.5973 −0.0170529
\(857\) 694.443 186.075i 0.810319 0.217124i 0.170209 0.985408i \(-0.445556\pi\)
0.640109 + 0.768284i \(0.278889\pi\)
\(858\) 0 0
\(859\) −1043.29 + 602.342i −1.21454 + 0.701213i −0.963744 0.266828i \(-0.914025\pi\)
−0.250792 + 0.968041i \(0.580691\pi\)
\(860\) −118.095 336.744i −0.137320 0.391563i
\(861\) 0 0
\(862\) 2141.58 573.836i 2.48444 0.665703i
\(863\) 214.571 214.571i 0.248634 0.248634i −0.571776 0.820410i \(-0.693745\pi\)
0.820410 + 0.571776i \(0.193745\pi\)
\(864\) 0 0
\(865\) −184.573 + 979.223i −0.213379 + 1.13205i
\(866\) −751.049 + 1300.86i −0.867263 + 1.50214i
\(867\) 0 0
\(868\) 1442.00 + 386.382i 1.66129 + 0.445141i
\(869\) −323.375 + 186.701i −0.372123 + 0.214845i
\(870\) 0 0
\(871\) 30.0625 52.0698i 0.0345150 0.0597817i
\(872\) 6.26188 + 6.26188i 0.00718106 + 0.00718106i
\(873\) 0 0
\(874\) 1850.02i 2.11673i
\(875\) −698.724 1315.39i −0.798542 1.50331i
\(876\) 0 0
\(877\) −81.8801 + 305.581i −0.0933638 + 0.348438i −0.996766 0.0803551i \(-0.974395\pi\)
0.903402 + 0.428794i \(0.141061\pi\)
\(878\) −383.387 102.728i −0.436660 0.117003i
\(879\) 0 0
\(880\) 67.4197 + 891.325i 0.0766133 + 1.01287i
\(881\) 435.585 0.494421 0.247211 0.968962i \(-0.420486\pi\)
0.247211 + 0.968962i \(0.420486\pi\)
\(882\) 0 0
\(883\) −434.695 + 434.695i −0.492293 + 0.492293i −0.909028 0.416735i \(-0.863174\pi\)
0.416735 + 0.909028i \(0.363174\pi\)
\(884\) −37.2759 21.5213i −0.0421673 0.0243453i
\(885\) 0 0
\(886\) 638.166 + 1105.34i 0.720277 + 1.24756i
\(887\) −148.261 + 553.319i −0.167149 + 0.623810i 0.830607 + 0.556859i \(0.187994\pi\)
−0.997756 + 0.0669506i \(0.978673\pi\)
\(888\) 0 0
\(889\) 1680.73 + 970.369i 1.89058 + 1.09153i
\(890\) −315.268 + 1672.61i −0.354234 + 1.87933i
\(891\) 0 0
\(892\) −17.2130 17.2130i −0.0192970 0.0192970i
\(893\) −449.003 1675.70i −0.502803 1.87649i
\(894\) 0 0
\(895\) −98.8106 + 205.548i −0.110403 + 0.229663i
\(896\) 185.266 + 320.890i 0.206770 + 0.358136i
\(897\) 0 0
\(898\) −618.271 2307.42i −0.688497 2.56951i
\(899\) 97.7228i 0.108702i
\(900\) 0 0
\(901\) 414.097 0.459597
\(902\) −800.662 + 214.537i −0.887652 + 0.237846i
\(903\) 0 0
\(904\) 129.968 75.0371i 0.143770 0.0830057i
\(905\) −472.235 227.012i −0.521807 0.250842i
\(906\) 0 0
\(907\) −764.884 + 204.950i −0.843312 + 0.225965i −0.654513 0.756051i \(-0.727126\pi\)
−0.188799 + 0.982016i \(0.560459\pi\)
\(908\) −233.153 + 233.153i −0.256776 + 0.256776i
\(909\) 0 0
\(910\) −158.632 29.9004i −0.174321 0.0328576i
\(911\) −472.743 + 818.815i −0.518928 + 0.898809i 0.480830 + 0.876814i \(0.340335\pi\)
