Properties

Label 405.2.p.a.289.5
Level $405$
Weight $2$
Character 405.289
Analytic conductor $3.234$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(19,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.p (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.5
Character \(\chi\) \(=\) 405.289
Dual form 405.2.p.a.199.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.831033 + 0.990387i) q^{2} +(0.0570464 + 0.323526i) q^{4} +(0.122729 - 2.23270i) q^{5} +(-0.765094 - 0.134907i) q^{7} +(-2.60712 - 1.50522i) q^{8} +(2.10924 + 1.97700i) q^{10} +(-3.66139 + 1.33264i) q^{11} +(-3.28913 - 3.91983i) q^{13} +(0.769429 - 0.645628i) q^{14} +(3.03995 - 1.10645i) q^{16} +(-3.38295 + 1.95315i) q^{17} +(-1.51356 + 2.62156i) q^{19} +(0.729337 - 0.0876612i) q^{20} +(1.72291 - 4.73366i) q^{22} +(-3.17893 + 0.560532i) q^{23} +(-4.96988 - 0.548034i) q^{25} +6.61553 q^{26} -0.255224i q^{28} +(0.271790 + 0.228059i) q^{29} +(-0.470061 - 2.66585i) q^{31} +(0.628781 - 1.72756i) q^{32} +(0.876974 - 4.97357i) q^{34} +(-0.395105 + 1.69167i) q^{35} +(3.70101 - 2.13678i) q^{37} +(-1.33854 - 3.67761i) q^{38} +(-3.68067 + 5.63618i) q^{40} +(9.24182 - 7.75481i) q^{41} +(0.120519 + 0.331124i) q^{43} +(-0.640012 - 1.10853i) q^{44} +(2.08666 - 3.61420i) q^{46} +(2.58307 + 0.455464i) q^{47} +(-6.01068 - 2.18771i) q^{49} +(4.67290 - 4.46667i) q^{50} +(1.08053 - 1.28773i) q^{52} +9.29215i q^{53} +(2.52602 + 8.33833i) q^{55} +(1.79163 + 1.50335i) q^{56} +(-0.451732 + 0.0796526i) q^{58} +(-12.4304 - 4.52430i) q^{59} +(1.14463 - 6.49154i) q^{61} +(3.03086 + 1.74987i) q^{62} +(4.42346 + 7.66166i) q^{64} +(-9.15547 + 6.86255i) q^{65} +(2.55913 + 3.04985i) q^{67} +(-0.824880 - 0.983053i) q^{68} +(-1.34706 - 1.79714i) q^{70} +(6.06946 + 10.5126i) q^{71} +(-12.2022 - 7.04497i) q^{73} +(-0.959425 + 5.44117i) q^{74} +(-0.934485 - 0.340125i) q^{76} +(2.98109 - 0.525647i) q^{77} +(8.85574 + 7.43085i) q^{79} +(-2.09728 - 6.92307i) q^{80} +15.5975i q^{82} +(3.57428 - 4.25966i) q^{83} +(3.94560 + 7.79282i) q^{85} +(-0.428097 - 0.155815i) q^{86} +(11.5516 + 2.03686i) q^{88} +(2.60530 - 4.51251i) q^{89} +(1.98768 + 3.44277i) q^{91} +(-0.362693 - 0.996492i) q^{92} +(-2.59770 + 2.17973i) q^{94} +(5.66739 + 3.70106i) q^{95} +(2.43160 + 6.68077i) q^{97} +(7.16175 - 4.13484i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} + 9 q^{5} - 3 q^{10} + 6 q^{11} + 18 q^{14} - 24 q^{16} - 6 q^{19} + 57 q^{20} + 3 q^{25} - 48 q^{26} + 30 q^{29} - 30 q^{31} - 24 q^{34} + 12 q^{35} - 9 q^{40} + 12 q^{41} - 78 q^{44} - 6 q^{46}+ \cdots - 87 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.831033 + 0.990387i −0.587629 + 0.700309i −0.975149 0.221552i \(-0.928888\pi\)
0.387519 + 0.921862i \(0.373332\pi\)
\(3\) 0 0
\(4\) 0.0570464 + 0.323526i 0.0285232 + 0.161763i
\(5\) 0.122729 2.23270i 0.0548861 0.998493i
\(6\) 0 0
\(7\) −0.765094 0.134907i −0.289179 0.0509900i 0.0271771 0.999631i \(-0.491348\pi\)
−0.316356 + 0.948641i \(0.602459\pi\)
\(8\) −2.60712 1.50522i −0.921756 0.532176i
\(9\) 0 0
\(10\) 2.10924 + 1.97700i 0.667001 + 0.625181i
\(11\) −3.66139 + 1.33264i −1.10395 + 0.401805i −0.828771 0.559587i \(-0.810960\pi\)
−0.275180 + 0.961393i \(0.588737\pi\)
\(12\) 0 0
\(13\) −3.28913 3.91983i −0.912240 1.08717i −0.995881 0.0906695i \(-0.971099\pi\)
0.0836409 0.996496i \(-0.473345\pi\)
\(14\) 0.769429 0.645628i 0.205639 0.172551i
\(15\) 0 0
\(16\) 3.03995 1.10645i 0.759986 0.276612i
\(17\) −3.38295 + 1.95315i −0.820487 + 0.473708i −0.850584 0.525839i \(-0.823752\pi\)
0.0300976 + 0.999547i \(0.490418\pi\)
\(18\) 0 0
\(19\) −1.51356 + 2.62156i −0.347234 + 0.601427i −0.985757 0.168176i \(-0.946212\pi\)
0.638523 + 0.769603i \(0.279546\pi\)
\(20\) 0.729337 0.0876612i 0.163085 0.0196016i
\(21\) 0 0
\(22\) 1.72291 4.73366i 0.367326 1.00922i
\(23\) −3.17893 + 0.560532i −0.662854 + 0.116879i −0.494946 0.868924i \(-0.664812\pi\)
−0.167908 + 0.985803i \(0.553701\pi\)
\(24\) 0 0
\(25\) −4.96988 0.548034i −0.993975 0.109607i
\(26\) 6.61553 1.29741
\(27\) 0 0
\(28\) 0.255224i 0.0482328i
\(29\) 0.271790 + 0.228059i 0.0504701 + 0.0423494i 0.667674 0.744454i \(-0.267290\pi\)
−0.617204 + 0.786803i \(0.711735\pi\)
\(30\) 0 0
\(31\) −0.470061 2.66585i −0.0844255 0.478801i −0.997479 0.0709611i \(-0.977393\pi\)
0.913054 0.407840i \(-0.133718\pi\)
\(32\) 0.628781 1.72756i 0.111154 0.305393i
\(33\) 0 0
\(34\) 0.876974 4.97357i 0.150400 0.852959i
\(35\) −0.395105 + 1.69167i −0.0667850 + 0.285944i
\(36\) 0 0
\(37\) 3.70101 2.13678i 0.608443 0.351285i −0.163913 0.986475i \(-0.552412\pi\)
0.772356 + 0.635190i \(0.219078\pi\)
\(38\) −1.33854 3.67761i −0.217140 0.596587i
\(39\) 0 0
\(40\) −3.68067 + 5.63618i −0.581966 + 0.891158i
\(41\) 9.24182 7.75481i 1.44333 1.21110i 0.506059 0.862499i \(-0.331102\pi\)
0.937272 0.348599i \(-0.113342\pi\)
\(42\) 0 0
\(43\) 0.120519 + 0.331124i 0.0183790 + 0.0504960i 0.948543 0.316649i \(-0.102558\pi\)
−0.930164 + 0.367145i \(0.880335\pi\)
\(44\) −0.640012 1.10853i −0.0964854 0.167118i
\(45\) 0 0
\(46\) 2.08666 3.61420i 0.307661 0.532884i
\(47\) 2.58307 + 0.455464i 0.376779 + 0.0664363i 0.358831 0.933403i \(-0.383176\pi\)
0.0179481 + 0.999839i \(0.494287\pi\)
\(48\) 0 0
\(49\) −6.01068 2.18771i −0.858668 0.312530i
\(50\) 4.67290 4.46667i 0.660848 0.631682i
\(51\) 0 0
\(52\) 1.08053 1.28773i 0.149843 0.178576i
\(53\) 9.29215i 1.27637i 0.769881 + 0.638187i \(0.220315\pi\)
−0.769881 + 0.638187i \(0.779685\pi\)
\(54\) 0 0
\(55\) 2.52602 + 8.33833i 0.340608 + 1.12434i
\(56\) 1.79163 + 1.50335i 0.239416 + 0.200894i
\(57\) 0 0
\(58\) −0.451732 + 0.0796526i −0.0593154 + 0.0104589i
\(59\) −12.4304 4.52430i −1.61830 0.589014i −0.635245 0.772311i \(-0.719101\pi\)
−0.983058 + 0.183296i \(0.941323\pi\)
\(60\) 0 0
\(61\) 1.14463 6.49154i 0.146555 0.831156i −0.819550 0.573008i \(-0.805777\pi\)
0.966105 0.258148i \(-0.0831123\pi\)
\(62\) 3.03086 + 1.74987i 0.384920 + 0.222233i
\(63\) 0 0
\(64\) 4.42346 + 7.66166i 0.552932 + 0.957707i
\(65\) −9.15547 + 6.86255i −1.13560 + 0.851195i
\(66\) 0 0
\(67\) 2.55913 + 3.04985i 0.312647 + 0.372599i 0.899369 0.437190i \(-0.144026\pi\)
−0.586722 + 0.809789i \(0.699582\pi\)
\(68\) −0.824880 0.983053i −0.100031 0.119213i
\(69\) 0 0
\(70\) −1.34706 1.79714i −0.161004 0.214799i
\(71\) 6.06946 + 10.5126i 0.720312 + 1.24762i 0.960875 + 0.276983i \(0.0893346\pi\)
−0.240563 + 0.970634i \(0.577332\pi\)
