Properties

Label 675.2.l.h.76.12
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.12
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.h.151.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.990387 - 0.831033i) q^{2} +(1.55212 - 0.768718i) q^{3} +(-0.0570464 + 0.323526i) q^{4} +(0.898367 - 2.05119i) q^{6} +(0.134907 + 0.765094i) q^{7} +(1.50522 + 2.60712i) q^{8} +(1.81814 - 2.38628i) q^{9} +(3.66139 + 1.33264i) q^{11} +(0.160158 + 0.546003i) q^{12} +(-3.91983 - 3.28913i) q^{13} +(0.769429 + 0.645628i) q^{14} +(3.03995 + 1.10645i) q^{16} +(1.95315 - 3.38295i) q^{17} +(-0.182416 - 3.87428i) q^{18} +(1.51356 + 2.62156i) q^{19} +(0.797534 + 1.08381i) q^{21} +(4.73366 - 1.72291i) q^{22} +(-0.560532 + 3.17893i) q^{23} +(4.34042 + 2.88947i) q^{24} -6.61553 q^{26} +(0.987594 - 5.10144i) q^{27} -0.255224 q^{28} +(0.271790 - 0.228059i) q^{29} +(-0.470061 + 2.66585i) q^{31} +(-1.72756 + 0.628781i) q^{32} +(6.70734 - 0.746168i) q^{33} +(-0.876974 - 4.97357i) q^{34} +(0.668307 + 0.724346i) q^{36} +(2.13678 - 3.70101i) q^{37} +(3.67761 + 1.33854i) q^{38} +(-8.61246 - 2.09187i) q^{39} +(-9.24182 - 7.75481i) q^{41} +(1.69055 + 0.410616i) q^{42} +(0.331124 + 0.120519i) q^{43} +(-0.640012 + 1.10853i) q^{44} +(2.08666 + 3.61420i) q^{46} +(0.455464 + 2.58307i) q^{47} +(5.56890 - 0.619521i) q^{48} +(6.01068 - 2.18771i) q^{49} +(0.430980 - 6.75217i) q^{51} +(1.28773 - 1.08053i) q^{52} -9.29215 q^{53} +(-3.26136 - 5.87312i) q^{54} +(-1.79163 + 1.50335i) q^{56} +(4.36446 + 2.90547i) q^{57} +(0.0796526 - 0.451732i) q^{58} +(-12.4304 + 4.52430i) q^{59} +(1.14463 + 6.49154i) q^{61} +(1.74987 + 3.03086i) q^{62} +(2.07101 + 1.06913i) q^{63} +(-4.42346 + 7.66166i) q^{64} +(6.02277 - 6.31302i) q^{66} +(-3.04985 - 2.55913i) q^{67} +(0.983053 + 0.824880i) q^{68} +(1.57369 + 5.36497i) q^{69} +(-6.06946 + 10.5126i) q^{71} +(8.95804 + 1.14823i) q^{72} +(-7.04497 - 12.2022i) q^{73} +(-0.959425 - 5.44117i) q^{74} +(-0.934485 + 0.340125i) q^{76} +(-0.525647 + 2.98109i) q^{77} +(-10.2681 + 5.08548i) q^{78} +(-8.85574 + 7.43085i) q^{79} +(-2.38871 - 8.67722i) q^{81} -15.5975 q^{82} +(4.25966 - 3.57428i) q^{83} +(-0.396138 + 0.196195i) q^{84} +(0.428097 - 0.155815i) q^{86} +(0.246537 - 0.562904i) q^{87} +(2.03686 + 11.5516i) q^{88} +(2.60530 + 4.51251i) q^{89} +(1.98768 - 3.44277i) q^{91} +(-0.996492 - 0.362693i) q^{92} +(1.31970 + 4.49906i) q^{93} +(2.59770 + 2.17973i) q^{94} +(-2.19803 + 2.30395i) q^{96} +(-6.68077 - 2.43160i) q^{97} +(4.13484 - 7.16175i) q^{98} +(9.83699 - 6.31420i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 6 q^{6} + 18 q^{9} - 6 q^{11} + 18 q^{14} - 24 q^{16} + 6 q^{19} + 24 q^{21} + 30 q^{24} + 48 q^{26} + 30 q^{29} - 30 q^{31} + 24 q^{34} + 54 q^{36} + 6 q^{39} - 12 q^{41} - 78 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.990387 0.831033i 0.700309 0.587629i −0.221552 0.975149i \(-0.571112\pi\)
0.921862 + 0.387519i \(0.126668\pi\)
\(3\) 1.55212 0.768718i 0.896116 0.443820i
\(4\) −0.0570464 + 0.323526i −0.0285232 + 0.161763i
\(5\) 0 0
\(6\) 0.898367 2.05119i 0.366757 0.837395i
\(7\) 0.134907 + 0.765094i 0.0509900 + 0.289179i 0.999631 0.0271771i \(-0.00865182\pi\)
−0.948641 + 0.316356i \(0.897541\pi\)
\(8\) 1.50522 + 2.60712i 0.532176 + 0.921756i
\(9\) 1.81814 2.38628i 0.606048 0.795428i
\(10\) 0 0
\(11\) 3.66139 + 1.33264i 1.10395 + 0.401805i 0.828771 0.559587i \(-0.189040\pi\)
0.275180 + 0.961393i \(0.411263\pi\)
\(12\) 0.160158 + 0.546003i 0.0462335 + 0.157618i
\(13\) −3.91983 3.28913i −1.08717 0.912240i −0.0906695 0.995881i \(-0.528901\pi\)
−0.996496 + 0.0836409i \(0.973345\pi\)
\(14\) 0.769429 + 0.645628i 0.205639 + 0.172551i
\(15\) 0 0
\(16\) 3.03995 + 1.10645i 0.759986 + 0.276612i
\(17\) 1.95315 3.38295i 0.473708 0.820487i −0.525839 0.850584i \(-0.676248\pi\)
0.999547 + 0.0300976i \(0.00958181\pi\)
\(18\) −0.182416 3.87428i −0.0429959 0.913177i
\(19\) 1.51356 + 2.62156i 0.347234 + 0.601427i 0.985757 0.168176i \(-0.0537877\pi\)
−0.638523 + 0.769603i \(0.720454\pi\)
\(20\) 0 0
\(21\) 0.797534 + 1.08381i 0.174036 + 0.236507i
\(22\) 4.73366 1.72291i 1.00922 0.367326i
\(23\) −0.560532 + 3.17893i −0.116879 + 0.662854i 0.868924 + 0.494946i \(0.164812\pi\)
−0.985803 + 0.167908i \(0.946299\pi\)
\(24\) 4.34042 + 2.88947i 0.885985 + 0.589810i
\(25\) 0 0
\(26\) −6.61553 −1.29741
\(27\) 0.987594 5.10144i 0.190062 0.981772i
\(28\) −0.255224 −0.0482328
\(29\) 0.271790 0.228059i 0.0504701 0.0423494i −0.617204 0.786803i \(-0.711735\pi\)
0.667674 + 0.744454i \(0.267290\pi\)
\(30\) 0 0
\(31\) −0.470061 + 2.66585i −0.0844255 + 0.478801i 0.913054 + 0.407840i \(0.133718\pi\)
−0.997479 + 0.0709611i \(0.977393\pi\)
\(32\) −1.72756 + 0.628781i −0.305393 + 0.111154i
\(33\) 6.70734 0.746168i 1.16760 0.129891i
\(34\) −0.876974 4.97357i −0.150400 0.852959i
\(35\) 0 0
\(36\) 0.668307 + 0.724346i 0.111384 + 0.120724i
\(37\) 2.13678 3.70101i 0.351285 0.608443i −0.635190 0.772356i \(-0.719078\pi\)
0.986475 + 0.163913i \(0.0524116\pi\)
\(38\) 3.67761 + 1.33854i 0.596587 + 0.217140i
\(39\) −8.61246 2.09187i −1.37910 0.334967i
\(40\) 0 0
\(41\) −9.24182 7.75481i −1.44333 1.21110i −0.937272 0.348599i \(-0.886658\pi\)
−0.506059 0.862499i \(-0.668898\pi\)
\(42\) 1.69055 + 0.410616i 0.260858 + 0.0633595i
\(43\) 0.331124 + 0.120519i 0.0504960 + 0.0183790i 0.367145 0.930164i \(-0.380335\pi\)
−0.316649 + 0.948543i \(0.602558\pi\)
\(44\) −0.640012 + 1.10853i −0.0964854 + 0.167118i
\(45\) 0 0
\(46\) 2.08666 + 3.61420i 0.307661 + 0.532884i
\(47\) 0.455464 + 2.58307i 0.0664363 + 0.376779i 0.999839 + 0.0179481i \(0.00571335\pi\)
−0.933403 + 0.358831i \(0.883176\pi\)
\(48\) 5.56890 0.619521i 0.803802 0.0894202i
\(49\) 6.01068 2.18771i 0.858668 0.312530i
\(50\) 0 0
\(51\) 0.430980 6.75217i 0.0603493 0.945492i
\(52\) 1.28773 1.08053i 0.178576 0.149843i
\(53\) −9.29215 −1.27637 −0.638187 0.769881i \(-0.720315\pi\)
−0.638187 + 0.769881i \(0.720315\pi\)
\(54\) −3.26136 5.87312i −0.443816 0.799230i
\(55\) 0 0
\(56\) −1.79163 + 1.50335i −0.239416 + 0.200894i
\(57\) 4.36446 + 2.90547i 0.578087 + 0.384839i
\(58\) 0.0796526 0.451732i 0.0104589 0.0593154i
\(59\) −12.4304 + 4.52430i −1.61830 + 0.589014i −0.983058 0.183296i \(-0.941323\pi\)
−0.635245 + 0.772311i \(0.719101\pi\)
\(60\) 0 0
\(61\) 1.14463 + 6.49154i 0.146555 + 0.831156i 0.966105 + 0.258148i \(0.0831123\pi\)
−0.819550 + 0.573008i \(0.805777\pi\)
\(62\) 1.74987 + 3.03086i 0.222233 + 0.384920i
\(63\) 2.07101 + 1.06913i 0.260923 + 0.134697i
\(64\) −4.42346 + 7.66166i −0.552932 + 0.957707i
\(65\) 0 0
\(66\) 6.02277 6.31302i 0.741352 0.777079i
\(67\) −3.04985 2.55913i −0.372599 0.312647i 0.437190 0.899369i \(-0.355974\pi\)
−0.809789 + 0.586722i \(0.800418\pi\)
\(68\) 0.983053 + 0.824880i 0.119213 + 0.100031i
\(69\) 1.57369 + 5.36497i 0.189450 + 0.645867i
\(70\) 0 0
