Properties

Label 2-405-45.13-c2-0-11
Degree $2$
Conductor $405$
Sign $0.829 - 0.558i$
Analytic cond. $11.0354$
Root an. cond. $3.32196$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.78 − 0.747i)2-s + (3.75 + 2.16i)4-s + (4.50 − 2.16i)5-s + (−11.5 − 3.08i)7-s + (−0.689 − 0.689i)8-s + (−14.1 + 2.67i)10-s + (6.14 + 10.6i)11-s + (−0.906 + 0.242i)13-s + (29.7 + 17.2i)14-s + (−7.26 − 12.5i)16-s + (7.47 − 7.47i)17-s + 25.0i·19-s + (21.6 + 1.63i)20-s + (−9.19 − 34.3i)22-s + (−24.7 + 6.62i)23-s + ⋯
L(s)  = 1  + (−1.39 − 0.373i)2-s + (0.939 + 0.542i)4-s + (0.901 − 0.433i)5-s + (−1.64 − 0.440i)7-s + (−0.0861 − 0.0861i)8-s + (−1.41 + 0.267i)10-s + (0.559 + 0.968i)11-s + (−0.0697 + 0.0186i)13-s + (2.12 + 1.22i)14-s + (−0.454 − 0.786i)16-s + (0.439 − 0.439i)17-s + 1.31i·19-s + (1.08 + 0.0817i)20-s + (−0.417 − 1.55i)22-s + (−1.07 + 0.288i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(405\)    =    \(3^{4} \cdot 5\)
Sign: $0.829 - 0.558i$
Analytic conductor: \(11.0354\)
Root analytic conductor: \(3.32196\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{405} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 405,\ (\ :1),\ 0.829 - 0.558i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.605287 + 0.184806i\)
\(L(\frac12)\) \(\approx\) \(0.605287 + 0.184806i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-4.50 + 2.16i)T \)
good2 \( 1 + (2.78 + 0.747i)T + (3.46 + 2i)T^{2} \)
7 \( 1 + (11.5 + 3.08i)T + (42.4 + 24.5i)T^{2} \)
11 \( 1 + (-6.14 - 10.6i)T + (-60.5 + 104. i)T^{2} \)
13 \( 1 + (0.906 - 0.242i)T + (146. - 84.5i)T^{2} \)
17 \( 1 + (-7.47 + 7.47i)T - 289iT^{2} \)
19 \( 1 - 25.0iT - 361T^{2} \)
23 \( 1 + (24.7 - 6.62i)T + (458. - 264.5i)T^{2} \)
29 \( 1 + (-2.93 + 1.69i)T + (420.5 - 728. i)T^{2} \)
31 \( 1 + (14.4 - 25.0i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (2.59 - 2.59i)T - 1.36e3iT^{2} \)
41 \( 1 + (-11.6 + 20.2i)T + (-840.5 - 1.45e3i)T^{2} \)
43 \( 1 + (4.25 - 15.8i)T + (-1.60e3 - 924.5i)T^{2} \)
47 \( 1 + (-66.9 - 17.9i)T + (1.91e3 + 1.10e3i)T^{2} \)
53 \( 1 + (-27.6 - 27.6i)T + 2.80e3iT^{2} \)
59 \( 1 + (-75.9 - 43.8i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-39.5 - 68.4i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (16.5 + 61.8i)T + (-3.88e3 + 2.24e3i)T^{2} \)
71 \( 1 - 88.7T + 5.04e3T^{2} \)
73 \( 1 + (-12.8 - 12.8i)T + 5.32e3iT^{2} \)
79 \( 1 + (26.2 - 15.1i)T + (3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (39.3 - 146. i)T + (-5.96e3 - 3.44e3i)T^{2} \)
89 \( 1 - 117. iT - 7.92e3T^{2} \)
97 \( 1 + (18.4 + 4.95i)T + (8.14e3 + 4.70e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55144929404052332813264773234, −9.899923392851399111418571848190, −9.612450868373312103953656999924, −8.749452381513328266262962479610, −7.52030657338129018976874886415, −6.66908509074228979558648074362, −5.57835414664407224491568233979, −3.93154107013278871209404026963, −2.39271503945388637058519075067, −1.11451221735472132082070714393, 0.50852164023672837131803937767, 2.33173025383136963723773207555, 3.62911682802749014112949727448, 5.77944779866146689526283690050, 6.40817416847495903158737957327, 7.14374849718046317119519695641, 8.511559152299154265730521609515, 9.206366999943944182693916447161, 9.818226307062570876736755888349, 10.48963900163497176771473150286

Graph of the $Z$-function along the critical line