\(72\) 0 0
\(73\) −12.2022 7.04497i −1.42816 0.824551i −0.431189 0.902262i \(-0.641906\pi\)
−0.996976 + 0.0777105i \(0.975239\pi\)
\(74\) −0.959425 + 5.44117i −0.111531 + 0.632523i
\(75\) 0 0
\(76\) −0.934485 0.340125i −0.107193 0.0390150i
\(77\) 2.98109 0.525647i 0.339727 0.0599030i
\(78\) 0 0
\(79\) 8.85574 + 7.43085i 0.996349 + 0.836036i 0.986474 0.163916i \(-0.0524125\pi\)
0.00987418 + 0.999951i \(0.496857\pi\)
\(80\) −2.09728 6.92307i −0.234483 0.774023i
\(81\) 0 0
\(82\) 15.5975i 1.72245i
\(83\) 3.57428 4.25966i 0.392328 0.467558i −0.533337 0.845903i \(-0.679062\pi\)
0.925665 + 0.378345i \(0.123507\pi\)
\(84\) 0 0
\(85\) 3.94560 + 7.79282i 0.427961 + 0.845250i
\(86\) −0.428097 0.155815i −0.0461629 0.0168019i
\(87\) 0 0
\(88\) 11.5516 + 2.03686i 1.23141 + 0.217130i
\(89\) 2.60530 4.51251i 0.276161 0.478325i −0.694266 0.719718i \(-0.744271\pi\)
0.970427 + 0.241393i \(0.0776044\pi\)
\(90\) 0 0
\(91\) 1.98768 + 3.44277i 0.208366 + 0.360900i
\(92\) −0.362693 0.996492i −0.0378134 0.103891i
\(93\) 0 0
\(94\) −2.59770 + 2.17973i −0.267932 + 0.224822i
\(95\) 5.66739 + 3.70106i 0.581462 + 0.379720i
\(96\) 0 0
\(97\) 2.43160 + 6.68077i 0.246892 + 0.678330i 0.999796 + 0.0201995i \(0.00643015\pi\)
−0.752904 + 0.658130i \(0.771348\pi\)
\(98\) 7.16175 4.13484i 0.723446 0.417682i
\(99\) 0 0
\(100\) −0.106210 1.63915i −0.0106210 0.163915i
\(101\) −0.306182 + 1.73645i −0.0304663 + 0.172783i −0.996244 0.0865873i \(-0.972404\pi\)
0.965778 + 0.259370i \(0.0835150\pi\)
\(102\) 0 0
\(103\) −6.55464 + 18.0087i −0.645848 + 1.77445i −0.0133237 + 0.999911i \(0.504241\pi\)
−0.632524 + 0.774541i \(0.717981\pi\)
\(104\) 2.67494 + 15.1703i 0.262299 + 1.48757i
\(105\) 0 0
\(106\) −9.20282 7.72208i −0.893857 0.750035i
\(107\) 5.51306i 0.532968i −0.963839 0.266484i \(-0.914138\pi\)
0.963839 0.266484i \(-0.0858619\pi\)
\(108\) 0 0
\(109\) −14.2674 −1.36657 −0.683287 0.730150i \(-0.739450\pi\)
−0.683287 + 0.730150i \(0.739450\pi\)
\(110\) −10.3574 4.42770i −0.987538 0.422165i
\(111\) 0 0
\(112\) −2.47511 + 0.436429i −0.233876 + 0.0412387i
\(113\) −2.12228 + 5.83093i −0.199648 + 0.548527i −0.998602 0.0528647i \(-0.983165\pi\)
0.798954 + 0.601392i \(0.205387\pi\)
\(114\) 0 0
\(115\) 0.861350 + 7.16639i 0.0803213 + 0.668269i
\(116\) −0.0582783 + 0.100941i −0.00541100 + 0.00937213i
\(117\) 0 0
\(118\) 14.8109 8.55108i 1.36345 0.787191i
\(119\) 2.85177 1.03796i 0.261421 0.0951496i
\(120\) 0 0
\(121\) 3.20338 2.68795i 0.291216 0.244359i
\(122\) 5.47790 + 6.52831i 0.495946 + 0.591046i
\(123\) 0 0
\(124\) 0.835656 0.304154i 0.0750442 0.0273138i
\(125\) −1.83354 + 11.0290i −0.163997 + 0.986461i
\(126\) 0 0
\(127\) −10.4623 6.04043i −0.928382 0.536002i −0.0420828 0.999114i \(-0.513399\pi\)
−0.886300 + 0.463112i \(0.846733\pi\)
\(128\) −7.64304 1.34767i −0.675556 0.119119i
\(129\) 0 0
\(130\) 0.811917 14.7705i 0.0712099 1.29546i
\(131\) −0.140206 0.795145i −0.0122498 0.0694722i 0.978070 0.208276i \(-0.0667853\pi\)
−0.990320 + 0.138804i \(0.955674\pi\)
\(132\) 0 0
\(133\) 1.51168 1.80155i 0.131079 0.156214i
\(134\) −5.14726 −0.444655
\(135\) 0 0
\(136\) 11.7597 1.00838
\(137\) −0.458752 + 0.546720i −0.0391939 + 0.0467094i −0.785285 0.619134i \(-0.787484\pi\)
0.746091 + 0.665844i \(0.231928\pi\)
\(138\) 0 0
\(139\) −2.29439 13.0121i −0.194607 1.10367i −0.912977 0.408011i \(-0.866222\pi\)
0.718370 0.695662i \(-0.244889\pi\)
\(140\) −0.569838 0.0313234i −0.0481601 0.00264731i
\(141\) 0 0
\(142\) −15.4555 2.72522i −1.29699 0.228695i
\(143\) 17.2665 + 9.96882i 1.44390 + 0.833635i
\(144\) 0 0
\(145\) 0.542542 0.578834i 0.0450557 0.0480696i
\(146\) 17.1177 6.23034i 1.41667 0.515627i
\(147\) 0 0
\(148\) 0.902433 + 1.07548i 0.0741796 + 0.0884038i
\(149\) 4.06706 3.41267i 0.333187 0.279577i −0.460810 0.887499i \(-0.652441\pi\)
0.793997 + 0.607922i \(0.207997\pi\)
\(150\) 0 0
\(151\) 5.48224 1.99537i 0.446138 0.162381i −0.109174 0.994023i \(-0.534821\pi\)
0.555313 + 0.831641i \(0.312598\pi\)
\(152\) 7.89205 4.55648i 0.640130 0.369579i
\(153\) 0 0
\(154\) −1.95679 + 3.38927i −0.157683 + 0.273115i
\(155\) −6.00973 + 0.722327i −0.482713 + 0.0580187i
\(156\) 0 0
\(157\) −0.552860 + 1.51897i −0.0441230 + 0.121227i −0.959797 0.280694i \(-0.909435\pi\)
0.915674 + 0.401921i \(0.131657\pi\)
\(158\) −14.7188 + 2.59533i −1.17097 + 0.206473i
\(159\) 0 0
\(160\) −3.77995 1.61590i −0.298832 0.127748i
\(161\) 2.50780 0.197643
\(162\) 0 0
\(163\) 3.19497i 0.250249i −0.992141 0.125125i \(-0.960067\pi\)
0.992141 0.125125i \(-0.0399331\pi\)
\(164\) 3.03610 + 2.54759i 0.237079 + 0.198933i
\(165\) 0 0
\(166\) 1.24837 + 7.07983i 0.0968920 + 0.549502i
\(167\) 1.88938 5.19103i 0.146205 0.401694i −0.844875 0.534963i \(-0.820325\pi\)
0.991080 + 0.133270i \(0.0425476\pi\)
\(168\) 0 0
\(169\) −2.28928 + 12.9832i −0.176099 + 0.998704i
\(170\) −10.9968 2.56842i −0.843419 0.196989i
\(171\) 0 0
\(172\) −0.100252 + 0.0578806i −0.00764415 + 0.00441335i
\(173\) −3.64550 10.0159i −0.277162 0.761497i −0.997681 0.0680619i \(-0.978318\pi\)
0.720519 0.693435i \(-0.243904\pi\)
\(174\) 0 0
\(175\) 3.72849 + 1.08977i 0.281847 + 0.0823787i
\(176\) −9.65594 + 8.10229i −0.727844 + 0.610733i
\(177\) 0 0
\(178\) 2.30404 + 6.33030i 0.172695 + 0.474476i
\(179\) −7.01872 12.1568i −0.524604 0.908640i −0.999590 0.0286466i \(-0.990880\pi\)
0.474986 0.879993i \(-0.342453\pi\)
\(180\) 0 0
\(181\) 7.75754 13.4365i 0.576613 0.998723i −0.419251 0.907870i \(-0.637707\pi\)
0.995864 0.0908531i \(-0.0289594\pi\)
\(182\) −5.06150 0.892479i −0.375183 0.0661550i
\(183\) 0 0
\(184\) 9.13159 + 3.32363i 0.673190 + 0.245021i
\(185\) −4.31656 8.52549i −0.317360 0.626806i
\(186\) 0 0
\(187\) 9.78348 11.6595i 0.715439 0.852627i
\(188\) 0.861671i 0.0628438i
\(189\) 0 0
\(190\) −8.37527 + 2.53721i −0.607606 + 0.184068i
\(191\) −3.34632 2.80790i −0.242131 0.203172i 0.513644 0.858004i \(-0.328295\pi\)
−0.755775 + 0.654831i \(0.772740\pi\)
\(192\) 0 0
\(193\) −3.24089 + 0.571456i −0.233284 + 0.0411343i −0.289068 0.957309i \(-0.593345\pi\)
0.0557838 + 0.998443i \(0.482234\pi\)
\(194\) −8.63729 3.14372i −0.620122 0.225706i
\(195\) 0 0
\(196\) 0.364893 2.06941i 0.0260638 0.147815i
\(197\) −18.5561 10.7134i −1.32207 0.763297i −0.338011 0.941142i \(-0.609754\pi\)
−0.984059 + 0.177845i \(0.943087\pi\)
\(198\) 0 0
\(199\) −7.03013 12.1765i −0.498353 0.863172i 0.501645 0.865073i \(-0.332728\pi\)