\(71\) −6.06946 + 10.5126i −0.720312 + 1.24762i 0.240563 + 0.970634i \(0.422668\pi\)
−0.960875 + 0.276983i \(0.910665\pi\)
\(72\) 8.95804 + 1.14823i 1.05571 + 0.135320i
\(73\) −7.04497 12.2022i −0.824551 1.42816i −0.902262 0.431189i \(-0.858094\pi\)
0.0777105 0.996976i \(-0.475239\pi\)
\(74\) −0.959425 5.44117i −0.111531 0.632523i
\(75\) 0 0
\(76\) −0.934485 + 0.340125i −0.107193 + 0.0390150i
\(77\) −0.525647 + 2.98109i −0.0599030 + 0.339727i
\(78\) −10.2681 + 5.08548i −1.16263 + 0.575817i
\(79\) −8.85574 + 7.43085i −0.996349 + 0.836036i −0.986474 0.163916i \(-0.947588\pi\)
−0.00987418 + 0.999951i \(0.503143\pi\)
\(80\) 0 0
\(81\) −2.38871 8.67722i −0.265412 0.964135i
\(82\) −15.5975 −1.72245
\(83\) 4.25966 3.57428i 0.467558 0.392328i −0.378345 0.925665i \(-0.623507\pi\)
0.845903 + 0.533337i \(0.179062\pi\)
\(84\) −0.396138 + 0.196195i −0.0432222 + 0.0214067i
\(85\) 0 0
\(86\) 0.428097 0.155815i 0.0461629 0.0168019i
\(87\) 0.246537 0.562904i 0.0264315 0.0603496i
\(88\) 2.03686 + 11.5516i 0.217130 + 1.23141i
\(89\) 2.60530 + 4.51251i 0.276161 + 0.478325i 0.970427 0.241393i \(-0.0776044\pi\)
−0.694266 + 0.719718i \(0.744271\pi\)
\(90\) 0 0
\(91\) 1.98768 3.44277i 0.208366 0.360900i
\(92\) −0.996492 0.362693i −0.103891 0.0378134i
\(93\) 1.31970 + 4.49906i 0.136846 + 0.466531i
\(94\) 2.59770 + 2.17973i 0.267932 + 0.224822i
\(95\) 0 0
\(96\) −2.19803 + 2.30395i −0.224335 + 0.235146i
\(97\) −6.68077 2.43160i −0.678330 0.246892i −0.0201995 0.999796i \(-0.506430\pi\)
−0.658130 + 0.752904i \(0.728652\pi\)
\(98\) 4.13484 7.16175i 0.417682 0.723446i
\(99\) 9.83699 6.31420i 0.988655 0.634601i
\(100\) 0 0
\(101\) 0.306182 + 1.73645i 0.0304663 + 0.172783i 0.996244 0.0865873i \(-0.0275962\pi\)
−0.965778 + 0.259370i \(0.916485\pi\)
\(102\) −5.18444 7.04542i −0.513336 0.697600i
\(103\) 18.0087 6.55464i 1.77445 0.645848i 0.774541 0.632524i \(-0.217981\pi\)
0.999911 0.0133237i \(-0.00424120\pi\)
\(104\) 2.67494 15.1703i 0.262299 1.48757i
\(105\) 0 0
\(106\) −9.20282 + 7.72208i −0.893857 + 0.750035i
\(107\) −5.51306 −0.532968 −0.266484 0.963839i \(-0.585862\pi\)
−0.266484 + 0.963839i \(0.585862\pi\)
\(108\) 1.59411 + 0.610531i 0.153393 + 0.0587483i
\(109\) 14.2674 1.36657 0.683287 0.730150i \(-0.260550\pi\)
0.683287 + 0.730150i \(0.260550\pi\)
\(110\) 0 0
\(111\) 0.471500 7.38699i 0.0447528 0.701142i
\(112\) −0.436429 + 2.47511i −0.0412387 + 0.233876i
\(113\) −5.83093 + 2.12228i −0.548527 + 0.199648i −0.601392 0.798954i \(-0.705387\pi\)
0.0528647 + 0.998602i \(0.483165\pi\)
\(114\) 6.73705 0.749473i 0.630982 0.0701946i
\(115\) 0 0
\(116\) 0.0582783 + 0.100941i 0.00541100 + 0.00937213i
\(117\) −14.9756 + 3.37372i −1.38450 + 0.311901i
\(118\) −8.55108 + 14.8109i −0.787191 + 1.36345i
\(119\) 2.85177 + 1.03796i 0.261421 + 0.0951496i
\(120\) 0 0
\(121\) 3.20338 + 2.68795i 0.291216 + 0.244359i
\(122\) 6.52831 + 5.47790i 0.591046 + 0.495946i
\(123\) −20.3057 4.93203i −1.83090 0.444706i
\(124\) −0.835656 0.304154i −0.0750442 0.0273138i
\(125\) 0 0
\(126\) 2.93958 0.662233i 0.261879 0.0589964i
\(127\) 6.04043 + 10.4623i 0.536002 + 0.928382i 0.999114 + 0.0420828i \(0.0133993\pi\)
−0.463112 + 0.886300i \(0.653267\pi\)
\(128\) 1.34767 + 7.64304i 0.119119 + 0.675556i
\(129\) 0.606590 0.0674810i 0.0534072 0.00594137i
\(130\) 0 0
\(131\) 0.140206 0.795145i 0.0122498 0.0694722i −0.978070 0.208276i \(-0.933215\pi\)
0.990320 + 0.138804i \(0.0443258\pi\)
\(132\) −0.141224 + 2.21256i −0.0122920 + 0.192579i
\(133\) −1.80155 + 1.51168i −0.156214 + 0.131079i
\(134\) −5.14726 −0.444655
\(135\) 0 0
\(136\) 11.7597 1.00838
\(137\) 0.546720 0.458752i 0.0467094 0.0391939i −0.619134 0.785285i \(-0.712516\pi\)
0.665844 + 0.746091i \(0.268072\pi\)
\(138\) 6.01704 + 4.00561i 0.512204 + 0.340980i
\(139\) 2.29439 13.0121i 0.194607 1.10367i −0.718370 0.695662i \(-0.755111\pi\)
0.912977 0.408011i \(-0.133778\pi\)
\(140\) 0 0
\(141\) 2.69258 + 3.65910i 0.226756 + 0.308152i
\(142\) 2.72522 + 15.4555i 0.228695 + 1.29699i
\(143\) −9.96882 17.2665i −0.833635 1.44390i
\(144\) 8.16736 5.24249i 0.680614 0.436874i
\(145\) 0 0
\(146\) −17.1177 6.23034i −1.41667 0.515627i
\(147\) 7.64755 8.01610i 0.630760 0.661157i
\(148\) 1.07548 + 0.902433i 0.0884038 + 0.0741796i
\(149\) 4.06706 + 3.41267i 0.333187 + 0.279577i 0.793997 0.607922i \(-0.207997\pi\)
−0.460810 + 0.887499i \(0.652441\pi\)
\(150\) 0 0
\(151\) 5.48224 + 1.99537i 0.446138 + 0.162381i 0.555313 0.831641i \(-0.312598\pi\)
−0.109174 + 0.994023i \(0.534821\pi\)
\(152\) −4.55648 + 7.89205i −0.369579 + 0.640130i
\(153\) −4.52158 10.8115i −0.365548 0.874055i
\(154\) 1.95679 + 3.38927i 0.157683 + 0.273115i
\(155\) 0 0
\(156\) 1.16808 2.66702i 0.0935216 0.213532i
\(157\) −1.51897 + 0.552860i −0.121227 + 0.0441230i −0.401921 0.915674i \(-0.631657\pi\)
0.280694 + 0.959797i \(0.409435\pi\)
\(158\) −2.59533 + 14.7188i −0.206473 + 1.17097i
\(159\) −14.4225 + 7.14304i −1.14378 + 0.566480i
\(160\) 0 0
\(161\) −2.50780 −0.197643
\(162\) −9.57680 6.60871i −0.752425 0.519229i
\(163\) −3.19497 −0.250249 −0.125125 0.992141i \(-0.539933\pi\)
−0.125125 + 0.992141i \(0.539933\pi\)
\(164\) 3.03610 2.54759i 0.237079 0.198933i
\(165\) 0 0
\(166\) 1.24837 7.07983i 0.0968920 0.549502i
\(167\) −5.19103 + 1.88938i −0.401694 + 0.146205i −0.534963 0.844875i \(-0.679675\pi\)
0.133270 + 0.991080i \(0.457452\pi\)
\(168\) −1.62516 + 3.71064i −0.125384 + 0.286282i
\(169\) 2.28928 + 12.9832i 0.176099 + 0.998704i
\(170\) 0 0
\(171\) 9.00765 + 1.15459i 0.688832 + 0.0882938i
\(172\) −0.0578806 + 0.100252i −0.00441335 + 0.00764415i
\(173\) 10.0159 + 3.64550i 0.761497 + 0.277162i 0.693435 0.720519i \(-0.256096\pi\)
0.0680619 + 0.997681i \(0.478318\pi\)
\(174\) −0.223625 0.762373i −0.0169530 0.0577953i
\(175\) 0 0
\(176\) 9.65594 + 8.10229i 0.727844 + 0.610733i
\(177\) −15.8156 + 16.5777i −1.18877 + 1.24606i
\(178\) 6.33030 + 2.30404i 0.474476 + 0.172695i
\(179\) −7.01872 + 12.1568i −0.524604 + 0.908640i 0.474986 + 0.879993i \(0.342453\pi\)
−0.999590 + 0.0286466i \(0.990880\pi\)
\(180\) 0 0
\(181\) 7.75754 + 13.4365i 0.576613 + 0.998723i 0.995864 + 0.0908531i \(0.0289594\pi\)
−0.419251 + 0.907870i \(0.637707\pi\)
\(182\) −0.892479 5.06150i −0.0661550 0.375183i
\(183\) 6.76677 + 9.19573i 0.500214 + 0.679768i
\(184\) −9.13159 + 3.32363i −0.673190 + 0.245021i
\(185\) 0 0
\(186\) 5.04588 + 3.35910i 0.369982 + 0.246301i
\(187\) 11.6595 9.78348i 0.852627 0.715439i
\(188\) −0.861671 −0.0628438
\(189\) 4.03631 + 0.0673839i 0.293599 + 0.00490145i
\(190\) 0 0
\(191\) 3.34632 2.80790i 0.242131 0.203172i −0.513644 0.858004i \(-0.671705\pi\)
0.755775 + 0.654831i \(0.227260\pi\)
\(192\) −0.976076 + 15.2922i −0.0704422 + 1.10362i
\(193\) 0.571456 3.24089i 0.0411343 0.233284i −0.957309 0.289068i \(-0.906655\pi\)
0.998443 + 0.0557838i \(0.0177658\pi\)
\(194\) −8.63729 + 3.14372i −0.620122 + 0.225706i
