L(s) = 1 | + (−2.78 − 0.747i)2-s + (3.75 + 2.16i)4-s + (4.50 − 2.16i)5-s + (−11.5 − 3.08i)7-s + (−0.689 − 0.689i)8-s + (−14.1 + 2.67i)10-s + (6.14 + 10.6i)11-s + (−0.906 + 0.242i)13-s + (29.7 + 17.2i)14-s + (−7.26 − 12.5i)16-s + (7.47 − 7.47i)17-s + 25.0i·19-s + (21.6 + 1.63i)20-s + (−9.19 − 34.3i)22-s + (−24.7 + 6.62i)23-s + ⋯ |
L(s) = 1 | + (−1.39 − 0.373i)2-s + (0.939 + 0.542i)4-s + (0.901 − 0.433i)5-s + (−1.64 − 0.440i)7-s + (−0.0861 − 0.0861i)8-s + (−1.41 + 0.267i)10-s + (0.559 + 0.968i)11-s + (−0.0697 + 0.0186i)13-s + (2.12 + 1.22i)14-s + (−0.454 − 0.786i)16-s + (0.439 − 0.439i)17-s + 1.31i·19-s + (1.08 + 0.0817i)20-s + (−0.417 − 1.55i)22-s + (−1.07 + 0.288i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.829 - 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.605287 + 0.184806i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.605287 + 0.184806i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.50 + 2.16i)T \) |
good | 2 | \( 1 + (2.78 + 0.747i)T + (3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (11.5 + 3.08i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-6.14 - 10.6i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (0.906 - 0.242i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (-7.47 + 7.47i)T - 289iT^{2} \) |
| 19 | \( 1 - 25.0iT - 361T^{2} \) |
| 23 | \( 1 + (24.7 - 6.62i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (-2.93 + 1.69i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (14.4 - 25.0i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (2.59 - 2.59i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-11.6 + 20.2i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (4.25 - 15.8i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (-66.9 - 17.9i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (-27.6 - 27.6i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-75.9 - 43.8i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-39.5 - 68.4i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (16.5 + 61.8i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 - 88.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-12.8 - 12.8i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (26.2 - 15.1i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (39.3 - 146. i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 117. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (18.4 + 4.95i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55144929404052332813264773234, −9.899923392851399111418571848190, −9.612450868373312103953656999924, −8.749452381513328266262962479610, −7.52030657338129018976874886415, −6.66908509074228979558648074362, −5.57835414664407224491568233979, −3.93154107013278871209404026963, −2.39271503945388637058519075067, −1.11451221735472132082070714393,
0.50852164023672837131803937767, 2.33173025383136963723773207555, 3.62911682802749014112949727448, 5.77944779866146689526283690050, 6.40817416847495903158737957327, 7.14374849718046317119519695641, 8.511559152299154265730521609515, 9.206366999943944182693916447161, 9.818226307062570876736755888349, 10.48963900163497176771473150286