−0.999758 + 0.0219955i \(0.992998\pi\)
\(912\) 0 0
\(913\) −1804.14 483.417i −1.97605 0.529482i
\(914\) −2214.44 + 1278.51i −2.42280 + 1.39880i
\(915\) 0 0
\(916\) −119.699 + 207.325i −0.130676 + 0.226338i
\(917\) −158.889 158.889i −0.173270 0.173270i
\(918\) 0 0
\(919\) 825.147i 0.897875i −0.893563 0.448937i \(-0.851803\pi\)
0.893563 0.448937i \(-0.148197\pi\)
\(920\) 124.529 9.41937i 0.135358 0.0102384i
\(921\) 0 0
\(922\) 195.684 730.302i 0.212238 0.792084i
\(923\) −80.4529 21.5573i −0.0871646 0.0233557i
\(924\) 0 0
\(925\) 10.1487 91.2136i 0.0109716 0.0986093i
\(926\) 486.714 0.525609
\(927\) 0 0
\(928\) 109.743 109.743i 0.118258 0.118258i
\(929\) 799.415 + 461.543i 0.860511 + 0.496817i 0.864184 0.503177i \(-0.167836\pi\)
−0.00367207 + 0.999993i \(0.501169\pi\)
\(930\) 0 0
\(931\) −1163.04 2014.44i −1.24923 2.16374i
\(932\) 153.190 571.714i 0.164367 0.613427i
\(933\) 0 0
\(934\) 225.486 + 130.185i 0.241420 + 0.139384i
\(935\) 639.077 + 120.459i 0.683505 + 0.128833i
\(936\) 0 0
\(937\) 967.522 + 967.522i 1.03257 + 1.03257i 0.999451 + 0.0331234i \(0.0105454\pi\)
0.0331234 + 0.999451i \(0.489455\pi\)
\(938\) 570.601 + 2129.51i 0.608316 + 2.27027i
\(939\) 0 0
\(940\) 1419.31 497.746i 1.50990 0.529517i
\(941\) −405.942 703.113i −0.431395 0.747197i 0.565599 0.824680i \(-0.308645\pi\)
−0.996994 + 0.0774830i \(0.975312\pi\)
\(942\) 0 0
\(943\) −154.709 577.384i −0.164061 0.612284i
\(944\) 1275.50i 1.35117i
\(945\) 0 0
\(946\) 584.344 0.617700
\(947\) 1191.67 319.307i 1.25836 0.337177i 0.432802 0.901489i \(-0.357525\pi\)
0.825562 + 0.564312i \(0.190858\pi\)
\(948\) 0 0
\(949\) −14.7301 + 8.50444i −0.0155217 + 0.00896147i
\(950\) −1070.34 + 1454.49i −1.12667 + 1.53105i
\(951\) 0 0
\(952\) 118.698 31.8050i 0.124683 0.0334087i
\(953\) 719.749 719.749i 0.755245 0.755245i −0.220208 0.975453i \(-0.570674\pi\)
0.975453 + 0.220208i \(0.0706736\pi\)
\(954\) 0 0
\(955\) −418.269 + 285.598i −0.437978 + 0.299055i
\(956\) 319.749 553.822i 0.334466 0.579312i
\(957\) 0 0
\(958\) −108.311 29.0218i −0.113059 0.0302941i
\(959\) −780.519 + 450.633i −0.813888 + 0.469899i
\(960\) 0 0
\(961\) 63.3899 109.795i 0.0659625 0.114250i
\(962\) −7.03333 7.03333i −0.00731116 0.00731116i
\(963\) 0 0
\(964\) 1557.24i 1.61539i
\(965\) −1072.80 921.917i −1.11171 0.955354i
\(966\) 0 0
\(967\) −383.836 + 1432.50i −0.396935 + 1.48138i 0.421525 + 0.906817i \(0.361495\pi\)
−0.818460 + 0.574564i \(0.805172\pi\)
\(968\) 28.5240 + 7.64298i 0.0294669 + 0.00789564i
\(969\) 0 0