\(195\) 0 0
\(196\) 0.364893 + 2.06941i 0.0260638 + 0.147815i
\(197\) −10.7134 18.5561i −0.763297 1.32207i −0.941142 0.338011i \(-0.890246\pi\)
0.177845 0.984059i \(-0.443087\pi\)
\(198\) 4.49512 14.4284i 0.319454 1.02538i
\(199\) 7.03013 12.1765i 0.498353 0.863172i −0.501645 0.865073i \(-0.667272\pi\)
0.999998 + 0.00190098i \(0.000605102\pi\)
\(200\) 0 0
\(201\) −6.70098 1.62760i −0.472651 0.114802i
\(202\) 1.74628 + 1.46531i 0.122868 + 0.103099i
\(203\) 0.211153 + 0.177178i 0.0148200 + 0.0124355i
\(204\) 2.15992 + 0.524620i 0.151224 + 0.0367307i
\(205\) 0 0
\(206\) 12.3885 21.4575i 0.863146 1.49501i
\(207\) 6.56671 + 7.11735i 0.456418 + 0.494690i
\(208\) −8.27682 14.3359i −0.573894 0.994014i
\(209\) 2.04814 + 11.6156i 0.141673 + 0.803466i
\(210\) 0 0
\(211\) 3.90781 1.42233i 0.269025 0.0979170i −0.203986 0.978974i \(-0.565390\pi\)
0.473010 + 0.881057i \(0.343167\pi\)
\(212\) 0.530083 3.00625i 0.0364063 0.206470i
\(213\) −1.33928 + 20.9825i −0.0917660 + 1.43770i
\(214\) −5.46007 + 4.58154i −0.373242 + 0.313188i
\(215\) 0 0
\(216\) 14.7866 5.10402i 1.00610 0.347284i
\(217\) −2.10304 −0.142764
\(218\) 14.1303 11.8567i 0.957024 0.803039i
\(219\) −20.3147 13.5237i −1.37274 0.913849i
\(220\) 0 0
\(221\) −18.7830 + 6.83645i −1.26348 + 0.459869i
\(222\) −5.67187 7.70781i −0.380671 0.517315i
\(223\) 2.88459 + 16.3593i 0.193167 + 1.09550i 0.915006 + 0.403441i \(0.132186\pi\)
−0.721839 + 0.692061i \(0.756703\pi\)
\(224\) −0.714137 1.23692i −0.0477153 0.0826453i
\(225\) 0 0
\(226\) −4.01118 + 6.94758i −0.266820 + 0.462146i
\(227\) 4.97722 + 1.81156i 0.330350 + 0.120238i 0.501870 0.864943i \(-0.332646\pi\)
−0.171520 + 0.985181i \(0.554868\pi\)
\(228\) −1.18897 + 1.24627i −0.0787415 + 0.0825362i
\(229\) −15.6135 13.1012i −1.03177 0.865754i −0.0407059 0.999171i \(-0.512961\pi\)
−0.991060 + 0.133417i \(0.957405\pi\)
\(230\) 0 0
\(231\) 1.47575 + 5.03108i 0.0970975 + 0.331021i
\(232\) 1.00368 + 0.365309i 0.0658948 + 0.0239837i
\(233\) −0.613363 + 1.06238i −0.0401827 + 0.0695985i −0.885417 0.464797i \(-0.846127\pi\)
0.845235 + 0.534395i \(0.179461\pi\)
\(234\) −12.0280 + 15.7865i −0.786293 + 1.03200i
\(235\) 0 0
\(236\) −0.754619 4.27966i −0.0491215 0.278582i
\(237\) −8.03293 + 18.3411i −0.521795 + 1.19138i
\(238\) 3.68694 1.34194i 0.238989 0.0869848i
\(239\) 2.66890 15.1361i 0.172637 0.979073i −0.768199 0.640211i \(-0.778847\pi\)
0.940836 0.338862i \(-0.110042\pi\)
\(240\) 0 0
\(241\) 14.2379 11.9470i 0.917146 0.769577i −0.0563190 0.998413i \(-0.517936\pi\)
0.973465 + 0.228836i \(0.0734920\pi\)
\(242\) 5.40637 0.347534
\(243\) −10.3779 11.6318i −0.665742 0.746182i
\(244\) −2.16548 −0.138630
\(245\) 0 0
\(246\) −24.2092 + 11.9901i −1.54352 + 0.764460i
\(247\) 2.68975 15.2543i 0.171145 0.970611i
\(248\) −7.65774 + 2.78719i −0.486267 + 0.176987i
\(249\) 3.86388 8.82218i 0.244863 0.559083i
\(250\) 0 0
\(251\) 3.10032 + 5.36991i 0.195691 + 0.338946i 0.947127 0.320860i \(-0.103972\pi\)
−0.751436 + 0.659806i \(0.770639\pi\)
\(252\) −0.464034 + 0.609037i −0.0292314 + 0.0383657i
\(253\) −6.28869 + 10.8923i −0.395367 + 0.684795i
\(254\) 14.6769 + 5.34196i 0.920912 + 0.335185i
\(255\) 0 0
\(256\) −5.86792 4.92377i −0.366745 0.307736i
\(257\) −15.1559 12.7173i −0.945401 0.793285i 0.0331163 0.999452i \(-0.489457\pi\)
−0.978517 + 0.206166i \(0.933901\pi\)
\(258\) 0.544680 0.570929i 0.0339103 0.0355445i
\(259\) 3.11989 + 1.13555i 0.193861 + 0.0705595i
\(260\) 0 0
\(261\) −0.0500600 1.06321i −0.00309864 0.0658111i
\(262\) −0.521935 0.904017i −0.0322452 0.0558504i
\(263\) −2.95564 16.7623i −0.182252 1.03360i −0.929435 0.368986i \(-0.879705\pi\)
0.747183 0.664619i \(-0.231406\pi\)
\(264\) 12.0414 + 16.3637i 0.741096 + 1.00712i
\(265\) 0 0
\(266\) −0.527975 + 2.99430i −0.0323722 + 0.183592i
\(267\) 7.51258 + 5.00121i 0.459762 + 0.306069i
\(268\) 1.00193 0.840718i 0.0612025 0.0513550i
\(269\) −6.07723 −0.370535 −0.185268 0.982688i \(-0.559315\pi\)
−0.185268 + 0.982688i \(0.559315\pi\)
\(270\) 0 0
\(271\) −30.8933 −1.87664 −0.938318 0.345774i \(-0.887617\pi\)
−0.938318 + 0.345774i \(0.887617\pi\)
\(272\) 9.68054 8.12293i 0.586969 0.492525i
\(273\) 0.438600 6.87155i 0.0265453 0.415885i
\(274\) 0.160226 0.908685i 0.00967958 0.0548956i
\(275\) 0 0
\(276\) −1.82548 + 0.203079i −0.109881 + 0.0122239i
\(277\) 4.28682 + 24.3118i 0.257570 + 1.46075i 0.789388 + 0.613895i \(0.210398\pi\)
−0.531818 + 0.846859i \(0.678491\pi\)
\(278\) −8.54117 14.7937i −0.512265 0.887269i
\(279\) 5.50684 + 5.96860i 0.329686 + 0.357331i
\(280\) 0 0
\(281\) 16.7164 + 6.08427i 0.997216 + 0.362957i 0.788510 0.615022i \(-0.210853\pi\)
0.208706 + 0.977979i \(0.433075\pi\)
\(282\) 5.70753 + 1.38630i 0.339879 + 0.0825528i
\(283\) 2.22808 + 1.86958i 0.132446 + 0.111135i 0.706604 0.707609i \(-0.250226\pi\)
−0.574158 + 0.818744i \(0.694671\pi\)
\(284\) −3.05486 2.56333i −0.181273 0.152106i
\(285\) 0 0
\(286\) −24.2220 8.81610i −1.43228 0.521307i
\(287\) 4.68638 8.11705i 0.276628 0.479134i
\(288\) −1.64051 + 5.26567i −0.0966677 + 0.310283i
\(289\) 0.870418 + 1.50761i 0.0512011 + 0.0886828i
\(290\) 0 0
\(291\) −12.2386 + 1.36150i −0.717438 + 0.0798125i
\(292\) 4.34963 1.58314i 0.254543 0.0926461i
\(293\) −1.07421 + 6.09217i −0.0627563 + 0.355908i 0.937218 + 0.348744i \(0.113392\pi\)
−0.999974 + 0.00716458i \(0.997719\pi\)
\(294\) 0.912390 14.2944i 0.0532116 0.833667i
\(295\) 0 0
\(296\) 12.8653 0.747781
\(297\) 10.4143 17.3623i 0.604301 1.00746i
\(298\) 6.86401 0.397621
\(299\) 12.6531 10.6172i 0.731748 0.614010i
\(300\) 0 0
\(301\) −0.0475378 + 0.269600i −0.00274003 + 0.0155395i
\(302\) 7.08776 2.57973i 0.407855 0.148447i
\(303\) 1.81007 + 2.45980i 0.103986 + 0.141312i
\(304\) 1.70051 + 9.64407i 0.0975309 + 0.553125i
\(305\) 0 0
\(306\) −13.4628 6.94995i −0.769617 0.397302i
\(307\) 13.9233 24.1159i 0.794645 1.37637i −0.128419 0.991720i \(-0.540990\pi\)
0.923064 0.384646i \(-0.125676\pi\)
\(308\) −0.934475 0.340121i −0.0532466 0.0193802i
\(309\) 22.9130 24.0172i 1.30347 1.36629i
\(310\) 0 0
\(311\) 13.2628 + 11.1288i 0.752062 + 0.631055i 0.936047 0.351874i \(-0.114456\pi\)
−0.183986 + 0.982929i \(0.558900\pi\)
\(312\) −7.50990 25.6024i −0.425164 1.44945i
\(313\) 9.40628 + 3.42361i 0.531675 + 0.193514i 0.593886 0.804549i \(-0.297593\pi\)
−0.0622113 + 0.998063i \(0.519815\pi\)
\(314\) −1.04492 + 1.80986i −0.0589684 + 0.102136i
\(315\) 0 0
\(316\) −1.89888 3.28897i −0.106821 0.185019i
\(317\) 1.39206 + 7.89475i 0.0781857 + 0.443413i 0.998620 + 0.0525162i \(0.0167241\pi\)
−0.920434 + 0.390897i \(0.872165\pi\)
\(318\) −8.34776 + 19.0600i −0.468119 + 1.06883i
\(319\) 1.29905 0.472815i 0.0727327 0.0264725i
\(320\) 0 0
\(321\) −8.55693 + 4.23799i −0.477601 + 0.236542i
\(322\) −2.48370 + 2.08407i −0.138411 + 0.116141i
\(323\) 11.8248 0.657950
\(324\) 2.94357 0.277805i 0.163532 0.0154336i