−0.999998 + 0.00190098i \(0.999395\pi\)
\(200\) 12.1321 + 8.90955i 0.857872 + 0.630000i
\(201\) 0 0
\(202\) −1.46531 1.74628i −0.103099 0.122868i
\(203\) −0.177178 0.211153i −0.0124355 0.0148200i
\(204\) 0 0
\(205\) −16.1799 21.5859i −1.13005 1.50763i
\(206\) −12.3885 21.4575i −0.863146 1.49501i
\(207\) 0 0
\(208\) −14.3359 8.27682i −0.994014 0.573894i
\(209\) 2.04814 11.6156i 0.141673 0.803466i
\(210\) 0 0
\(211\) 3.90781 + 1.42233i 0.269025 + 0.0979170i 0.473010 0.881057i \(-0.343167\pi\)
−0.203986 + 0.978974i \(0.565390\pi\)
\(212\) −3.00625 + 0.530083i −0.206470 + 0.0364063i
\(213\) 0 0
\(214\) 5.46007 + 4.58154i 0.373242 + 0.313188i
\(215\) 0.754092 0.228445i 0.0514286 0.0155798i
\(216\) 0 0
\(217\) 2.10304i 0.142764i
\(218\) 11.8567 14.1303i 0.803039 0.957024i
\(219\) 0 0
\(220\) −2.55357 + 1.29290i −0.172162 + 0.0871676i
\(221\) 18.7830 + 6.83645i 1.26348 + 0.459869i
\(222\) 0 0
\(223\) 16.3593 + 2.88459i 1.09550 + 0.193167i 0.692061 0.721839i \(-0.256703\pi\)
0.403441 + 0.915006i \(0.367814\pi\)
\(224\) −0.714137 + 1.23692i −0.0477153 + 0.0826453i
\(225\) 0 0
\(226\) −4.01118 6.94758i −0.266820 0.462146i
\(227\) 1.81156 + 4.97722i 0.120238 + 0.330350i 0.985181 0.171520i \(-0.0548678\pi\)
−0.864943 + 0.501870i \(0.832646\pi\)
\(228\) 0 0
\(229\) 15.6135 13.1012i 1.03177 0.865754i 0.0407059 0.999171i \(-0.487039\pi\)
0.991060 + 0.133417i \(0.0425949\pi\)
\(230\) −7.81331 5.10244i −0.515195 0.336445i
\(231\) 0 0
\(232\) −0.365309 1.00368i −0.0239837 0.0658948i
\(233\) −1.06238 + 0.613363i −0.0695985 + 0.0401827i −0.534395 0.845235i \(-0.679461\pi\)
0.464797 + 0.885417i \(0.346127\pi\)
\(234\) 0 0
\(235\) 1.33393 5.71130i 0.0870160 0.372564i
\(236\) 0.754619 4.27966i 0.0491215 0.278582i
\(237\) 0 0
\(238\) −1.34194 + 3.68694i −0.0869848 + 0.238989i
\(239\) 2.66890 + 15.1361i 0.172637 + 0.979073i 0.940836 + 0.338862i \(0.110042\pi\)
−0.768199 + 0.640211i \(0.778847\pi\)
\(240\) 0 0
\(241\) 14.2379 + 11.9470i 0.917146 + 0.769577i 0.973465 0.228836i \(-0.0734920\pi\)
−0.0563190 + 0.998413i \(0.517936\pi\)
\(242\) 5.40637i 0.347534i
\(243\) 0 0
\(244\) 2.16548 0.138630
\(245\) −5.62218 + 13.1515i −0.359188 + 0.840221i
\(246\) 0 0
\(247\) 15.2543 2.68975i 0.970611 0.171145i
\(248\) −2.78719 + 7.65774i −0.176987 + 0.486267i
\(249\) 0 0
\(250\) −9.39921 10.9814i −0.594458 0.694522i
\(251\) −3.10032 + 5.36991i −0.195691 + 0.338946i −0.947127 0.320860i \(-0.896028\pi\)
0.751436 + 0.659806i \(0.229361\pi\)
\(252\) 0 0
\(253\) 10.8923 6.28869i 0.684795 0.395367i
\(254\) 14.6769 5.34196i 0.920912 0.335185i
\(255\) 0 0
\(256\) −5.86792 + 4.92377i −0.366745 + 0.307736i
\(257\) −12.7173 15.1559i −0.793285 0.945401i 0.206166 0.978517i \(-0.433901\pi\)
−0.999452 + 0.0331163i \(0.989457\pi\)
\(258\) 0 0
\(259\) −3.11989 + 1.13555i −0.193861 + 0.0705595i
\(260\) −2.74250 2.57055i −0.170083 0.159419i
\(261\) 0 0
\(262\) 0.904017 + 0.521935i 0.0558504 + 0.0322452i
\(263\) 16.7623 + 2.95564i 1.03360 + 0.182252i 0.664619 0.747183i \(-0.268594\pi\)
0.368986 + 0.929435i \(0.379705\pi\)
\(264\) 0 0
\(265\) 20.7465 + 1.14042i 1.27445 + 0.0700552i
\(266\) 0.527975 + 2.99430i 0.0323722 + 0.183592i
\(267\) 0 0
\(268\) −0.840718 + 1.00193i −0.0513550 + 0.0612025i
\(269\) −6.07723 −0.370535 −0.185268 0.982688i \(-0.559315\pi\)
−0.185268 + 0.982688i \(0.559315\pi\)
\(270\) 0 0
\(271\) −30.8933 −1.87664 −0.938318 0.345774i \(-0.887617\pi\)
−0.938318 + 0.345774i \(0.887617\pi\)
\(272\) −8.12293 + 9.68054i −0.492525 + 0.586969i
\(273\) 0 0
\(274\) −0.160226 0.908685i −0.00967958 0.0548956i
\(275\) 18.9270 4.61648i 1.14134 0.278384i
\(276\) 0 0
\(277\) −24.3118 4.28682i −1.46075 0.257570i −0.613895 0.789388i \(-0.710398\pi\)
−0.846859 + 0.531818i \(0.821509\pi\)
\(278\) 14.7937 + 8.54117i 0.887269 + 0.512265i
\(279\) 0 0
\(280\) 3.57642 3.81566i 0.213732 0.228029i
\(281\) −16.7164 + 6.08427i −0.997216 + 0.362957i −0.788510 0.615022i \(-0.789147\pi\)
−0.208706 + 0.977979i \(0.566925\pi\)
\(282\) 0 0
\(283\) 1.86958 + 2.22808i 0.111135 + 0.132446i 0.818744 0.574158i \(-0.194671\pi\)
−0.707609 + 0.706604i \(0.750226\pi\)
\(284\) −3.05486 + 2.56333i −0.181273 + 0.152106i
\(285\) 0 0
\(286\) −24.2220 + 8.81610i −1.43228 + 0.521307i
\(287\) −8.11705 + 4.68638i −0.479134 + 0.276628i
\(288\) 0 0
\(289\) −0.870418 + 1.50761i −0.0512011 + 0.0886828i
\(290\) 0.122399 + 1.01836i 0.00718755 + 0.0598000i
\(291\) 0 0
\(292\) 1.58314 4.34963i 0.0926461 0.254543i
\(293\) −6.09217 + 1.07421i −0.355908 + 0.0627563i −0.348744 0.937218i \(-0.613392\pi\)
−0.00716458 + 0.999974i \(0.502281\pi\)
\(294\) 0 0
\(295\) −11.6270 + 27.1981i −0.676949 + 1.58353i
\(296\) −12.8653 −0.747781
\(297\) 0 0
\(298\) 6.86401i 0.397621i
\(299\) 12.6531 + 10.6172i 0.731748 + 0.614010i
\(300\) 0 0
\(301\) −0.0475378 0.269600i −0.00274003 0.0155395i
\(302\) −2.57973 + 7.08776i −0.148447 + 0.407855i
\(303\) 0 0
\(304\) −1.70051 + 9.64407i −0.0975309 + 0.553125i
\(305\) −14.3532 3.35232i −0.821859 0.191953i
\(306\) 0 0
\(307\) 24.1159 13.9233i 1.37637 0.794645i 0.384646 0.923064i \(-0.374324\pi\)
0.991720 + 0.128419i \(0.0409903\pi\)
\(308\) 0.340121 + 0.934475i 0.0193802 + 0.0532466i
\(309\) 0 0
\(310\) 4.27890 6.55223i 0.243025 0.372142i
\(311\) −13.2628 + 11.1288i −0.752062 + 0.631055i −0.936047 0.351874i \(-0.885544\pi\)
0.183986 + 0.982929i \(0.441100\pi\)
\(312\) 0 0
\(313\) 3.42361 + 9.40628i 0.193514 + 0.531675i 0.998063 0.0622113i \(-0.0198153\pi\)
−0.804549 + 0.593886i \(0.797593\pi\)
\(314\) −1.04492 1.80986i −0.0589684 0.102136i
\(315\) 0 0
\(316\) −1.89888 + 3.28897i −0.106821 + 0.185019i
\(317\) 7.89475 + 1.39206i 0.443413 + 0.0781857i 0.390897 0.920434i \(-0.372165\pi\)
0.0525162 + 0.998620i \(0.483276\pi\)
\(318\) 0 0
\(319\) −1.29905 0.472815i −0.0727327 0.0264725i
\(320\) 17.6490 8.93594i 0.986612 0.499534i
\(321\) 0 0
\(322\) −2.08407 + 2.48370i −0.116141 + 0.138411i
\(323\) 11.8248i 0.657950i
\(324\) 0 0
\(325\) 14.1984 + 21.2836i 0.787583 + 1.18060i
\(326\) 3.16426 + 2.65513i 0.175252 + 0.147054i
\(327\) 0 0
\(328\) −35.7673 + 6.30673i −1.97492 + 0.348231i
\(329\) −1.91484 0.696946i −0.105569 0.0384239i
\(330\) 0 0
\(331\) −4.48752 + 25.4500i −0.246656 + 1.39886i 0.569958 + 0.821674i \(0.306959\pi\)
−0.816615 + 0.577183i \(0.804152\pi\)
\(332\) 1.58201 + 0.913374i 0.0868240 + 0.0501279i
\(333\) 0 0
