Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [405,3,Mod(28,405)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([4, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("405.28");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 405.l (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.0354507066\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 135) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 | −3.68016 | − | 0.986097i | 0 | 9.10712 | + | 5.25800i | −4.36446 | + | 2.43957i | 0 | 1.55546 | + | 0.416783i | −17.5546 | − | 17.5546i | 0 | 18.4676 | − | 4.67423i | ||||||
28.2 | −2.78913 | − | 0.747344i | 0 | 3.75659 | + | 2.16887i | 4.50635 | − | 2.16628i | 0 | −11.5096 | − | 3.08399i | −0.689596 | − | 0.689596i | 0 | −14.1877 | + | 2.67423i | ||||||
28.3 | −1.43685 | − | 0.385003i | 0 | −1.54779 | − | 0.893616i | −4.97194 | − | 0.528949i | 0 | 7.10453 | + | 1.90365i | 6.08729 | + | 6.08729i | 0 | 6.94029 | + | 2.67423i | ||||||
28.4 | −0.933250 | − | 0.250064i | 0 | −2.65568 | − | 1.53326i | 2.47196 | + | 4.34619i | 0 | −2.61447 | − | 0.700546i | 4.82775 | + | 4.82775i | 0 | −1.22013 | − | 4.67423i | ||||||
28.5 | 0.933250 | + | 0.250064i | 0 | −2.65568 | − | 1.53326i | −2.47196 | − | 4.34619i | 0 | −2.61447 | − | 0.700546i | −4.82775 | − | 4.82775i | 0 | −1.22013 | − | 4.67423i | ||||||
28.6 | 1.43685 | + | 0.385003i | 0 | −1.54779 | − | 0.893616i | 4.97194 | + | 0.528949i | 0 | 7.10453 | + | 1.90365i | −6.08729 | − | 6.08729i | 0 | 6.94029 | + | 2.67423i | ||||||
28.7 | 2.78913 | + | 0.747344i | 0 | 3.75659 | + | 2.16887i | −4.50635 | + | 2.16628i | 0 | −11.5096 | − | 3.08399i | 0.689596 | + | 0.689596i | 0 | −14.1877 | + | 2.67423i | ||||||
28.8 | 3.68016 | + | 0.986097i | 0 | 9.10712 | + | 5.25800i | 4.36446 | − | 2.43957i | 0 | 1.55546 | + | 0.416783i | 17.5546 | + | 17.5546i | 0 | 18.4676 | − | 4.67423i | ||||||
217.1 | −3.68016 | + | 0.986097i | 0 | 9.10712 | − | 5.25800i | −4.36446 | − | 2.43957i | 0 | 1.55546 | − | 0.416783i | −17.5546 | + | 17.5546i | 0 | 18.4676 | + | 4.67423i | ||||||
217.2 | −2.78913 | + | 0.747344i | 0 | 3.75659 | − | 2.16887i | 4.50635 | + | 2.16628i | 0 | −11.5096 | + | 3.08399i | −0.689596 | + | 0.689596i | 0 | −14.1877 | − | 2.67423i | ||||||
217.3 | −1.43685 | + | 0.385003i | 0 | −1.54779 | + | 0.893616i | −4.97194 | + | 0.528949i | 0 | 7.10453 | − | 1.90365i | 6.08729 | − | 6.08729i | 0 | 6.94029 | − | 2.67423i | ||||||
217.4 | −0.933250 | + | 0.250064i | 0 | −2.65568 | + | 1.53326i | 2.47196 | − | 4.34619i | 0 | −2.61447 | + | 0.700546i | 4.82775 | − | 4.82775i | 0 | −1.22013 | + | 4.67423i | ||||||
217.5 | 0.933250 | − | 0.250064i | 0 | −2.65568 | + | 1.53326i | −2.47196 | + | 4.34619i | 0 | −2.61447 | + | 0.700546i | −4.82775 | + | 4.82775i | 0 | −1.22013 | + | 4.67423i | ||||||
217.6 | 1.43685 | − | 0.385003i | 0 | −1.54779 | + | 0.893616i | 4.97194 | − | 0.528949i | 0 | 7.10453 | − | 1.90365i | −6.08729 | + | 6.08729i | 0 | 6.94029 | − | 2.67423i | ||||||