\(325\) 0 0
\(326\) −3.16426 + 2.65513i −0.175252 + 0.147054i
\(327\) 22.1448 10.9677i 1.22461 0.606513i
\(328\) 6.30673 35.7673i 0.348231 1.97492i
\(329\) −1.91484 + 0.696946i −0.105569 + 0.0384239i
\(330\) 0 0
\(331\) −4.48752 25.4500i −0.246656 1.39886i −0.816615 0.577183i \(-0.804152\pi\)
0.569958 0.821674i \(-0.306959\pi\)
\(332\) 0.913374 + 1.58201i 0.0501279 + 0.0868240i
\(333\) −4.94669 11.8279i −0.271077 0.648167i
\(334\) −3.57099 + 6.18513i −0.195396 + 0.338435i
\(335\) 0 0
\(336\) 1.22528 + 4.17716i 0.0668443 + 0.227883i
\(337\) 15.1328 + 12.6980i 0.824338 + 0.691702i 0.953984 0.299859i \(-0.0969396\pi\)
−0.129646 + 0.991560i \(0.541384\pi\)
\(338\) 13.0567 + 10.9559i 0.710191 + 0.595921i
\(339\) −7.41885 + 7.77638i −0.402937 + 0.422355i
\(340\) 0 0
\(341\) −5.27369 + 9.13430i −0.285586 + 0.494650i
\(342\) 9.88056 6.34216i 0.534279 0.342945i
\(343\) 5.20383 + 9.01329i 0.280980 + 0.486672i
\(344\) 0.184207 + 1.04469i 0.00993177 + 0.0563259i
\(345\) 0 0
\(346\) 12.9492 4.71312i 0.696153 0.253379i
\(347\) −4.37541 + 24.8142i −0.234884 + 1.33210i 0.607973 + 0.793958i \(0.291983\pi\)
−0.842857 + 0.538138i \(0.819128\pi\)
\(348\) 0.168050 + 0.111873i 0.00900842 + 0.00599701i
\(349\) 22.8639 19.1851i 1.22388 1.02695i 0.225263 0.974298i \(-0.427676\pi\)
0.998613 0.0526561i \(-0.0167687\pi\)
\(350\) 0 0
\(351\) −20.6505 + 16.7484i −1.10224 + 0.893966i
\(352\) −7.16322 −0.381801
\(353\) 9.94244 8.34269i 0.529182 0.444037i −0.338637 0.940917i \(-0.609966\pi\)
0.867819 + 0.496880i \(0.165521\pi\)
\(354\) −1.88687 + 29.5617i −0.100286 + 1.57118i
\(355\) 0 0
\(356\) −1.60854 + 0.585459i −0.0852523 + 0.0310293i
\(357\) 5.22419 0.581173i 0.276493 0.0307589i
\(358\) 3.15144 + 17.8727i 0.166559 + 0.944602i
\(359\) 6.77215 + 11.7297i 0.357421 + 0.619071i 0.987529 0.157436i \(-0.0503230\pi\)
−0.630109 + 0.776507i \(0.716990\pi\)
\(360\) 0 0
\(361\) 4.91829 8.51873i 0.258857 0.448354i
\(362\) 18.8491 + 6.86051i 0.990687 + 0.360581i
\(363\) 7.03830 + 1.70953i 0.369415 + 0.0897269i
\(364\) 1.00043 + 0.839464i 0.0524370 + 0.0439999i
\(365\) 0 0
\(366\) 14.3437 + 3.48392i 0.749756 + 0.182108i
\(367\) −23.5250 8.56238i −1.22799 0.446953i −0.355083 0.934835i \(-0.615547\pi\)
−0.872910 + 0.487882i \(0.837770\pi\)
\(368\) −5.22132 + 9.04359i −0.272180 + 0.471430i
\(369\) −35.3082 + 7.95426i −1.83807 + 0.414082i
\(370\) 0 0
\(371\) −1.25357 7.10937i −0.0650823 0.369100i
\(372\) −1.53085 + 0.170301i −0.0793707 + 0.00882972i
\(373\) 1.95904 0.713033i 0.101435 0.0369195i −0.290804 0.956783i \(-0.593923\pi\)
0.392239 + 0.919863i \(0.371701\pi\)
\(374\) 3.41702 19.3789i 0.176690 1.00206i
\(375\) 0 0
\(376\) −6.04879 + 5.07553i −0.311942 + 0.261751i
\(377\) −1.81548 −0.0935021
\(378\) 4.05351 3.28758i 0.208490 0.169095i
\(379\) 9.13522 0.469245 0.234622 0.972087i \(-0.424615\pi\)
0.234622 + 0.972087i \(0.424615\pi\)
\(380\) 0 0
\(381\) 17.4181 + 11.5954i 0.892354 + 0.594050i
\(382\) 0.980698 5.56181i 0.0501769 0.284567i
\(383\) −9.60103 + 3.49449i −0.490590 + 0.178560i −0.575457 0.817832i \(-0.695176\pi\)
0.0848669 + 0.996392i \(0.472953\pi\)
\(384\) 7.96710 + 10.8269i 0.406569 + 0.552509i
\(385\) 0 0
\(386\) −2.12732 3.68463i −0.108278 0.187543i
\(387\) 0.889625 0.571035i 0.0452222 0.0290274i
\(388\) 1.16780 2.02269i 0.0592861 0.102687i
\(389\) −16.4031 5.97024i −0.831670 0.302703i −0.109126 0.994028i \(-0.534805\pi\)
−0.722544 + 0.691325i \(0.757027\pi\)
\(390\) 0 0
\(391\) 9.65938 + 8.10519i 0.488496 + 0.409897i
\(392\) 14.7510 + 12.3776i 0.745039 + 0.625162i
\(393\) −0.393627 1.34194i −0.0198559 0.0676918i
\(394\) −26.0312 9.47457i −1.31143 0.477322i
\(395\) 0 0
\(396\) 1.48164 + 3.54272i 0.0744553 + 0.178029i
\(397\) −6.61971 11.4657i −0.332233 0.575445i 0.650716 0.759321i \(-0.274469\pi\)
−0.982949 + 0.183876i \(0.941136\pi\)
\(398\) −3.15656 17.9018i −0.158224 0.897334i
\(399\) −1.63416 + 3.73119i −0.0818105 + 0.186793i
\(400\) 0 0
\(401\) 6.80556 38.5962i 0.339853 1.92740i −0.0328639 0.999460i \(-0.510463\pi\)
0.372717 0.927945i \(-0.378426\pi\)
\(402\) −7.98915 + 3.95679i −0.398463 + 0.197347i
\(403\) 10.6109 8.90359i 0.528566 0.443519i
\(404\) −0.579252 −0.0288189
\(405\) 0 0
\(406\) 0.356364 0.0176860
\(407\) 12.7557 10.7033i 0.632277 0.530543i
\(408\) 18.2524 9.03989i 0.903630 0.447541i
\(409\) −3.44309 + 19.5268i −0.170250 + 0.965536i 0.773235 + 0.634120i \(0.218637\pi\)
−0.943485 + 0.331416i \(0.892474\pi\)
\(410\) 0 0
\(411\) 0.495922 1.13231i 0.0244620 0.0558528i
\(412\) 1.09326 + 6.20021i 0.0538612 + 0.305462i
\(413\) −5.13847 8.90009i −0.252847 0.437945i
\(414\) 12.4183 + 1.59177i 0.610328 + 0.0782313i
\(415\) 0 0
\(416\) 8.83989 + 3.21746i 0.433411 + 0.157749i
\(417\) −6.44149 21.9601i −0.315441 1.07539i
\(418\) 11.6814 + 9.80184i 0.571355 + 0.479424i
\(419\) 20.8598 + 17.5035i 1.01907 + 0.855101i 0.989510 0.144462i \(-0.0461450\pi\)
0.0295598 + 0.999563i \(0.490589\pi\)
\(420\) 0 0
\(421\) −2.12407 0.773098i −0.103521 0.0376785i 0.289740 0.957105i \(-0.406431\pi\)
−0.393261 + 0.919427i \(0.628653\pi\)
\(422\) 2.68824 4.65617i 0.130862 0.226659i
\(423\) 6.99203 + 3.60952i 0.339964 + 0.175501i
\(424\) −13.9867 24.2257i −0.679256 1.17651i
\(425\) 0 0
\(426\) 16.1108 + 21.8938i 0.780569 + 1.06076i
\(427\) −4.81222 + 1.75150i −0.232880 + 0.0847612i
\(428\) 0.314500 1.78362i 0.0152019 0.0862145i
\(429\) −28.7459 19.1364i −1.38786 0.923916i
\(430\) 0 0
\(431\) 9.69510 0.466996 0.233498 0.972357i \(-0.424983\pi\)
0.233498 + 0.972357i \(0.424983\pi\)
\(432\) 8.64671 14.4154i 0.416015 0.693560i
\(433\) −32.3437 −1.55434 −0.777169 0.629292i \(-0.783345\pi\)
−0.777169 + 0.629292i \(0.783345\pi\)
\(434\) −2.08282 + 1.74770i −0.0999788 + 0.0838922i
\(435\) 0 0
\(436\) −0.813906 + 4.61589i −0.0389790 + 0.221061i
\(437\) −9.18216 + 3.34203i −0.439242 + 0.159871i
\(438\) −31.3581 + 3.48848i −1.49835 + 0.166686i
\(439\) −1.71544 9.72872i −0.0818733 0.464327i −0.997988 0.0634094i \(-0.979803\pi\)
0.916114 0.400917i \(-0.131308\pi\)
\(440\) 0 0
\(441\) 5.70778 18.3208i 0.271799 0.872417i
\(442\) −12.9211 + 22.3800i −0.614594 + 1.06451i
\(443\) 24.5846 + 8.94805i 1.16805 + 0.425135i 0.851966 0.523597i \(-0.175410\pi\)
0.316082 + 0.948732i \(0.397632\pi\)
\(444\) 2.36299 + 0.573944i 0.112142 + 0.0272382i
\(445\) 0 0
\(446\) 16.4520 + 13.8049i 0.779025 + 0.653680i
\(447\) 8.93594 + 2.17044i 0.422656 + 0.102658i
\(448\) −6.45865 2.35075i −0.305142 0.111063i
\(449\) 8.04462 13.9337i 0.379649 0.657572i −0.611362 0.791351i \(-0.709378\pi\)
0.991011 + 0.133779i \(0.0427113\pi\)
\(450\) 0 0
\(451\) −23.5036 40.7094i −1.10674 1.91693i
\(452\) −0.353981 2.00752i −0.0166499 0.0944260i
\(453\) 10.0430 1.11725i 0.471860 0.0524928i
\(454\) 6.43484 2.34209i 0.302002 0.109920i
\(455\) 0 0
\(456\) −1.00543 + 15.7520i −0.0470835 + 0.737657i