\(334\) 3.57099 + 6.18513i 0.195396 + 0.338435i
\(335\) 7.12348 5.33946i 0.389197 0.291726i
\(336\) 0 0
\(337\) −12.6980 15.1328i −0.691702 0.824338i 0.299859 0.953984i \(-0.403060\pi\)
−0.991560 + 0.129646i \(0.958616\pi\)
\(338\) −10.9559 13.0567i −0.595921 0.710191i
\(339\) 0 0
\(340\) −2.29610 + 1.72106i −0.124523 + 0.0933374i
\(341\) 5.27369 + 9.13430i 0.285586 + 0.494650i
\(342\) 0 0
\(343\) 9.01329 + 5.20383i 0.486672 + 0.280980i
\(344\) 0.184207 1.04469i 0.00993177 0.0563259i
\(345\) 0 0
\(346\) 12.9492 + 4.71312i 0.696153 + 0.253379i
\(347\) 24.8142 4.37541i 1.33210 0.234884i 0.538138 0.842857i \(-0.319128\pi\)
0.793958 + 0.607973i \(0.208017\pi\)
\(348\) 0 0
\(349\) −22.8639 19.1851i −1.22388 1.02695i −0.998613 0.0526561i \(-0.983231\pi\)
−0.225263 0.974298i \(-0.572324\pi\)
\(350\) −4.17779 + 2.78702i −0.223312 + 0.148972i
\(351\) 0 0
\(352\) 7.16322i 0.381801i
\(353\) 8.34269 9.94244i 0.444037 0.529182i −0.496880 0.867819i \(-0.665521\pi\)
0.940917 + 0.338637i \(0.109966\pi\)
\(354\) 0 0
\(355\) 24.2164 12.2611i 1.28527 0.650749i
\(356\) 1.60854 + 0.585459i 0.0852523 + 0.0310293i
\(357\) 0 0
\(358\) 17.8727 + 3.15144i 0.944602 + 0.166559i
\(359\) 6.77215 11.7297i 0.357421 0.619071i −0.630109 0.776507i \(-0.716990\pi\)
0.987529 + 0.157436i \(0.0503230\pi\)
\(360\) 0 0
\(361\) 4.91829 + 8.51873i 0.258857 + 0.448354i
\(362\) 6.86051 + 18.8491i 0.360581 + 0.990687i
\(363\) 0 0
\(364\) −1.00043 + 0.839464i −0.0524370 + 0.0439999i
\(365\) −17.2269 + 26.3793i −0.901695 + 1.38076i
\(366\) 0 0
\(367\) 8.56238 + 23.5250i 0.446953 + 1.22799i 0.934835 + 0.355083i \(0.115547\pi\)
−0.487882 + 0.872910i \(0.662230\pi\)
\(368\) −9.04359 + 5.22132i −0.471430 + 0.272180i
\(369\) 0 0
\(370\) 12.0307 + 2.80990i 0.625448 + 0.146080i
\(371\) 1.25357 7.10937i 0.0650823 0.369100i
\(372\) 0 0
\(373\) −0.713033 + 1.95904i −0.0369195 + 0.101435i −0.956783 0.290804i \(-0.906077\pi\)
0.919863 + 0.392239i \(0.128299\pi\)
\(374\) 3.41702 + 19.3789i 0.176690 + 1.00206i
\(375\) 0 0
\(376\) −6.04879 5.07553i −0.311942 0.261751i
\(377\) 1.81548i 0.0935021i
\(378\) 0 0
\(379\) −9.13522 −0.469245 −0.234622 0.972087i \(-0.575385\pi\)
−0.234622 + 0.972087i \(0.575385\pi\)
\(380\) −0.874084 + 2.04468i −0.0448396 + 0.104890i
\(381\) 0 0
\(382\) 5.56181 0.980698i 0.284567 0.0501769i
\(383\) −3.49449 + 9.60103i −0.178560 + 0.490590i −0.996392 0.0848669i \(-0.972953\pi\)
0.817832 + 0.575457i \(0.195176\pi\)
\(384\) 0 0
\(385\) −0.807744 6.72039i −0.0411664 0.342503i
\(386\) 2.12732 3.68463i 0.108278 0.187543i
\(387\) 0 0
\(388\) −2.02269 + 1.16780i −0.102687 + 0.0592861i
\(389\) −16.4031 + 5.97024i −0.831670 + 0.302703i −0.722544 0.691325i \(-0.757027\pi\)
−0.109126 + 0.994028i \(0.534805\pi\)
\(390\) 0 0
\(391\) 9.65938 8.10519i 0.488496 0.409897i
\(392\) 12.3776 + 14.7510i 0.625162 + 0.745039i
\(393\) 0 0
\(394\) 26.0312 9.47457i 1.31143 0.477322i
\(395\) 17.6777 18.8602i 0.889461 0.948960i
\(396\) 0 0
\(397\) 11.4657 + 6.61971i 0.575445 + 0.332233i 0.759321 0.650716i \(-0.225531\pi\)
−0.183876 + 0.982949i \(0.558864\pi\)
\(398\) 17.9018 + 3.15656i 0.897334 + 0.158224i
\(399\) 0 0
\(400\) −15.7145 + 3.83292i −0.785726 + 0.191646i
\(401\) −6.80556 38.5962i −0.339853 1.92740i −0.372717 0.927945i \(-0.621574\pi\)
0.0328639 0.999460i \(-0.489537\pi\)
\(402\) 0 0
\(403\) −8.90359 + 10.6109i −0.443519 + 0.528566i
\(404\) −0.579252 −0.0288189
\(405\) 0 0
\(406\) 0.356364 0.0176860
\(407\) −10.7033 + 12.7557i −0.530543 + 0.632277i
\(408\) 0 0
\(409\) 3.44309 + 19.5268i 0.170250 + 0.965536i 0.943485 + 0.331416i \(0.107526\pi\)
−0.773235 + 0.634120i \(0.781363\pi\)
\(410\) 34.8245 + 1.91427i 1.71986 + 0.0945388i
\(411\) 0 0
\(412\) −6.20021 1.09326i −0.305462 0.0538612i
\(413\) 8.90009 + 5.13847i 0.437945 + 0.252847i
\(414\) 0 0
\(415\) −9.07186 8.50306i −0.445320 0.417399i
\(416\) −8.83989 + 3.21746i −0.433411 + 0.157749i
\(417\) 0 0
\(418\) 9.80184 + 11.6814i 0.479424 + 0.571355i
\(419\) 20.8598 17.5035i 1.01907 0.855101i 0.0295598 0.999563i \(-0.490589\pi\)
0.989510 + 0.144462i \(0.0461450\pi\)
\(420\) 0 0
\(421\) −2.12407 + 0.773098i −0.103521 + 0.0376785i −0.393261 0.919427i \(-0.628653\pi\)
0.289740 + 0.957105i \(0.406431\pi\)
\(422\) −4.65617 + 2.68824i −0.226659 + 0.130862i
\(423\) 0 0
\(424\) 13.9867 24.2257i 0.679256 1.17651i
\(425\) 17.8832 7.85293i 0.867465 0.380923i
\(426\) 0 0
\(427\) −1.75150 + 4.81222i −0.0847612 + 0.232880i
\(428\) 1.78362 0.314500i 0.0862145 0.0152019i
\(429\) 0 0
\(430\) −0.400427 + 0.936688i −0.0193103 + 0.0451711i
\(431\) −9.69510 −0.466996 −0.233498 0.972357i \(-0.575017\pi\)
−0.233498 + 0.972357i \(0.575017\pi\)
\(432\) 0 0
\(433\) 32.3437i 1.55434i −0.629292 0.777169i \(-0.716655\pi\)
0.629292 0.777169i \(-0.283345\pi\)
\(434\) −2.08282 1.74770i −0.0999788 0.0838922i
\(435\) 0 0
\(436\) −0.813906 4.61589i −0.0389790 0.221061i
\(437\) 3.34203 9.18216i 0.159871 0.439242i
\(438\) 0 0
\(439\) 1.71544 9.72872i 0.0818733 0.464327i −0.916114 0.400917i \(-0.868692\pi\)
0.997988 0.0634094i \(-0.0201974\pi\)
\(440\) 5.96541 25.5413i 0.284390 1.21763i
\(441\) 0 0
\(442\) −22.3800 + 12.9211i −1.06451 + 0.614594i
\(443\) −8.94805 24.5846i −0.425135 1.16805i −0.948732 0.316082i \(-0.897632\pi\)
0.523597 0.851966i \(-0.324590\pi\)
\(444\) 0 0
\(445\) −9.75532 6.37066i −0.462446 0.301998i
\(446\) −16.4520 + 13.8049i −0.779025 + 0.653680i
\(447\) 0 0
\(448\) −2.35075 6.45865i −0.111063 0.305142i
\(449\) 8.04462 + 13.9337i 0.379649 + 0.657572i 0.991011 0.133779i \(-0.0427113\pi\)
−0.611362 + 0.791351i \(0.709378\pi\)
\(450\) 0 0
\(451\) −23.5036 + 40.7094i −1.10674 + 1.91693i
\(452\) −2.00752 0.353981i −0.0944260 0.0166499i
\(453\) 0 0
\(454\) −6.43484 2.34209i −0.302002 0.109920i
\(455\) 7.93060 4.01537i 0.371792 0.188243i
\(456\) 0 0
\(457\) 19.5646 23.3162i 0.915193 1.09068i −0.0803867 0.996764i \(-0.525616\pi\)
0.995580 0.0939208i \(-0.0299400\pi\)
\(458\) 26.3509i 1.23130i
\(459\) 0 0
\(460\) −2.26938 + 0.687486i −0.105810 + 0.0320542i
\(461\) −12.5270 10.5114i −0.583438 0.489563i 0.302636 0.953106i \(-0.402133\pi\)
−0.886074 + 0.463543i \(0.846578\pi\)
\(462\) 0 0
\(463\) 7.19625 1.26889i 0.334438 0.0589705i −0.00390751 0.999992i \(-0.501244\pi\)
0.338346 + 0.941022i \(0.390133\pi\)
\(464\) 1.07856 + 0.392564i 0.0500709 + 0.0182243i
\(465\) 0 0
\(466\) 0.275403 1.56189i 0.0127578 0.0723531i