\(970\) 275.457 20.8355i 0.283976 0.0214799i
\(971\) −798.883 −0.822742 −0.411371 0.911468i \(-0.634950\pi\)
−0.411371 + 0.911468i \(0.634950\pi\)
\(972\) 0 0
\(973\) −378.755 + 378.755i −0.389266 + 0.389266i
\(974\) −1396.20 806.094i −1.43347 0.827612i
\(975\) 0 0
\(976\) 574.486 + 995.039i 0.588613 + 1.01951i
\(977\) 110.728 413.244i 0.113335 0.422972i −0.885822 0.464025i \(-0.846405\pi\)
0.999157 + 0.0410533i \(0.0130713\pi\)
\(978\) 0 0
\(979\) −1255.75 725.006i −1.28268 0.740558i
\(980\) 1665.46 1137.19i 1.69945 1.16040i
\(981\) 0 0
\(982\) 940.736 + 940.736i 0.957980 + 0.957980i
\(983\) 111.413 + 415.799i 0.113340 + 0.422990i 0.999157 0.0410437i \(-0.0130683\pi\)
−0.885817 + 0.464034i \(0.846402\pi\)
\(984\) 0 0
\(985\) 12.3160 + 35.1188i 0.0125036 + 0.0356536i
\(986\) −51.6563 89.4713i −0.0523897 0.0907417i
\(987\) 0 0
\(988\) 26.3538 + 98.3538i 0.0266739 + 0.0995484i
\(989\) 421.390i 0.426077i
\(990\) 0 0
\(991\) 575.226 0.580450 0.290225 0.956958i \(-0.406270\pi\)
0.290225 + 0.956958i \(0.406270\pi\)
\(992\) −1279.74 + 342.905i −1.29006 + 0.345670i
\(993\) 0 0
\(994\) 2644.90 1527.03i 2.66086 1.53625i
\(995\) −305.598 + 635.712i −0.307133 + 0.638907i
\(996\) 0 0
\(997\) −398.810 + 106.861i −0.400010 + 0.107182i −0.453215 0.891401i \(-0.649723\pi\)
0.0532048 + 0.998584i \(0.483056\pi\)
\(998\) −1736.83 + 1736.83i −1.74031 + 1.74031i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.n.217.2 32
3.2 odd 2 inner 405.3.l.n.217.7 32
5.3 odd 4 inner 405.3.l.n.298.7 32
9.2 odd 6 135.3.g.b.82.2 yes 16
9.4 even 3 inner 405.3.l.n.352.7 32
9.5 odd 6 inner 405.3.l.n.352.2 32
9.7 even 3 135.3.g.b.82.7 yes 16
15.8 even 4 inner 405.3.l.n.298.2 32
45.2 even 12 675.3.g.j.568.7 16
45.7 odd 12 675.3.g.j.568.2 16
45.13 odd 12 inner 405.3.l.n.28.2 32
45.23 even 12 inner 405.3.l.n.28.7 32
45.29 odd 6 675.3.g.j.82.7 16
45.34 even 6 675.3.g.j.82.2 16
45.38 even 12 135.3.g.b.28.2 16
45.43 odd 12 135.3.g.b.28.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.2 16 45.38 even 12
135.3.g.b.28.7 yes 16 45.43 odd 12
135.3.g.b.82.2 yes 16 9.2 odd 6
135.3.g.b.82.7 yes 16 9.7 even 3
405.3.l.n.28.2 32 45.13 odd 12 inner
405.3.l.n.28.7 32 45.23 even 12 inner
405.3.l.n.217.2 32 1.1 even 1 trivial
405.3.l.n.217.7 32 3.2 odd 2 inner
405.3.l.n.298.2 32 15.8 even 4 inner
405.3.l.n.298.7 32 5.3 odd 4 inner
405.3.l.n.352.2 32 9.5 odd 6 inner
405.3.l.n.352.7 32 9.4 even 3 inner
675.3.g.j.82.2 16 45.34 even 6
675.3.g.j.82.7 16 45.29 odd 6
675.3.g.j.568.2 16 45.7 odd 12
675.3.g.j.568.7 16 45.2 even 12