\(457\) 23.3162 19.5646i 1.09068 0.915193i 0.0939208 0.995580i \(-0.470060\pi\)
0.996764 + 0.0803867i \(0.0256155\pi\)
\(458\) −26.3509 −1.23130
\(459\) −15.3290 13.3048i −0.715497 0.621017i
\(460\) 0 0
\(461\) 12.5270 10.5114i 0.583438 0.489563i −0.302636 0.953106i \(-0.597867\pi\)
0.886074 + 0.463543i \(0.153422\pi\)
\(462\) 5.64257 + 3.75632i 0.262516 + 0.174760i
\(463\) −1.26889 + 7.19625i −0.0589705 + 0.334438i −0.999992 0.00390751i \(-0.998756\pi\)
0.941022 + 0.338346i \(0.109867\pi\)
\(464\) 1.07856 0.392564i 0.0500709 0.0182243i
\(465\) 0 0
\(466\) 0.275403 + 1.56189i 0.0127578 + 0.0723531i
\(467\) 5.03027 + 8.71268i 0.232773 + 0.403175i 0.958623 0.284678i \(-0.0918867\pi\)
−0.725850 + 0.687853i \(0.758553\pi\)
\(468\) −0.237183 5.03746i −0.0109638 0.232857i
\(469\) 1.54653 2.67867i 0.0714121 0.123689i
\(470\) 0 0
\(471\) −1.93263 + 2.02576i −0.0890508 + 0.0933423i
\(472\) −30.5059 25.5975i −1.40415 1.17822i
\(473\) 1.05177 + 0.882537i 0.0483603 + 0.0405791i
\(474\) 7.28638 + 24.8404i 0.334675 + 1.14096i
\(475\) 0 0
\(476\) −0.498490 + 0.863411i −0.0228483 + 0.0395744i
\(477\) −16.8945 + 22.1737i −0.773544 + 1.01526i
\(478\) −9.93536 17.2085i −0.454433 0.787100i
\(479\) 1.39286 + 7.89931i 0.0636415 + 0.360929i 0.999952 + 0.00975657i \(0.00310566\pi\)
−0.936311 + 0.351172i \(0.885783\pi\)
\(480\) 0 0
\(481\) −20.5489 + 7.47920i −0.936950 + 0.341022i
\(482\) 4.17267 23.6644i 0.190060 1.07788i
\(483\) −3.89241 + 1.92780i −0.177111 + 0.0877177i
\(484\) −1.05236 + 0.883038i −0.0478347 + 0.0401381i
\(485\) 0 0
\(486\) −19.9446 2.89563i −0.904704 0.131349i
\(487\) −1.30014 −0.0589151 −0.0294575 0.999566i \(-0.509378\pi\)
−0.0294575 + 0.999566i \(0.509378\pi\)
\(488\) −15.2013 + 12.7554i −0.688130 + 0.577409i
\(489\) −4.95897 + 2.45603i −0.224253 + 0.111066i
\(490\) 0 0
\(491\) 10.4561 3.80573i 0.471879 0.171750i −0.0951242 0.995465i \(-0.530325\pi\)
0.567003 + 0.823715i \(0.308103\pi\)
\(492\) 2.75400 6.28806i 0.124160 0.283488i
\(493\) −0.240666 1.36488i −0.0108390 0.0614713i
\(494\) −10.0130 17.3430i −0.450505 0.780298i
\(495\) 0 0
\(496\) −4.37859 + 7.58394i −0.196604 + 0.340529i
\(497\) −8.86195 3.22548i −0.397513 0.144683i
\(498\) −3.50479 11.9484i −0.157053 0.535420i
\(499\) 13.6131 + 11.4227i 0.609404 + 0.511351i 0.894453 0.447162i \(-0.147565\pi\)
−0.285049 + 0.958513i \(0.592010\pi\)
\(500\) 0 0
\(501\) −6.60469 + 6.92298i −0.295076 + 0.309296i
\(502\) 7.53309 + 2.74182i 0.336218 + 0.122374i
\(503\) 6.51241 11.2798i 0.290374 0.502942i −0.683524 0.729928i \(-0.739554\pi\)
0.973898 + 0.226985i \(0.0728870\pi\)
\(504\) 0.329994 + 7.00865i 0.0146991 + 0.312190i
\(505\) 0 0
\(506\) 2.82366 + 16.0137i 0.125527 + 0.711898i
\(507\) 13.5336 + 18.3916i 0.601050 + 0.816799i
\(508\) −3.72942 + 1.35740i −0.165466 + 0.0602248i
\(509\) −3.60691 + 20.4558i −0.159873 + 0.906687i 0.794321 + 0.607499i \(0.207827\pi\)
−0.954194 + 0.299188i \(0.903284\pi\)
\(510\) 0 0
\(511\) 8.38545 7.03623i 0.370951 0.311265i
\(512\) −25.4252 −1.12365
\(513\) 14.8685 5.13228i 0.656460 0.226596i
\(514\) −25.5788 −1.12823
\(515\) 0 0
\(516\) −0.0127719 + 0.200097i −0.000562250 + 0.00880878i
\(517\) −1.77466 + 10.0646i −0.0780493 + 0.442640i
\(518\) 4.03358 1.46810i 0.177225 0.0645047i
\(519\) 18.3483 2.04118i 0.805400 0.0895980i
\(520\) 0 0
\(521\) 12.5826 + 21.7937i 0.551255 + 0.954801i 0.998184 + 0.0602320i \(0.0191841\pi\)
−0.446930 + 0.894569i \(0.647483\pi\)
\(522\) −0.933142 1.01139i −0.0408425 0.0442673i
\(523\) 12.3608 21.4096i 0.540502 0.936177i −0.458373 0.888760i \(-0.651568\pi\)
0.998875 0.0474173i \(-0.0150991\pi\)
\(524\) 0.249252 + 0.0907203i 0.0108886 + 0.00396313i
\(525\) 0 0
\(526\) −16.8572 14.1449i −0.735010 0.616746i
\(527\) 8.10034 + 6.79700i 0.352857 + 0.296082i
\(528\) 21.2155 + 5.15302i 0.923288 + 0.224256i
\(529\) 11.8215 + 4.30268i 0.513978 + 0.187073i
\(530\) 0 0
\(531\) −11.8040 + 37.8884i −0.512251 + 1.64421i
\(532\) −0.386296 0.669084i −0.0167481 0.0290085i
\(533\) 10.7198 + 60.7951i 0.464327 + 2.63333i
\(534\) 11.5965 1.29007i 0.501831 0.0558270i
\(535\) 0 0
\(536\) 2.08126 11.8034i 0.0898966 0.509829i
\(537\) −1.54874 + 24.2642i −0.0668332 + 1.04708i
\(538\) −6.01881 + 5.05038i −0.259489 + 0.217737i
\(539\) 24.9229 1.07350
\(540\) 0 0
\(541\) 16.9208 0.727482 0.363741 0.931500i \(-0.381499\pi\)
0.363741 + 0.931500i \(0.381499\pi\)
\(542\) −30.5964 + 25.6734i −1.31423 + 1.10277i
\(543\) 22.3695 + 14.8916i 0.959966 + 0.639060i
\(544\) −1.24705 + 7.07237i −0.0534668 + 0.303225i
\(545\) 0 0
\(546\) −5.27610 7.16999i −0.225796 0.306847i
\(547\) −0.247344 1.40276i −0.0105757 0.0599776i 0.979063 0.203556i \(-0.0652500\pi\)
−0.989639 + 0.143579i \(0.954139\pi\)
\(548\) 0.117230 + 0.203048i 0.00500781 + 0.00867379i
\(549\) 17.5718 + 9.07112i 0.749944 + 0.387146i
\(550\) 0 0
\(551\) 1.00924 + 0.367332i 0.0429950 + 0.0156489i
\(552\) −11.6184 + 12.1783i −0.494511 + 0.518342i
\(553\) −6.88000 5.77301i −0.292567 0.245493i
\(554\) 24.4495 + 20.5156i 1.03876 + 0.871624i
\(555\) 0 0
\(556\) 4.07887 + 1.48459i 0.172983 + 0.0629605i
\(557\) −4.83922 + 8.38178i −0.205044 + 0.355147i −0.950147 0.311803i \(-0.899067\pi\)
0.745102 + 0.666950i \(0.232401\pi\)
\(558\) 10.4140 + 1.33486i 0.440860 + 0.0565090i
\(559\) −0.901548 1.56153i −0.0381314 0.0660455i
\(560\) 0 0
\(561\) 10.5762 24.1480i 0.446527 1.01953i
\(562\) 21.6119 7.86609i 0.911644 0.331811i
\(563\) −6.62845 + 37.5918i −0.279356 + 1.58431i 0.445420 + 0.895322i \(0.353055\pi\)
−0.724776 + 0.688985i \(0.758057\pi\)
\(564\) −1.33742 + 0.662383i −0.0563154 + 0.0278913i
\(565\) 0 0
\(566\) 3.76035 0.158059
\(567\) 6.31664 2.99820i 0.265274 0.125913i
\(568\) −36.5435 −1.53333
\(569\) −25.8444 + 21.6860i −1.08345 + 0.909126i −0.996203 0.0870599i \(-0.972253\pi\)
−0.0872516 + 0.996186i \(0.527808\pi\)
\(570\) 0 0
\(571\) 0.954517 5.41334i 0.0399453 0.226541i −0.958299 0.285766i \(-0.907752\pi\)
0.998245 + 0.0592252i \(0.0188630\pi\)
\(572\) 6.15485 2.24018i 0.257347 0.0936667i
\(573\) 3.03541 6.93057i 0.126806 0.289529i
\(574\) −2.10421 11.9336i −0.0878279 0.498097i
\(575\) 0 0
\(576\) 10.2404 + 24.4856i 0.426684 + 1.02023i
\(577\) −13.6599 + 23.6596i −0.568668 + 0.984962i 0.428030 + 0.903765i \(0.359208\pi\)
−0.996698 + 0.0811975i \(0.974126\pi\)
\(578\) 2.11492 + 0.769769i 0.0879692 + 0.0320182i
\(579\) −1.60436 5.46953i −0.0666750 0.227306i
\(580\) 0 0
\(581\) 3.30932 + 2.77685i 0.137294 + 0.115203i
\(582\) −10.9895 + 11.5191i −0.455528 + 0.477481i
\(583\) −34.0222 12.3831i −1.40906 0.512854i
\(584\) 21.2085 36.7342i 0.877613 1.52007i
\(585\) 0 0
\(586\) 3.99891 + 6.92632i 0.165193 + 0.286123i
\(587\) −2.06533 11.7130i −0.0852451 0.483449i −0.997303 0.0733885i \(-0.976619\pi\)
0.912058 0.410061i \(-0.134492\pi\)
\(588\) 2.15715 + 2.93147i 0.0889595 + 0.120892i