\(467\) 8.71268 + 5.03027i 0.403175 + 0.232773i 0.687853 0.725850i \(-0.258553\pi\)
−0.284678 + 0.958623i \(0.591887\pi\)
\(468\) 0 0
\(469\) −1.54653 2.67867i −0.0714121 0.123689i
\(470\) 4.54786 + 6.06739i 0.209777 + 0.279868i
\(471\) 0 0
\(472\) 25.5975 + 30.5059i 1.17822 + 1.40415i
\(473\) −0.882537 1.05177i −0.0405791 0.0483603i
\(474\) 0 0
\(475\) 8.95889 12.1993i 0.411062 0.559744i
\(476\) 0.498490 + 0.863411i 0.0228483 + 0.0395744i
\(477\) 0 0
\(478\) −17.2085 9.93536i −0.787100 0.454433i
\(479\) 1.39286 7.89931i 0.0636415 0.360929i −0.936311 0.351172i \(-0.885783\pi\)
0.999952 0.00975657i \(-0.00310566\pi\)
\(480\) 0 0
\(481\) −20.5489 7.47920i −0.936950 0.341022i
\(482\) −23.6644 + 4.17267i −1.07788 + 0.190060i
\(483\) 0 0
\(484\) 1.05236 + 0.883038i 0.0478347 + 0.0401381i
\(485\) 15.2146 4.60911i 0.690858 0.209289i
\(486\) 0 0
\(487\) 1.30014i 0.0589151i 0.999566 + 0.0294575i \(0.00937799\pi\)
−0.999566 + 0.0294575i \(0.990622\pi\)
\(488\) −12.7554 + 15.2013i −0.577409 + 0.688130i
\(489\) 0 0
\(490\) −8.35289 16.4975i −0.377345 0.745281i
\(491\) −10.4561 3.80573i −0.471879 0.171750i 0.0951242 0.995465i \(-0.469675\pi\)
−0.567003 + 0.823715i \(0.691897\pi\)
\(492\) 0 0
\(493\) −1.36488 0.240666i −0.0614713 0.0108390i
\(494\) −10.0130 + 17.3430i −0.450505 + 0.780298i
\(495\) 0 0
\(496\) −4.37859 7.58394i −0.196604 0.340529i
\(497\) −3.22548 8.86195i −0.144683 0.397513i
\(498\) 0 0
\(499\) −13.6131 + 11.4227i −0.609404 + 0.511351i −0.894453 0.447162i \(-0.852435\pi\)
0.285049 + 0.958513i \(0.407990\pi\)
\(500\) −3.67275 + 0.0359640i −0.164251 + 0.00160836i
\(501\) 0 0
\(502\) −2.74182 7.53309i −0.122374 0.336218i
\(503\) 11.2798 6.51241i 0.502942 0.290374i −0.226985 0.973898i \(-0.572887\pi\)
0.729928 + 0.683524i \(0.239554\pi\)
\(504\) 0 0
\(505\) 3.83938 + 0.896725i 0.170850 + 0.0399037i
\(506\) −2.82366 + 16.0137i −0.125527 + 0.711898i
\(507\) 0 0
\(508\) 1.35740 3.72942i 0.0602248 0.165466i
\(509\) −3.60691 20.4558i −0.159873 0.906687i −0.954194 0.299188i \(-0.903284\pi\)
0.794321 0.607499i \(-0.207827\pi\)
\(510\) 0 0
\(511\) 8.38545 + 7.03623i 0.370951 + 0.311265i
\(512\) 25.4252i 1.12365i
\(513\) 0 0
\(514\) 25.5788 1.12823
\(515\) 39.4036 + 16.8447i 1.73633 + 0.742267i
\(516\) 0 0
\(517\) −10.0646 + 1.77466i −0.442640 + 0.0780493i
\(518\) 1.46810 4.03358i 0.0645047 0.177225i
\(519\) 0 0
\(520\) 34.1991 4.11049i 1.49973 0.180257i
\(521\) −12.5826 + 21.7937i −0.551255 + 0.954801i 0.446930 + 0.894569i \(0.352517\pi\)
−0.998184 + 0.0602320i \(0.980816\pi\)
\(522\) 0 0
\(523\) −21.4096 + 12.3608i −0.936177 + 0.540502i −0.888760 0.458373i \(-0.848432\pi\)
−0.0474173 + 0.998875i \(0.515099\pi\)
\(524\) 0.249252 0.0907203i 0.0108886 0.00396313i
\(525\) 0 0
\(526\) −16.8572 + 14.1449i −0.735010 + 0.616746i
\(527\) 6.79700 + 8.10034i 0.296082 + 0.352857i
\(528\) 0 0
\(529\) −11.8215 + 4.30268i −0.513978 + 0.187073i
\(530\) −18.3705 + 19.5994i −0.797965 + 0.851343i
\(531\) 0 0
\(532\) 0.669084 + 0.386296i 0.0290085 + 0.0167481i
\(533\) −60.7951 10.7198i −2.63333 0.464327i
\(534\) 0 0
\(535\) −12.3090 0.676613i −0.532165 0.0292525i
\(536\) −2.08126 11.8034i −0.0898966 0.509829i
\(537\) 0 0
\(538\) 5.05038 6.01881i 0.217737 0.259489i
\(539\) 24.9229 1.07350
\(540\) 0 0
\(541\) 16.9208 0.727482 0.363741 0.931500i \(-0.381499\pi\)
0.363741 + 0.931500i \(0.381499\pi\)
\(542\) 25.6734 30.5964i 1.10277 1.31423i
\(543\) 0 0
\(544\) 1.24705 + 7.07237i 0.0534668 + 0.303225i
\(545\) −1.75103 + 31.8549i −0.0750059 + 1.36451i
\(546\) 0 0
\(547\) 1.40276 + 0.247344i 0.0599776 + 0.0105757i 0.203556 0.979063i \(-0.434750\pi\)
−0.143579 + 0.989639i \(0.545861\pi\)
\(548\) −0.203048 0.117230i −0.00867379 0.00500781i
\(549\) 0 0
\(550\) −11.1569 + 22.5815i −0.475730 + 0.962878i
\(551\) −1.00924 + 0.367332i −0.0429950 + 0.0156489i
\(552\) 0 0
\(553\) −5.77301 6.88000i −0.245493 0.292567i
\(554\) 24.4495 20.5156i 1.03876 0.871624i
\(555\) 0 0
\(556\) 4.07887 1.48459i 0.172983 0.0629605i
\(557\) 8.38178 4.83922i 0.355147 0.205044i −0.311803 0.950147i \(-0.600933\pi\)
0.666950 + 0.745102i \(0.267599\pi\)
\(558\) 0 0
\(559\) 0.901548 1.56153i 0.0381314 0.0660455i
\(560\) 0.670646 + 5.57974i 0.0283400 + 0.235787i
\(561\) 0 0
\(562\) 7.86609 21.6119i 0.331811 0.911644i
\(563\) −37.5918 + 6.62845i −1.58431 + 0.279356i −0.895322 0.445420i \(-0.853055\pi\)
−0.688985 + 0.724776i \(0.741943\pi\)
\(564\) 0 0
\(565\) 12.7582 + 5.45404i 0.536743 + 0.229453i
\(566\) −3.76035 −0.158059
\(567\) 0 0
\(568\) 36.5435i 1.53333i
\(569\) −25.8444 21.6860i −1.08345 0.909126i −0.0872516 0.996186i \(-0.527808\pi\)
−0.996203 + 0.0870599i \(0.972253\pi\)
\(570\) 0 0
\(571\) 0.954517 + 5.41334i 0.0399453 + 0.226541i 0.998245 0.0592252i \(-0.0188630\pi\)
−0.958299 + 0.285766i \(0.907752\pi\)
\(572\) −2.24018 + 6.15485i −0.0936667 + 0.257347i
\(573\) 0 0
\(574\) 2.10421 11.9336i 0.0878279 0.498097i
\(575\) 16.1061 1.04361i 0.671671 0.0435215i
\(576\) 0 0
\(577\) −23.6596 + 13.6599i −0.984962 + 0.568668i −0.903765 0.428030i \(-0.859208\pi\)
−0.0811975 + 0.996698i \(0.525874\pi\)
\(578\) −0.769769 2.11492i −0.0320182 0.0879692i
\(579\) 0 0
\(580\) 0.218218 + 0.142506i 0.00906101 + 0.00591724i
\(581\) −3.30932 + 2.77685i −0.137294 + 0.115203i
\(582\) 0 0
\(583\) −12.3831 34.0222i −0.512854 1.40906i
\(584\) 21.2085 + 36.7342i 0.877613 + 1.52007i
\(585\) 0 0
\(586\) 3.99891 6.92632i 0.165193 0.286123i
\(587\) −11.7130 2.06533i −0.483449 0.0852451i −0.0733885 0.997303i \(-0.523381\pi\)
−0.410061 + 0.912058i \(0.634492\pi\)
\(588\) 0 0
\(589\) 7.70014 + 2.80262i 0.317279 + 0.115480i
\(590\) −17.2742 34.1177i −0.711169 1.40460i
\(591\) 0 0
\(592\) 8.88664 10.5907i 0.365239 0.435274i
\(593\) 9.14301i 0.375459i 0.982221 + 0.187729i \(0.0601128\pi\)
−0.982221 + 0.187729i \(0.939887\pi\)
\(594\) 0 0
\(595\) −1.96746 6.49453i −0.0806578 0.266250i
\(596\) 1.33610 + 1.12112i 0.0547287 + 0.0459229i
\(597\) 0 0
\(598\) −21.0303 + 3.70821i −0.859994 + 0.151640i
\(599\) −24.8634 9.04955i −1.01589 0.369755i −0.220200 0.975455i \(-0.570671\pi\)
−0.795693 + 0.605700i \(0.792893\pi\)
\(600\) 0 0
\(601\) 3.19159 18.1004i 0.130188 0.738330i −0.847903 0.530151i \(-0.822135\pi\)
0.978091 0.208179i \(-0.0667537\pi\)
\(602\) 0.306514 + 0.176966i 0.0124926 + 0.00721260i
\(603\) 0 0
\(604\) 0.958297 + 1.65982i 0.0389925 + 0.0675371i