217.7 | 2.78913 | − | 0.747344i | 0 | 3.75659 | − | 2.16887i | −4.50635 | − | 2.16628i | 0 | −11.5096 | + | 3.08399i | 0.689596 | − | 0.689596i | 0 | −14.1877 | − | 2.67423i | ||||||
217.8 | 3.68016 | − | 0.986097i | 0 | 9.10712 | − | 5.25800i | 4.36446 | + | 2.43957i | 0 | 1.55546 | − | 0.416783i | 17.5546 | − | 17.5546i | 0 | 18.4676 | + | 4.67423i | ||||||
298.1 | −0.986097 | − | 3.68016i | 0 | −9.10712 | + | 5.25800i | −0.0695010 | + | 4.99952i | 0 | −0.416783 | − | 1.55546i | 17.5546 | + | 17.5546i | 0 | 18.4676 | − | 4.67423i | ||||||
298.2 | −0.747344 | − | 2.78913i | 0 | −3.75659 | + | 2.16887i | 0.377122 | − | 4.98576i | 0 | 3.08399 | + | 11.5096i | 0.689596 | + | 0.689596i | 0 | −14.1877 | + | 2.67423i | ||||||
298.3 | −0.385003 | − | 1.43685i | 0 | 1.54779 | − | 0.893616i | −2.94405 | + | 4.04135i | 0 | −1.90365 | − | 7.10453i | −6.08729 | − | 6.08729i | 0 | 6.94029 | + | 2.67423i | ||||||
298.4 | −0.250064 | − | 0.933250i | 0 | 2.65568 | − | 1.53326i | 4.99990 | + | 0.0323160i | 0 | 0.700546 | + | 2.61447i | −4.82775 | − | 4.82775i | 0 | −1.22013 | − | 4.67423i | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
45.k | odd | 12 | 1 | inner |
45.l | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 405.3.l.n | 32 | |
3.b | odd | 2 | 1 | inner | 405.3.l.n | 32 | |
5.c | odd | 4 | 1 | inner | 405.3.l.n | 32 | |
9.c | even | 3 | 1 | 135.3.g.b | ✓ | 16 | |
9.c | even | 3 | 1 | inner | 405.3.l.n | 32 | |
9.d | odd | 6 | 1 | 135.3.g.b | ✓ | 16 | |
9.d | odd | 6 | 1 | inner | 405.3.l.n | 32 | |
15.e | even | 4 | 1 | inner | 405.3.l.n | 32 | |
45.h | odd | 6 | 1 | 675.3.g.j | 16 | ||
45.j | even | 6 | 1 | 675.3.g.j | 16 | ||
45.k | odd | 12 | 1 | 135.3.g.b | ✓ | 16 | |
45.k | odd | 12 | 1 | inner | 405.3.l.n | 32 | |
45.k | odd | 12 | 1 | 675.3.g.j | 16 | ||
45.l | even | 12 | 1 | 135.3.g.b | ✓ | 16 | |
45.l | even | 12 | 1 | inner | 405.3.l.n | 32 | |
45.l | even | 12 | 1 | 675.3.g.j | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.3.g.b | ✓ | 16 | 9.c | even | 3 | 1 | |
135.3.g.b | ✓ | 16 | 9.d | odd | 6 | 1 | |
135.3.g.b | ✓ | 16 | 45.k | odd | 12 | 1 | |
135.3.g.b | ✓ | 16 | 45.l | even | 12 | 1 | |
405.3.l.n | 32 | 1.a | even | 1 | 1 | trivial | |
405.3.l.n | 32 | 3.b | odd | 2 | 1 | inner | |
405.3.l.n | 32 | 5.c | odd | 4 | 1 | inner | |
405.3.l.n | 32 | 9.c | even | 3 | 1 | inner | |
405.3.l.n | 32 | 9.d | odd | 6 | 1 | inner | |
405.3.l.n | 32 | 15.e | even | 4 | 1 | inner | |
405.3.l.n | 32 | 45.k | odd | 12 | 1 | inner | |
405.3.l.n | 32 | 45.l | even | 12 | 1 | inner | |
675.3.g.j | 16 | 45.h | odd | 6 | 1 | ||
675.3.g.j | 16 | 45.j | even | 6 | 1 | ||
675.3.g.j | 16 | 45.k | odd | 12 | 1 | ||
675.3.g.j | 16 | 45.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 286 T_{2}^{28} + 65527 T_{2}^{24} - 4481566 T_{2}^{20} + 240112237 T_{2}^{16} + \cdots + 3906250000 \) acting on \(S_{3}^{\mathrm{new}}(405, [\chi])\).