\(589\) −7.70014 + 2.80262i −0.317279 + 0.115480i
\(590\) 0 0
\(591\) −30.8929 20.5657i −1.27076 0.845961i
\(592\) 10.5907 8.88664i 0.435274 0.365239i
\(593\) −9.14301 −0.375459 −0.187729 0.982221i \(-0.560113\pi\)
−0.187729 + 0.982221i \(0.560113\pi\)
\(594\) −4.11439 25.8500i −0.168816 1.06064i
\(595\) 0 0
\(596\) −1.33610 + 1.12112i −0.0547287 + 0.0459229i
\(597\) 1.55126 24.3036i 0.0634889 0.994681i
\(598\) 3.70821 21.0303i 0.151640 0.859994i
\(599\) −24.8634 + 9.04955i −1.01589 + 0.369755i −0.795693 0.605700i \(-0.792893\pi\)
−0.220200 + 0.975455i \(0.570671\pi\)
\(600\) 0 0
\(601\) 3.19159 + 18.1004i 0.130188 + 0.738330i 0.978091 + 0.208179i \(0.0667537\pi\)
−0.847903 + 0.530151i \(0.822135\pi\)
\(602\) 0.176966 + 0.306514i 0.00721260 + 0.0124926i
\(603\) −11.6519 + 2.62495i −0.474501 + 0.106896i
\(604\) −0.958297 + 1.65982i −0.0389925 + 0.0675371i
\(605\) 0 0
\(606\) 3.83685 + 0.931928i 0.155861 + 0.0378570i
\(607\) 23.4111 + 19.6443i 0.950228 + 0.797336i 0.979336 0.202240i \(-0.0648221\pi\)
−0.0291076 + 0.999576i \(0.509267\pi\)
\(608\) −4.26315 3.57721i −0.172894 0.145075i
\(609\) 0.463934 + 0.112684i 0.0187995 + 0.00456620i
\(610\) 0 0
\(611\) 6.71069 11.6233i 0.271486 0.470227i
\(612\) 3.75573 0.846095i 0.151816 0.0342014i
\(613\) 10.0248 + 17.3635i 0.404898 + 0.701304i 0.994310 0.106529i \(-0.0339736\pi\)
−0.589411 + 0.807833i \(0.700640\pi\)
\(614\) −6.25164 35.4548i −0.252295 1.43084i
\(615\) 0 0
\(616\) −8.56328 + 3.11678i −0.345024 + 0.125579i
\(617\) −4.38720 + 24.8810i −0.176622 + 1.00167i 0.759633 + 0.650352i \(0.225379\pi\)
−0.936255 + 0.351321i \(0.885733\pi\)
\(618\) 2.73363 42.8278i 0.109963 1.72279i
\(619\) 13.4670 11.3002i 0.541285 0.454192i −0.330692 0.943739i \(-0.607282\pi\)
0.871977 + 0.489547i \(0.162838\pi\)
\(620\) 0 0
\(621\) 15.6636 + 5.99901i 0.628557 + 0.240732i
\(622\) 22.3836 0.897502
\(623\) −3.10102 + 2.60207i −0.124240 + 0.104250i
\(624\) −23.8669 15.8884i −0.955439 0.636046i
\(625\) 0 0
\(626\) 12.1610 4.42624i 0.486051 0.176908i
\(627\) 12.1081 + 16.4543i 0.483549 + 0.657122i
\(628\) −0.0922128 0.522965i −0.00367969 0.0208686i
\(629\) −8.34690 14.4573i −0.332813 0.576449i
\(630\) 0 0
\(631\) 15.3587 26.6020i 0.611420 1.05901i −0.379581 0.925158i \(-0.623932\pi\)
0.991001 0.133852i \(-0.0427347\pi\)
\(632\) −32.7030 11.9029i −1.30085 0.473472i
\(633\) 4.97202 5.21163i 0.197620 0.207143i
\(634\) 7.93948 + 6.66201i 0.315317 + 0.264582i
\(635\) 0 0
\(636\) −1.48821 5.07354i −0.0590113 0.201179i
\(637\) −30.7565 11.1944i −1.21862 0.443540i
\(638\) 0.893635 1.54782i 0.0353794 0.0612788i
\(639\) 14.0509 + 33.5969i 0.555846 + 1.32907i
\(640\) 0 0
\(641\) 1.59110 + 9.02357i 0.0628446 + 0.356409i 0.999972 + 0.00742320i \(0.00236290\pi\)
−0.937128 + 0.348986i \(0.886526\pi\)
\(642\) −4.95276 + 11.3083i −0.195470 + 0.446305i
\(643\) −13.6800 + 4.97910i −0.539486 + 0.196357i −0.597369 0.801967i \(-0.703787\pi\)
0.0578831 + 0.998323i \(0.481565\pi\)
\(644\) 0.143061 0.811340i 0.00563740 0.0319713i
\(645\) 0 0
\(646\) 11.7111 9.82681i 0.460769 0.386631i
\(647\) 16.6946 0.656331 0.328165 0.944620i \(-0.393570\pi\)
0.328165 + 0.944620i \(0.393570\pi\)
\(648\) 19.0270 19.2888i 0.747452 0.757735i
\(649\) −51.5419 −2.02320
\(650\) 0 0
\(651\) −3.26417 + 1.61665i −0.127933 + 0.0633614i
\(652\) 0.182262 1.03366i 0.00713791 0.0404811i
\(653\) −17.3438 + 6.31264i −0.678716 + 0.247033i −0.658296 0.752759i \(-0.728723\pi\)
−0.0204201 + 0.999791i \(0.506500\pi\)
\(654\) 12.8174 29.2653i 0.501200 1.14436i
\(655\) 0 0
\(656\) −19.5143 33.7998i −0.761907 1.31966i
\(657\) −41.9268 5.37413i −1.63572 0.209665i
\(658\) −1.31725 + 2.28155i −0.0513518 + 0.0889439i
\(659\) −8.26055 3.00660i −0.321785 0.117120i 0.176077 0.984376i \(-0.443659\pi\)
−0.497862 + 0.867256i \(0.665882\pi\)
\(660\) 0 0
\(661\) −13.7931 11.5737i −0.536487 0.450166i 0.333847 0.942627i \(-0.391653\pi\)
−0.870335 + 0.492461i \(0.836097\pi\)
\(662\) −25.5942 21.4760i −0.994745 0.834690i
\(663\) −23.8981 + 25.0498i −0.928126 + 0.972854i
\(664\) 15.7303 + 5.72536i 0.610454 + 0.222187i
\(665\) 0 0
\(666\) −14.7286 7.60337i −0.570720 0.294625i
\(667\) 0.572636 + 0.991835i 0.0221726 + 0.0384040i
\(668\) −0.315134 1.78721i −0.0121929 0.0691494i
\(669\) 17.0529 + 23.1742i 0.659305 + 0.895966i
\(670\) 0 0
\(671\) −4.45992 + 25.2934i −0.172173 + 0.976442i
\(672\) −2.05927 1.37088i −0.0794380 0.0528828i
\(673\) −6.26057 + 5.25324i −0.241327 + 0.202498i −0.755427 0.655233i \(-0.772571\pi\)
0.514100 + 0.857730i \(0.328126\pi\)
\(674\) 25.5398 0.983756
\(675\) 0 0
\(676\) −4.33098 −0.166576
\(677\) −0.630907 + 0.529394i −0.0242477 + 0.0203462i −0.654831 0.755775i \(-0.727260\pi\)
0.630583 + 0.776122i \(0.282816\pi\)
\(678\) −0.885104 + 13.8669i −0.0339922 + 0.532556i
\(679\) 0.959124 5.43946i 0.0368078 0.208747i
\(680\) 0 0
\(681\) 9.11782 1.01433i 0.349396 0.0388690i
\(682\) 2.36791 + 13.4291i 0.0906721 + 0.514227i
\(683\) 19.4328 + 33.6587i 0.743577 + 1.28791i 0.950857 + 0.309631i \(0.100206\pi\)
−0.207280 + 0.978282i \(0.566461\pi\)
\(684\) −0.887394 + 2.84834i −0.0339303 + 0.108909i
\(685\) 0 0
\(686\) 12.6441 + 4.60209i 0.482756 + 0.175709i
\(687\) −34.3051 8.33233i −1.30882 0.317898i
\(688\) 0.873251 + 0.732745i 0.0332924 + 0.0279356i
\(689\) 36.4236 + 30.5631i 1.38763 + 1.16436i
\(690\) 0 0
\(691\) 33.1809 + 12.0769i 1.26226 + 0.459426i 0.884527 0.466488i \(-0.154481\pi\)
0.377734 + 0.925914i \(0.376703\pi\)
\(692\) −1.75079 + 3.03245i −0.0665549 + 0.115277i
\(693\) 6.15803 + 6.67440i 0.233924 + 0.253539i
\(694\) 16.2881 + 28.2118i 0.618287 + 1.07090i
\(695\) 0 0
\(696\) 1.83865 0.204543i 0.0696938 0.00775320i
\(697\) −44.2848 + 16.1184i −1.67741 + 0.610526i
\(698\) 6.70066 38.0013i 0.253624 1.43837i
\(699\) −0.135344 + 2.12044i −0.00511918 + 0.0802023i
\(700\) 0 0
\(701\) −26.7698 −1.01108 −0.505541 0.862803i \(-0.668707\pi\)
−0.505541 + 0.862803i \(0.668707\pi\)
\(702\) −6.53345 + 33.7487i −0.246589 + 1.27376i
\(703\) 12.9366 0.487912
\(704\) −26.4062 + 22.1575i −0.995222 + 0.835091i
\(705\) 0 0
\(706\) 2.91380 16.5250i 0.109662 0.621926i
\(707\) −1.28724 + 0.468517i −0.0484116 + 0.0176204i
\(708\) −4.46111 6.06245i −0.167659 0.227841i
\(709\) −5.90817 33.5069i −0.221886 1.25838i −0.868550 0.495602i \(-0.834947\pi\)
0.646664 0.762775i \(-0.276164\pi\)
\(710\) 0 0
\(711\) 1.63111 + 34.6427i 0.0611714 + 1.29920i
\(712\) −7.84310 + 13.5846i −0.293933 + 0.509106i
\(713\) −8.21108 2.98859i −0.307507 0.111923i
\(714\) 4.69099 4.91706i 0.175556 0.184016i
\(715\) 0 0
\(716\) −3.53264 2.96424i −0.132021 0.110779i
\(717\) −7.49295 25.5447i −0.279829 0.953983i
\(718\) 16.4548 + 5.98907i 0.614089 + 0.223510i
\(719\) −3.78251 + 6.55150i −0.141064 + 0.244330i −0.927898 0.372835i \(-0.878386\pi\)
0.786834 + 0.617165i \(0.211719\pi\)