\(605\) −5.60824 7.48207i −0.228007 0.304189i
\(606\) 0 0
\(607\) −19.6443 23.4111i −0.797336 0.950228i 0.202240 0.979336i \(-0.435178\pi\)
−0.999576 + 0.0291076i \(0.990733\pi\)
\(608\) 3.57721 + 4.26315i 0.145075 + 0.172894i
\(609\) 0 0
\(610\) 15.2480 11.4293i 0.617375 0.462758i
\(611\) −6.71069 11.6233i −0.271486 0.470227i
\(612\) 0 0
\(613\) 17.3635 + 10.0248i 0.701304 + 0.404898i 0.807833 0.589411i \(-0.200640\pi\)
−0.106529 + 0.994310i \(0.533974\pi\)
\(614\) −6.25164 + 35.4548i −0.252295 + 1.43084i
\(615\) 0 0
\(616\) −8.56328 3.11678i −0.345024 0.125579i
\(617\) 24.8810 4.38720i 1.00167 0.176622i 0.351321 0.936255i \(-0.385733\pi\)
0.650352 + 0.759633i \(0.274621\pi\)
\(618\) 0 0
\(619\) −13.4670 11.3002i −0.541285 0.454192i 0.330692 0.943739i \(-0.392718\pi\)
−0.871977 + 0.489547i \(0.837162\pi\)
\(620\) −0.576525 1.90310i −0.0231538 0.0764302i
\(621\) 0 0
\(622\) 22.3836i 0.897502i
\(623\) −2.60207 + 3.10102i −0.104250 + 0.124240i
\(624\) 0 0
\(625\) 24.3993 + 5.44732i 0.975973 + 0.217893i
\(626\) −12.1610 4.42624i −0.486051 0.176908i
\(627\) 0 0
\(628\) −0.522965 0.0922128i −0.0208686 0.00367969i
\(629\) −8.34690 + 14.4573i −0.332813 + 0.576449i
\(630\) 0 0
\(631\) 15.3587 + 26.6020i 0.611420 + 1.05901i 0.991001 + 0.133852i \(0.0427347\pi\)
−0.379581 + 0.925158i \(0.623932\pi\)
\(632\) −11.9029 32.7030i −0.473472 1.30085i
\(633\) 0 0
\(634\) −7.93948 + 6.66201i −0.315317 + 0.264582i
\(635\) −14.7705 + 22.6179i −0.586149 + 0.897564i
\(636\) 0 0
\(637\) 11.1944 + 30.7565i 0.443540 + 1.21862i
\(638\) 1.54782 0.893635i 0.0612788 0.0353794i
\(639\) 0 0
\(640\) −3.94697 + 16.8992i −0.156018 + 0.668000i
\(641\) −1.59110 + 9.02357i −0.0628446 + 0.356409i 0.937128 + 0.348986i \(0.113474\pi\)
−0.999972 + 0.00742320i \(0.997637\pi\)
\(642\) 0 0
\(643\) 4.97910 13.6800i 0.196357 0.539486i −0.801967 0.597369i \(-0.796213\pi\)
0.998323 + 0.0578831i \(0.0184351\pi\)
\(644\) 0.143061 + 0.811340i 0.00563740 + 0.0319713i
\(645\) 0 0
\(646\) 11.7111 + 9.82681i 0.460769 + 0.386631i
\(647\) 16.6946i 0.656331i 0.944620 + 0.328165i \(0.106430\pi\)
−0.944620 + 0.328165i \(0.893570\pi\)
\(648\) 0 0
\(649\) 51.5419 2.02320
\(650\) −32.8783 3.62553i −1.28959 0.142205i
\(651\) 0 0
\(652\) 1.03366 0.182262i 0.0404811 0.00713791i
\(653\) −6.31264 + 17.3438i −0.247033 + 0.678716i 0.752759 + 0.658296i \(0.228723\pi\)
−0.999791 + 0.0204201i \(0.993500\pi\)
\(654\) 0 0
\(655\) −1.79253 + 0.215449i −0.0700398 + 0.00841830i
\(656\) 19.5143 33.7998i 0.761907 1.31966i
\(657\) 0 0
\(658\) 2.28155 1.31725i 0.0889439 0.0513518i
\(659\) −8.26055 + 3.00660i −0.321785 + 0.117120i −0.497862 0.867256i \(-0.665882\pi\)
0.176077 + 0.984376i \(0.443659\pi\)
\(660\) 0 0
\(661\) −13.7931 + 11.5737i −0.536487 + 0.450166i −0.870335 0.492461i \(-0.836097\pi\)
0.333847 + 0.942627i \(0.391653\pi\)
\(662\) −21.4760 25.5942i −0.834690 0.994745i
\(663\) 0 0
\(664\) −15.7303 + 5.72536i −0.610454 + 0.222187i
\(665\) −3.83679 3.59623i −0.148784 0.139456i
\(666\) 0 0
\(667\) −0.991835 0.572636i −0.0384040 0.0221726i
\(668\) 1.78721 + 0.315134i 0.0691494 + 0.0121929i
\(669\) 0 0
\(670\) −0.631718 + 11.4923i −0.0244054 + 0.443985i
\(671\) 4.45992 + 25.2934i 0.172173 + 0.976442i
\(672\) 0 0
\(673\) 5.25324 6.26057i 0.202498 0.241327i −0.655233 0.755427i \(-0.727429\pi\)
0.857730 + 0.514100i \(0.171874\pi\)
\(674\) 25.5398 0.983756
\(675\) 0 0
\(676\) −4.33098 −0.166576
\(677\) 0.529394 0.630907i 0.0203462 0.0242477i −0.755775 0.654831i \(-0.772740\pi\)
0.776122 + 0.630583i \(0.217184\pi\)
\(678\) 0 0
\(679\) −0.959124 5.43946i −0.0368078 0.208747i
\(680\) 1.44326 26.2558i 0.0553463 1.00686i
\(681\) 0 0
\(682\) −13.4291 2.36791i −0.514227 0.0906721i
\(683\) −33.6587 19.4328i −1.28791 0.743577i −0.309631 0.950857i \(-0.600206\pi\)
−0.978282 + 0.207280i \(0.933539\pi\)
\(684\) 0 0
\(685\) 1.16436 + 1.09135i 0.0444878 + 0.0416985i
\(686\) −12.6441 + 4.60209i −0.482756 + 0.175709i
\(687\) 0 0
\(688\) 0.732745 + 0.873251i 0.0279356 + 0.0332924i
\(689\) 36.4236 30.5631i 1.38763 1.16436i
\(690\) 0 0
\(691\) 33.1809 12.0769i 1.26226 0.459426i 0.377734 0.925914i \(-0.376703\pi\)
0.884527 + 0.466488i \(0.154481\pi\)
\(692\) 3.03245 1.75079i 0.115277 0.0665549i
\(693\) 0 0
\(694\) −16.2881 + 28.2118i −0.618287 + 1.07090i
\(695\) −29.3337 + 3.52571i −1.11269 + 0.133738i
\(696\) 0 0
\(697\) −16.1184 + 44.2848i −0.610526 + 1.67741i
\(698\) 38.0013 6.70066i 1.43837 0.253624i
\(699\) 0 0
\(700\) −0.139871 + 1.26843i −0.00528664 + 0.0479422i
\(701\) 26.7698 1.01108 0.505541 0.862803i \(-0.331293\pi\)
0.505541 + 0.862803i \(0.331293\pi\)
\(702\) 0 0
\(703\) 12.9366i 0.487912i
\(704\) −26.4062 22.1575i −0.995222 0.835091i
\(705\) 0 0
\(706\) 2.91380 + 16.5250i 0.109662 + 0.621926i
\(707\) 0.468517 1.28724i 0.0176204 0.0484116i
\(708\) 0 0
\(709\) 5.90817 33.5069i 0.221886 1.25838i −0.646664 0.762775i \(-0.723836\pi\)
0.868550 0.495602i \(-0.165053\pi\)
\(710\) −7.98142 + 34.1729i −0.299537 + 1.28249i
\(711\) 0 0
\(712\) −13.5846 + 7.84310i −0.509106 + 0.293933i
\(713\) 2.98859 + 8.21108i 0.111923 + 0.307507i
\(714\) 0 0
\(715\) 24.3765 37.3274i 0.911628 1.39597i
\(716\) 3.53264 2.96424i 0.132021 0.110779i
\(717\) 0 0
\(718\) 5.98907 + 16.4548i 0.223510 + 0.614089i
\(719\) −3.78251 6.55150i −0.141064 0.244330i 0.786834 0.617165i \(-0.211719\pi\)
−0.927898 + 0.372835i \(0.878386\pi\)
\(720\) 0 0
\(721\) 7.44442 12.8941i 0.277245 0.480202i
\(722\) −12.5241 2.20834i −0.466099 0.0821858i
\(723\) 0 0
\(724\) 4.78958 + 1.74326i 0.178003 + 0.0647879i
\(725\) −1.22578 1.28237i −0.0455242 0.0476261i
\(726\) 0 0
\(727\) −18.7705 + 22.3698i −0.696158 + 0.829649i −0.992086 0.125561i \(-0.959927\pi\)
0.295927 + 0.955210i \(0.404371\pi\)
\(728\) 11.9676i 0.443549i
\(729\) 0 0
\(730\) −11.8096 38.9833i −0.437094 1.44284i
\(731\) −1.05445 0.884786i −0.0390001 0.0327250i
\(732\) 0 0
\(733\) 21.0725 3.71565i 0.778330 0.137241i 0.229650 0.973273i \(-0.426242\pi\)
0.548680 + 0.836033i \(0.315131\pi\)
\(734\) −30.4144 11.0699i −1.12262 0.408599i
\(735\) 0 0
\(736\) −1.03050 + 5.84426i −0.0379847 + 0.215422i
\(737\) −13.4343 7.75631i −0.494860 0.285707i
\(738\) 0 0
\(739\) −1.12801 1.95377i −0.0414944 0.0718704i 0.844532 0.535505i \(-0.179879\pi\)
−0.886027 + 0.463634i \(0.846545\pi\)
\(740\) 2.51197 1.88287i 0.0923419 0.0692156i
\(741\) 0 0