\(720\) 0 0
\(721\) 7.44442 + 12.8941i 0.277245 + 0.480202i
\(722\) −2.20834 12.5241i −0.0821858 0.466099i
\(723\) 12.9150 29.4882i 0.480316 1.09668i
\(724\) −4.78958 + 1.74326i −0.178003 + 0.0647879i
\(725\) 0 0
\(726\) 8.39132 4.15597i 0.311431 0.154243i
\(727\) −22.3698 + 18.7705i −0.829649 + 0.696158i −0.955210 0.295927i \(-0.904371\pi\)
0.125561 + 0.992086i \(0.459927\pi\)
\(728\) 11.9676 0.443549
\(729\) −25.0493 10.0763i −0.927753 0.373196i
\(730\) 0 0
\(731\) 1.05445 0.884786i 0.0390001 0.0327250i
\(732\) −3.36108 + 1.66464i −0.124229 + 0.0615270i
\(733\) −3.71565 + 21.0725i −0.137241 + 0.778330i 0.836033 + 0.548680i \(0.184869\pi\)
−0.973273 + 0.229650i \(0.926242\pi\)
\(734\) −30.4144 + 11.0699i −1.12262 + 0.408599i
\(735\) 0 0
\(736\) −1.03050 5.84426i −0.0379847 0.215422i
\(737\) −7.75631 13.4343i −0.285707 0.494860i
\(738\) −28.3585 + 37.2201i −1.04389 + 1.37009i
\(739\) 1.12801 1.95377i 0.0414944 0.0718704i −0.844532 0.535505i \(-0.820121\pi\)
0.886027 + 0.463634i \(0.153455\pi\)
\(740\) 0 0
\(741\) −7.55148 25.7442i −0.277411 0.945737i
\(742\) −7.14965 5.99927i −0.262472 0.220240i
\(743\) −2.52675 2.12019i −0.0926974 0.0777823i 0.595261 0.803532i \(-0.297049\pi\)
−0.687959 + 0.725750i \(0.741493\pi\)
\(744\) −9.74315 + 10.2127i −0.357201 + 0.374415i
\(745\) 0 0
\(746\) 1.34766 2.33421i 0.0493412 0.0854615i
\(747\) −0.784572 16.6633i −0.0287060 0.609678i
\(748\) 2.50008 + 4.33026i 0.0914119 + 0.158330i
\(749\) −0.743750 4.21801i −0.0271760 0.154123i
\(750\) 0 0
\(751\) −29.9156 + 10.8884i −1.09164 + 0.397323i −0.824227 0.566260i \(-0.808390\pi\)
−0.267410 + 0.963583i \(0.586168\pi\)
\(752\) −1.47345 + 8.35633i −0.0537310 + 0.304724i
\(753\) 8.94002 + 5.95147i 0.325792 + 0.216884i
\(754\) −1.79803 + 1.50873i −0.0654804 + 0.0549446i
\(755\) 0 0
\(756\) −0.252057 + 1.30201i −0.00916724 + 0.0473536i
\(757\) 18.5287 0.673436 0.336718 0.941605i \(-0.390683\pi\)
0.336718 + 0.941605i \(0.390683\pi\)
\(758\) 9.04740 7.59167i 0.328616 0.275742i
\(759\) −1.38766 + 21.7404i −0.0503688 + 0.789128i
\(760\) 0 0
\(761\) −38.6363 + 14.0625i −1.40057 + 0.509764i −0.928346 0.371717i \(-0.878769\pi\)
−0.472219 + 0.881481i \(0.656547\pi\)
\(762\) 26.8868 2.99106i 0.974005 0.108355i
\(763\) 1.92478 + 10.9159i 0.0696816 + 0.395184i
\(764\) 0.717533 + 1.24280i 0.0259594 + 0.0449630i
\(765\) 0 0
\(766\) −6.60470 + 11.4397i −0.238638 + 0.413332i
\(767\) 63.6062 + 23.1507i 2.29669 + 0.835925i
\(768\) −12.8927 3.13150i −0.465226 0.112998i
\(769\) 26.1339 + 21.9289i 0.942412 + 0.790777i 0.978003 0.208589i \(-0.0668871\pi\)
−0.0355917 + 0.999366i \(0.511332\pi\)
\(770\) 0 0
\(771\) −33.2998 8.08817i −1.19926 0.291288i
\(772\) 1.01591 + 0.369762i 0.0365635 + 0.0133080i
\(773\) 2.64111 4.57453i 0.0949940 0.164534i −0.814612 0.580006i \(-0.803050\pi\)
0.909606 + 0.415472i \(0.136383\pi\)
\(774\) 0.406524 1.30485i 0.0146122 0.0469020i
\(775\) 0 0
\(776\) −3.71656 21.0777i −0.133417 0.756645i
\(777\) 5.71536 0.635814i 0.205037 0.0228097i
\(778\) −21.2069 + 7.71867i −0.760303 + 0.276728i
\(779\) 6.34166 35.9653i 0.227213 1.28859i
\(780\) 0 0
\(781\) −36.2321 + 30.4024i −1.29649 + 1.08788i
\(782\) 16.3022 0.582966
\(783\) −0.895009 1.61175i −0.0319850 0.0575991i
\(784\) 20.6927 0.739026
\(785\) 0 0
\(786\) −1.50504 1.00192i −0.0536830 0.0357373i
\(787\) −2.03562 + 11.5446i −0.0725620 + 0.411520i 0.926792 + 0.375575i \(0.122555\pi\)
−0.999354 + 0.0359440i \(0.988556\pi\)
\(788\) 6.61455 2.40750i 0.235634 0.0857636i
\(789\) −17.4730 23.7450i −0.622054 0.845343i
\(790\) 0 0
\(791\) −2.41038 4.17490i −0.0857032 0.148442i
\(792\) 31.2687 + 16.1419i 1.11109 + 0.573579i
\(793\) 16.8647 29.2106i 0.598884 1.03730i
\(794\) −16.0844 5.85425i −0.570815 0.207760i
\(795\) 0 0
\(796\) 3.53839 + 2.96906i 0.125415 + 0.105235i
\(797\) 18.6441 + 15.6442i 0.660406 + 0.554147i 0.910209 0.414150i \(-0.135921\pi\)
−0.249802 + 0.968297i \(0.580366\pi\)
\(798\) 1.48229 + 5.05337i 0.0524725 + 0.178887i
\(799\) 9.62798 + 3.50430i 0.340613 + 0.123973i
\(800\) 0 0
\(801\) 15.5049 + 1.98741i 0.547840 + 0.0702216i
\(802\) −25.3346 43.8809i −0.894597 1.54949i
\(803\) −9.53322 54.0656i −0.336420 1.90793i
\(804\) 0.908836 2.07509i 0.0320522 0.0731829i
\(805\) 0 0
\(806\) 3.10970 17.6360i 0.109535 0.621201i
\(807\) −9.43258 + 4.67168i −0.332042 + 0.164451i
\(808\) −4.06625 + 3.41199i −0.143050 + 0.120033i
\(809\) −2.84260 −0.0999405 −0.0499703 0.998751i \(-0.515913\pi\)
−0.0499703 + 0.998751i \(0.515913\pi\)
\(810\) 0 0
\(811\) 25.2940 0.888194 0.444097 0.895979i \(-0.353525\pi\)
0.444097 + 0.895979i \(0.353525\pi\)
\(812\) −0.0693672 + 0.0582060i −0.00243431 + 0.00204263i
\(813\) −47.9501 + 23.7483i −1.68168 + 0.832888i
\(814\) 3.73828 21.2008i 0.131027 0.743089i
\(815\) 0 0
\(816\) 8.78109 20.0494i 0.307400 0.701868i
\(817\) 0.185227 + 1.05047i 0.00648027 + 0.0367514i
\(818\) 12.8174 + 22.2004i 0.448149 + 0.776218i
\(819\) −4.60153 11.0026i −0.160790 0.384463i
\(820\) 0 0
\(821\) −39.7487 14.4673i −1.38724 0.504914i −0.462874 0.886424i \(-0.653182\pi\)
−0.924365 + 0.381510i \(0.875404\pi\)
\(822\) −0.449834 1.53355i −0.0156897 0.0534889i
\(823\) −1.70055 1.42693i −0.0592774 0.0497397i 0.612668 0.790341i \(-0.290096\pi\)
−0.671945 + 0.740601i \(0.734541\pi\)
\(824\) 44.1958 + 37.0847i 1.53964 + 1.29191i
\(825\) 0 0
\(826\) −12.4853 4.54429i −0.434421 0.158116i
\(827\) 9.11184 15.7822i 0.316850 0.548800i −0.662979 0.748638i \(-0.730708\pi\)
0.979829 + 0.199838i \(0.0640416\pi\)
\(828\) −2.67725 + 1.71848i −0.0930410 + 0.0597214i
\(829\) −15.8943 27.5298i −0.552033 0.956149i −0.998128 0.0611633i \(-0.980519\pi\)
0.446095 0.894986i \(-0.352814\pi\)
\(830\) 0 0
\(831\) 25.3426 + 34.4394i 0.879124 + 1.19469i
\(832\) 42.5394 15.4831i 1.47479 0.536779i
\(833\) 4.33884 24.6068i 0.150332 0.852574i
\(834\) −24.6291 16.3959i −0.852837 0.567743i
\(835\) 0 0
\(836\) −3.87478 −0.134012
\(837\) 13.1354 + 5.03076i 0.454027 + 0.173889i
\(838\) 35.2053 1.21615
\(839\) 14.1865 11.9039i 0.489772 0.410968i −0.364173 0.931331i \(-0.618648\pi\)
0.853945 + 0.520364i \(0.174204\pi\)
\(840\) 0 0
\(841\) −5.01394 + 28.4355i −0.172894 + 0.980533i
\(842\) −2.74612 + 0.999506i −0.0946376 + 0.0344453i
\(843\) 30.6229 3.40669i 1.05471 0.117333i
\(844\) 0.237233 + 1.34542i 0.00816591 + 0.0463112i
\(845\) 0 0
\(846\) 9.92444 2.23579i 0.341209 0.0768680i
\(847\) −1.62438 + 2.81351i −0.0558144 + 0.0966734i
\(848\) −28.2476 10.2813i −0.970027 0.353061i
\(849\) 4.89543 + 1.18905i 0.168011 + 0.0408080i
\(850\) 0 0
\(851\) 10.5675 + 8.86722i 0.362251 + 0.303964i
\(852\) −6.71199 1.63027i −0.229949 0.0558521i
\(853\) 21.7616 + 7.92056i 0.745102 + 0.271195i 0.686543 0.727089i \(-0.259127\pi\)
0.0585587 + 0.998284i \(0.481350\pi\)
\(854\) −3.31040 + 5.73378i −0.113280 + 0.196206i
\(855\) 0 0