\(742\) 5.99927 + 7.14965i 0.220240 + 0.262472i
\(743\) 2.12019 + 2.52675i 0.0777823 + 0.0926974i 0.803532 0.595261i \(-0.202951\pi\)
−0.725750 + 0.687959i \(0.758507\pi\)
\(744\) 0 0
\(745\) −7.12031 9.49935i −0.260868 0.348029i
\(746\) −1.34766 2.33421i −0.0493412 0.0854615i
\(747\) 0 0
\(748\) 4.33026 + 2.50008i 0.158330 + 0.0914119i
\(749\) −0.743750 + 4.21801i −0.0271760 + 0.154123i
\(750\) 0 0
\(751\) −29.9156 10.8884i −1.09164 0.397323i −0.267410 0.963583i \(-0.586168\pi\)
−0.824227 + 0.566260i \(0.808390\pi\)
\(752\) 8.35633 1.47345i 0.304724 0.0537310i
\(753\) 0 0
\(754\) 1.79803 + 1.50873i 0.0654804 + 0.0549446i
\(755\) −3.78223 12.4851i −0.137650 0.454378i
\(756\) 0 0
\(757\) 18.5287i 0.673436i −0.941605 0.336718i \(-0.890683\pi\)
0.941605 0.336718i \(-0.109317\pi\)
\(758\) 7.59167 9.04740i 0.275742 0.328616i
\(759\) 0 0
\(760\) −9.20465 18.1798i −0.333888 0.659450i
\(761\) 38.6363 + 14.0625i 1.40057 + 0.509764i 0.928346 0.371717i \(-0.121231\pi\)
0.472219 + 0.881481i \(0.343453\pi\)
\(762\) 0 0
\(763\) 10.9159 + 1.92478i 0.395184 + 0.0696816i
\(764\) 0.717533 1.24280i 0.0259594 0.0449630i
\(765\) 0 0
\(766\) −6.60470 11.4397i −0.238638 0.413332i
\(767\) 23.1507 + 63.6062i 0.835925 + 2.29669i
\(768\) 0 0
\(769\) −26.1339 + 21.9289i −0.942412 + 0.790777i −0.978003 0.208589i \(-0.933113\pi\)
0.0355917 + 0.999366i \(0.488668\pi\)
\(770\) 7.32705 + 4.78489i 0.264049 + 0.172435i
\(771\) 0 0
\(772\) −0.369762 1.01591i −0.0133080 0.0365635i
\(773\) 4.57453 2.64111i 0.164534 0.0949940i −0.415472 0.909606i \(-0.636383\pi\)
0.580006 + 0.814612i \(0.303050\pi\)
\(774\) 0 0
\(775\) 0.875170 + 13.5065i 0.0314370 + 0.485170i
\(776\) 3.71656 21.0777i 0.133417 0.756645i
\(777\) 0 0
\(778\) 7.71867 21.2069i 0.276728 0.760303i
\(779\) 6.34166 + 35.9653i 0.227213 + 1.28859i
\(780\) 0 0
\(781\) −36.2321 30.4024i −1.29649 1.08788i
\(782\) 16.3022i 0.582966i
\(783\) 0 0
\(784\) −20.6927 −0.739026
\(785\) 3.32355 + 1.42079i 0.118623 + 0.0507102i
\(786\) 0 0
\(787\) −11.5446 + 2.03562i −0.411520 + 0.0725620i −0.375575 0.926792i \(-0.622555\pi\)
−0.0359440 + 0.999354i \(0.511444\pi\)
\(788\) 2.40750 6.61455i 0.0857636 0.235634i
\(789\) 0 0
\(790\) 3.98815 + 33.1812i 0.141892 + 1.18053i
\(791\) 2.41038 4.17490i 0.0857032 0.148442i
\(792\) 0 0
\(793\) −29.2106 + 16.8647i −1.03730 + 0.598884i
\(794\) −16.0844 + 5.85425i −0.570815 + 0.207760i
\(795\) 0 0
\(796\) 3.53839 2.96906i 0.125415 0.105235i
\(797\) 15.6442 + 18.6441i 0.554147 + 0.660406i 0.968297 0.249802i \(-0.0803656\pi\)
−0.414150 + 0.910209i \(0.635921\pi\)
\(798\) 0 0
\(799\) −9.62798 + 3.50430i −0.340613 + 0.123973i
\(800\) −4.07173 + 8.24117i −0.143957 + 0.291370i
\(801\) 0 0
\(802\) 43.8809 + 25.3346i 1.54949 + 0.894597i
\(803\) 54.0656 + 9.53322i 1.90793 + 0.336420i
\(804\) 0 0
\(805\) 0.307781 5.59917i 0.0108478 0.197345i
\(806\) −3.10970 17.6360i −0.109535 0.621201i
\(807\) 0 0
\(808\) 3.41199 4.06625i 0.120033 0.143050i
\(809\) −2.84260 −0.0999405 −0.0499703 0.998751i \(-0.515913\pi\)
−0.0499703 + 0.998751i \(0.515913\pi\)
\(810\) 0 0
\(811\) 25.2940 0.888194 0.444097 0.895979i \(-0.353525\pi\)
0.444097 + 0.895979i \(0.353525\pi\)
\(812\) 0.0582060 0.0693672i 0.00204263 0.00243431i
\(813\) 0 0
\(814\) −3.73828 21.2008i −0.131027 0.743089i
\(815\) −7.13341 0.392116i −0.249872 0.0137352i
\(816\) 0 0
\(817\) −1.05047 0.185227i −0.0367514 0.00648027i
\(818\) −22.2004 12.8174i −0.776218 0.448149i
\(819\) 0 0
\(820\) 6.06061 6.46602i 0.211646 0.225803i
\(821\) 39.7487 14.4673i 1.38724 0.504914i 0.462874 0.886424i \(-0.346818\pi\)
0.924365 + 0.381510i \(0.124596\pi\)
\(822\) 0 0
\(823\) −1.42693 1.70055i −0.0497397 0.0592774i 0.740601 0.671945i \(-0.234541\pi\)
−0.790341 + 0.612668i \(0.790096\pi\)
\(824\) 44.1958 37.0847i 1.53964 1.29191i
\(825\) 0 0
\(826\) −12.4853 + 4.54429i −0.434421 + 0.158116i
\(827\) −15.7822 + 9.11184i −0.548800 + 0.316850i −0.748638 0.662979i \(-0.769292\pi\)
0.199838 + 0.979829i \(0.435958\pi\)
\(828\) 0 0
\(829\) 15.8943 27.5298i 0.552033 0.956149i −0.446095 0.894986i \(-0.647186\pi\)
0.998128 0.0611633i \(-0.0194810\pi\)
\(830\) 15.9603 1.91832i 0.553991 0.0665859i
\(831\) 0 0
\(832\) 15.4831 42.5394i 0.536779 1.47479i
\(833\) 24.6068 4.33884i 0.852574 0.150332i
\(834\) 0 0
\(835\) −11.3581 4.85550i −0.393064 0.168032i
\(836\) 3.87478 0.134012
\(837\) 0 0
\(838\) 35.2053i 1.21615i
\(839\) 14.1865 + 11.9039i 0.489772 + 0.410968i 0.853945 0.520364i \(-0.174204\pi\)
−0.364173 + 0.931331i \(0.618648\pi\)
\(840\) 0 0
\(841\) −5.01394 28.4355i −0.172894 0.980533i
\(842\) 0.999506 2.74612i 0.0344453 0.0946376i
\(843\) 0 0
\(844\) −0.237233 + 1.34542i −0.00816591 + 0.0463112i
\(845\) 28.7065 + 6.70468i 0.987534 + 0.230648i
\(846\) 0 0
\(847\) −2.81351 + 1.62438i −0.0966734 + 0.0558144i
\(848\) 10.2813 + 28.2476i 0.353061 + 0.970027i
\(849\) 0 0
\(850\) −7.08413 + 24.2374i −0.242984 + 0.831336i
\(851\) −10.5675 + 8.86722i −0.362251 + 0.303964i
\(852\) 0 0
\(853\) 7.92056 + 21.7616i 0.271195 + 0.745102i 0.998284 + 0.0585587i \(0.0186505\pi\)
−0.727089 + 0.686543i \(0.759127\pi\)
\(854\) −3.31040 5.73378i −0.113280 0.196206i
\(855\) 0 0
\(856\) −8.29838 + 14.3732i −0.283633 + 0.491266i
\(857\) 23.4792 + 4.14002i 0.802035 + 0.141420i 0.559617 0.828751i \(-0.310948\pi\)
0.242418 + 0.970172i \(0.422059\pi\)
\(858\) 0 0
\(859\) −7.58350 2.76017i −0.258746 0.0941757i 0.209390 0.977832i \(-0.432852\pi\)
−0.468136 + 0.883656i \(0.655074\pi\)
\(860\) 0.116926 + 0.230936i 0.00398714 + 0.00787486i
\(861\) 0 0
\(862\) 8.05695 9.60190i 0.274421 0.327042i
\(863\) 18.5552i 0.631628i 0.948821 + 0.315814i \(0.102277\pi\)
−0.948821 + 0.315814i \(0.897723\pi\)
\(864\) 0 0
\(865\) −22.8100 + 6.91006i −0.775562 + 0.234949i
\(866\) 32.0328 + 26.8787i 1.08852 + 0.913375i
\(867\) 0 0
\(868\) −0.680388 + 0.119971i −0.0230939 + 0.00407208i
\(869\) −42.3270 15.4058i −1.43584 0.522604i
\(870\) 0 0
\(871\) 3.53760 20.0627i 0.119867 0.679799i
\(872\) 37.1970 + 21.4757i 1.25965 + 0.727258i
\(873\) 0 0
\(874\) 6.31655 + 10.9406i 0.213660 + 0.370071i
\(875\) 2.89072 8.19084i 0.0977240 0.276901i
\(876\) 0 0
\(877\) −6.79778 8.10128i −0.229545 0.273561i 0.638962 0.769238i \(-0.279364\pi\)
−0.868507 + 0.495678i \(0.834920\pi\)
\(878\) 8.20962 + 9.78384i 0.277061 + 0.330189i
\(879\) 0 0
\(880\) 16.9049 + 22.5532i 0.569864 + 0.760267i
\(881\) 5.52419 + 9.56817i 0.186115 + 0.322360i 0.943952 0.330084i \(-0.107077\pi\)
−0.757837 + 0.652444i \(0.773744\pi\)
\(882\) 0 0
\(883\) 45.6600 + 26.3618i 1.53658 + 0.887146i 0.999035 + 0.0439118i \(0.0139821\pi\)
0.537546 + 0.843234i \(0.319351\pi\)
\(884\) −1.14027 + 6.46678i −0.0383513 + 0.217501i
\(885\) 0 0
\(886\) 31.7844 + 11.5686i 1.06782 + 0.388654i
\(887\) −41.4529 + 7.30927i −1.39185 + 0.245421i −0.818792 0.574091i \(-0.805356\pi\)
−0.573062 + 0.819512i \(0.694245\pi\)
\(888\) 0 0
\(889\) 7.18978 + 6.03294i 0.241138 + 0.202338i
\(890\) 14.4164 4.36731i 0.483239 0.146393i
\(891\) 0 0
\(892\) 5.45722i 0.182721i
\(893\) −5.10364 + 6.08228i −0.170787 + 0.203536i
\(894\) 0 0
\(895\) −28.0038 + 14.1787i −0.936064 + 0.473941i
\(896\) 5.66584 + 2.06220i 0.189282 + 0.0688932i
\(897\) 0 0
\(898\) −20.4851 3.61208i −0.683597 0.120537i
\(899\) 0.480212 0.831752i 0.0160160 0.0277405i
\(900\) 0 0
\(901\) −18.1489 31.4349i −0.604629 1.04725i
\(902\) −20.7858 57.1085i −0.692092 1.90151i
\(903\) 0 0
\(904\) 14.3099 12.0074i 0.475940 0.399361i
\(905\) −29.0475 18.9693i −0.965570 0.630560i
\(906\) 0 0
\(907\) 0.214958 + 0.590592i 0.00713756 + 0.0196103i 0.943210 0.332196i \(-0.107790\pi\)
−0.936073 + 0.351807i \(0.885567\pi\)
\(908\) −1.50692 + 0.870019i −0.0500088 + 0.0288726i
\(909\) 0 0
\(910\) −2.61383 + 11.1913i −0.0866476 + 0.370987i
\(911\) −4.64690 + 26.3539i −0.153959 + 0.873144i 0.805773 + 0.592225i \(0.201750\pi\)
−0.959731 + 0.280919i \(0.909361\pi\)
\(912\) 0 0
\(913\) −7.41025 + 20.3595i −0.245243 + 0.673801i
\(914\) 6.83321 + 38.7530i 0.226022 + 1.28184i
\(915\) 0 0
\(916\) 5.12928 + 4.30398i 0.169476 + 0.142207i
\(917\) 0.627276i 0.0207145i
\(918\) 0 0
\(919\) −8.32555 −0.274634 −0.137317 0.990527i \(-0.543848\pi\)
−0.137317 + 0.990527i \(0.543848\pi\)
\(920\) 8.54136 19.9802i 0.281600 0.658727i
\(921\) 0 0
\(922\) 20.8206 3.67124i 0.685691 0.120906i
\(923\) 21.2444 58.3685i 0.699268 1.92122i
\(924\) 0 0
\(925\) −19.5646 + 8.59125i −0.643280 + 0.282479i
\(926\) −4.72363 + 8.18157i −0.155228 + 0.268863i
\(927\) 0 0
\(928\) 0.564881 0.326134i 0.0185431 0.0107059i
\(929\) −20.0134 + 7.28427i −0.656618 + 0.238989i −0.648775 0.760980i \(-0.724719\pi\)
−0.00784221 + 0.999969i \(0.502496\pi\)
\(930\) 0 0
\(931\) 14.8327 12.4461i 0.486122 0.407905i
\(932\) −0.259044 0.308716i −0.00848525 0.0101123i
\(933\) 0 0
\(934\) −12.2224 + 4.44860i −0.399930 + 0.145563i
\(935\) −24.8314 23.2745i −0.812074 0.761158i
\(936\) 0 0
\(937\) −2.68331 1.54921i −0.0876598 0.0506104i 0.455529 0.890221i \(-0.349450\pi\)
−0.543189 + 0.839610i \(0.682783\pi\)
\(938\) 3.93814 + 0.694400i 0.128585 + 0.0226730i
\(939\) 0 0
\(940\) 1.92385 + 0.105752i 0.0627491 + 0.00344925i
\(941\) 2.52290 + 14.3081i 0.0822442 + 0.466430i 0.997917 + 0.0645063i \(0.0205473\pi\)
−0.915673 + 0.401924i \(0.868342\pi\)
\(942\) 0 0
\(943\) −25.0323 + 29.8324i −0.815165 + 0.971476i
\(944\) −42.7937 −1.39282
\(945\) 0 0
\(946\) 1.77507 0.0577127
\(947\) −2.63542 + 3.14077i −0.0856396 + 0.102061i −0.807163 0.590329i \(-0.798998\pi\)
0.721523 + 0.692390i \(0.243442\pi\)
\(948\) 0 0
\(949\) 12.5197 + 71.0025i 0.406406 + 2.30484i
\(950\) 4.63692 + 19.0108i 0.150442 + 0.616793i
\(951\) 0 0
\(952\) −8.99727 1.58646i −0.291603 0.0514175i
\(953\) 24.8072 + 14.3224i 0.803584 + 0.463950i 0.844723 0.535204i \(-0.179765\pi\)
−0.0411387 + 0.999153i \(0.513099\pi\)
\(954\) 0 0
\(955\) −6.67988 + 7.12672i −0.216156 + 0.230615i
\(956\) −4.74467 + 1.72692i −0.153454 + 0.0558525i
\(957\) 0 0
\(958\) 6.66586 + 7.94406i 0.215364 + 0.256661i
\(959\) 0.424745 0.356403i 0.0137157 0.0115089i
\(960\) 0 0
\(961\) 22.2447 8.09640i 0.717570 0.261174i
\(962\) 24.4841 14.1359i 0.789401 0.455761i
\(963\) 0 0
\(964\) −3.05296 + 5.28788i −0.0983291 + 0.170311i
\(965\) 0.878137 + 7.30605i 0.0282682 + 0.235190i
\(966\) 0 0
\(967\) −7.35273 + 20.2015i −0.236448 + 0.649635i 0.763545 + 0.645755i \(0.223457\pi\)
−0.999992 + 0.00388011i \(0.998765\pi\)
\(968\) −12.3976 + 2.18602i −0.398473 + 0.0702615i
\(969\) 0 0
\(970\) −8.07902 + 18.8986i −0.259402 + 0.606799i
\(971\) −39.3784 −1.26371 −0.631857 0.775085i \(-0.717707\pi\)
−0.631857 + 0.775085i \(0.717707\pi\)
\(972\) 0 0
\(973\) 10.2650i 0.329081i
\(974\) −1.28764 1.08046i −0.0412588 0.0346202i
\(975\) 0 0
\(976\) −3.70294 21.0004i −0.118528 0.672206i
\(977\) 7.02896 19.3119i 0.224876 0.617843i −0.775024 0.631931i \(-0.782262\pi\)
0.999901 + 0.0140884i \(0.00448463\pi\)
\(978\) 0 0
\(979\) −3.52548 + 19.9940i −0.112675 + 0.639010i
\(980\) −4.57559 1.06867i −0.146162 0.0341375i
\(981\) 0 0
\(982\) 12.4585 7.19295i 0.397568 0.229536i
\(983\) 7.78235 + 21.3818i 0.248218 + 0.681975i 0.999752 + 0.0222795i \(0.00709237\pi\)
−0.751533 + 0.659695i \(0.770685\pi\)
\(984\) 0 0
\(985\) −26.1971 + 40.1154i −0.834710 + 1.27818i
\(986\) 1.37262 1.15176i 0.0437130 0.0366796i
\(987\) 0 0
\(988\) 1.74041 + 4.78174i 0.0553698 + 0.152127i
\(989\) −0.568729 0.985067i −0.0180845 0.0313233i
\(990\) 0 0
\(991\) −8.61401 + 14.9199i −0.273633 + 0.473946i −0.969789 0.243944i \(-0.921559\pi\)
0.696156 + 0.717890i \(0.254892\pi\)
\(992\) −4.90099 0.864176i −0.155606 0.0274376i
\(993\) 0 0
\(994\) 11.4572 + 4.17010i 0.363402 + 0.132267i
\(995\) −28.0493 + 14.2017i −0.889224 + 0.450225i
\(996\) 0 0
\(997\) 8.68705 10.3528i 0.275122 0.327877i −0.610736 0.791834i \(-0.709126\pi\)
0.885858 + 0.463957i \(0.153571\pi\)
\(998\) 22.9749i 0.727256i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.p.a.289.5 96
3.2 odd 2 135.2.p.a.124.12 yes 96
5.4 even 2 inner 405.2.p.a.289.12 96
15.2 even 4 675.2.l.h.151.12 96
15.8 even 4 675.2.l.h.151.5 96
15.14 odd 2 135.2.p.a.124.5 yes 96
27.5 odd 18 135.2.p.a.49.5 96
27.22 even 9 inner 405.2.p.a.199.12 96
135.32 even 36 675.2.l.h.76.12 96
135.49 even 18 inner 405.2.p.a.199.5 96
135.59 odd 18 135.2.p.a.49.12 yes 96
135.113 even 36 675.2.l.h.76.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.5 96 27.5 odd 18
135.2.p.a.49.12 yes 96 135.59 odd 18
135.2.p.a.124.5 yes 96 15.14 odd 2
135.2.p.a.124.12 yes 96 3.2 odd 2
405.2.p.a.199.5 96 135.49 even 18 inner
405.2.p.a.199.12 96 27.22 even 9 inner
405.2.p.a.289.5 96 1.1 even 1 trivial
405.2.p.a.289.12 96 5.4 even 2 inner
675.2.l.h.76.5 96 135.113 even 36
675.2.l.h.76.12 96 135.32 even 36
675.2.l.h.151.5 96 15.8 even 4
675.2.l.h.151.12 96 15.2 even 4