\(856\) −8.29838 14.3732i −0.283633 0.491266i
\(857\) 4.14002 + 23.4792i 0.141420 + 0.802035i 0.970172 + 0.242418i \(0.0779406\pi\)
−0.828751 + 0.559617i \(0.810948\pi\)
\(858\) −44.3726 + 4.93629i −1.51485 + 0.168522i
\(859\) 7.58350 2.76017i 0.258746 0.0941757i −0.209390 0.977832i \(-0.567148\pi\)
0.468136 + 0.883656i \(0.344926\pi\)
\(860\) 0 0
\(861\) 1.03409 16.2011i 0.0352417 0.552133i
\(862\) 9.60190 8.05695i 0.327042 0.274421i
\(863\) −18.5552 −0.631628 −0.315814 0.948821i \(-0.602277\pi\)
−0.315814 + 0.948821i \(0.602277\pi\)
\(864\) 1.50156 + 9.43403i 0.0510841 + 0.320952i
\(865\) 0 0
\(866\) −32.0328 + 26.8787i −1.08852 + 0.913375i
\(867\) 2.50992 + 1.67088i 0.0852413 + 0.0567461i
\(868\) 0.119971 0.680388i 0.00407208 0.0230939i
\(869\) −42.3270 + 15.4058i −1.43584 + 0.522604i
\(870\) 0 0
\(871\) 3.53760 + 20.0627i 0.119867 + 0.679799i
\(872\) 21.4757 + 37.1970i 0.727258 + 1.25965i
\(873\) −17.9491 + 11.5212i −0.607485 + 0.389934i
\(874\) −6.31655 + 10.9406i −0.213660 + 0.370071i
\(875\) 0 0
\(876\) 5.53416 5.80086i 0.186982 0.195993i
\(877\) 8.10128 + 6.79778i 0.273561 + 0.229545i 0.769238 0.638962i \(-0.220636\pi\)
−0.495678 + 0.868507i \(0.665080\pi\)
\(878\) −9.78384 8.20962i −0.330189 0.277061i
\(879\) 3.01586 + 10.2815i 0.101722 + 0.346788i
\(880\) 0 0
\(881\) −5.52419 + 9.56817i −0.186115 + 0.322360i −0.943952 0.330084i \(-0.892923\pi\)
0.757837 + 0.652444i \(0.226256\pi\)
\(882\) −9.57225 22.8880i −0.322314 0.770679i
\(883\) 26.3618 + 45.6600i 0.887146 + 1.53658i 0.843234 + 0.537546i \(0.180649\pi\)
0.0439118 + 0.999035i \(0.486018\pi\)
\(884\) −1.14027 6.46678i −0.0383513 0.217501i
\(885\) 0 0
\(886\) 31.7844 11.5686i 1.06782 0.388654i
\(887\) 7.30927 41.4529i 0.245421 1.39185i −0.574091 0.818792i \(-0.694644\pi\)
0.819512 0.573062i \(-0.194245\pi\)
\(888\) 19.9685 9.88980i 0.670099 0.331880i
\(889\) −7.18978 + 6.03294i −0.241138 + 0.202338i
\(890\) 0 0
\(891\) 2.81759 34.9540i 0.0943929 1.17100i
\(892\) −5.45722 −0.182721
\(893\) −6.08228 + 5.10364i −0.203536 + 0.170787i
\(894\) 10.6538 5.27649i 0.356315 0.176472i
\(895\) 0 0
\(896\) −5.66584 + 2.06220i −0.189282 + 0.0688932i
\(897\) 11.4775 26.2059i 0.383222 0.874989i
\(898\) −3.61208 20.4851i −0.120537 0.683597i
\(899\) 0.480212 + 0.831752i 0.0160160 + 0.0277405i
\(900\) 0 0
\(901\) −18.1489 + 31.4349i −0.604629 + 1.04725i
\(902\) −57.1085 20.7858i −1.90151 0.692092i
\(903\) 0.133462 + 0.454995i 0.00444135 + 0.0151413i
\(904\) −14.3099 12.0074i −0.475940 0.399361i
\(905\) 0 0
\(906\) 9.01796 9.45255i 0.299602 0.314040i
\(907\) −0.590592 0.214958i −0.0196103 0.00713756i 0.332196 0.943210i \(-0.392210\pi\)
−0.351807 + 0.936073i \(0.614433\pi\)
\(908\) −0.870019 + 1.50692i −0.0288726 + 0.0500088i
\(909\) 4.70034 + 2.42647i 0.155900 + 0.0804810i
\(910\) 0 0
\(911\) 4.64690 + 26.3539i 0.153959 + 0.873144i 0.959731 + 0.280919i \(0.0906392\pi\)
−0.805773 + 0.592225i \(0.798250\pi\)
\(912\) 10.0530 + 13.6615i 0.332887 + 0.452378i
\(913\) 20.3595 7.41025i 0.673801 0.245243i
\(914\) 6.83321 38.7530i 0.226022 1.28184i
\(915\) 0 0
\(916\) 5.12928 4.30398i 0.169476 0.142207i
\(917\) 0.627276 0.0207145
\(918\) −26.2384 0.438035i −0.865997 0.0144573i
\(919\) 8.32555 0.274634 0.137317 0.990527i \(-0.456152\pi\)
0.137317 + 0.990527i \(0.456152\pi\)
\(920\) 0 0
\(921\) 3.07230 48.1338i 0.101236 1.58606i
\(922\) 3.67124 20.8206i 0.120906 0.685691i
\(923\) 58.3685 21.2444i 1.92122 0.699268i
\(924\) −1.71187 + 0.190440i −0.0563165 + 0.00626501i
\(925\) 0 0
\(926\) 4.72363 + 8.18157i 0.155228 + 0.268863i
\(927\) 17.1012 54.8912i 0.561677 1.80286i
\(928\) −0.326134 + 0.564881i −0.0107059 + 0.0185431i
\(929\) −20.0134 7.28427i −0.656618 0.238989i −0.00784221 0.999969i \(-0.502496\pi\)
−0.648775 + 0.760980i \(0.724719\pi\)
\(930\) 0 0
\(931\) 14.8327 + 12.4461i 0.486122 + 0.407905i
\(932\) −0.308716 0.259044i −0.0101123 0.00848525i
\(933\) 29.1403 + 7.07785i 0.954009 + 0.231718i
\(934\) 12.2224 + 4.44860i 0.399930 + 0.145563i
\(935\) 0 0
\(936\) −31.3373 33.9650i −1.02429 1.11018i
\(937\) 1.54921 + 2.68331i 0.0506104 + 0.0876598i 0.890221 0.455529i \(-0.150550\pi\)
−0.839610 + 0.543189i \(0.817217\pi\)
\(938\) −0.694400 3.93814i −0.0226730 0.128585i
\(939\) 17.2315 1.91694i 0.562327 0.0625570i
\(940\) 0 0
\(941\) −2.52290 + 14.3081i −0.0822442 + 0.466430i 0.915673 + 0.401924i \(0.131658\pi\)
−0.997917 + 0.0645063i \(0.979453\pi\)
\(942\) −0.230572 + 3.61237i −0.00751243 + 0.117697i
\(943\) 29.8324 25.0323i 0.971476 0.815165i
\(944\) −42.7937 −1.39282
\(945\) 0 0
\(946\) 1.77507 0.0577127
\(947\) 3.14077 2.63542i 0.102061 0.0856396i −0.590329 0.807163i \(-0.701002\pi\)
0.692390 + 0.721523i \(0.256558\pi\)
\(948\) −5.47558 3.64516i −0.177839 0.118389i
\(949\) −12.5197 + 71.0025i −0.406406 + 2.30484i
\(950\) 0 0
\(951\) 8.22948 + 11.1835i 0.266859 + 0.362649i
\(952\) 1.58646 + 8.99727i 0.0514175 + 0.291603i
\(953\) −14.3224 24.8072i −0.463950 0.803584i 0.535204 0.844723i \(-0.320235\pi\)
−0.999153 + 0.0411387i \(0.986901\pi\)
\(954\) 1.69504 + 36.0004i 0.0548788 + 1.16556i
\(955\) 0 0
\(956\) 4.74467 + 1.72692i 0.153454 + 0.0558525i
\(957\) 1.65281 1.73247i 0.0534279 0.0560027i
\(958\) 7.94406 + 6.66586i 0.256661 + 0.215364i
\(959\) 0.424745 + 0.356403i 0.0137157 + 0.0115089i
\(960\) 0 0
\(961\) 22.2447 + 8.09640i 0.717570 + 0.261174i
\(962\) −14.1359 + 24.4841i −0.455761 + 0.789401i
\(963\) −10.0235 + 13.1557i −0.323004 + 0.423938i
\(964\) 3.05296 + 5.28788i 0.0983291 + 0.170311i
\(965\) 0 0
\(966\) −2.25293 + 5.14399i −0.0724868 + 0.165505i
\(967\) −20.2015 + 7.35273i −0.649635 + 0.236448i −0.645755 0.763545i \(-0.723457\pi\)
−0.00388011 + 0.999992i \(0.501235\pi\)
\(968\) −2.18602 + 12.3976i −0.0702615 + 0.398473i
\(969\) 18.3535 9.08995i 0.589600 0.292011i
\(970\) 0 0
\(971\) 39.3784 1.26371 0.631857 0.775085i \(-0.282293\pi\)
0.631857 + 0.775085i \(0.282293\pi\)
\(972\) 4.35522 2.69396i 0.139694 0.0864090i
\(973\) 10.2650 0.329081
\(974\) −1.28764 + 1.08046i −0.0412588 + 0.0346202i
\(975\) 0 0
\(976\) −3.70294 + 21.0004i −0.118528 + 0.672206i
\(977\) −19.3119 + 7.02896i −0.617843 + 0.224876i −0.631931 0.775024i \(-0.717738\pi\)
0.0140884 + 0.999901i \(0.495515\pi\)
\(978\) −2.87026 + 6.55350i −0.0917807 + 0.209558i
\(979\) 3.52548 + 19.9940i 0.112675 + 0.639010i
\(980\) 0 0
\(981\) 25.9403 34.0462i 0.828209 1.08701i
\(982\) 7.19295 12.4585i 0.229536 0.397568i
\(983\) −21.3818 7.78235i −0.681975 0.248218i −0.0222795 0.999752i \(-0.507092\pi\)
−0.659695 + 0.751533i \(0.729315\pi\)
\(984\) −17.7062 60.3631i −0.564452 1.92431i
\(985\) 0 0
\(986\) −1.37262 1.15176i −0.0437130 0.0366796i
\(987\) −2.43631 + 2.55372i −0.0775486 + 0.0812858i
\(988\) 4.78174 + 1.74041i 0.152127 + 0.0553698i
\(989\) −0.568729 + 0.985067i −0.0180845 + 0.0313233i
\(990\) 0 0
\(991\) −8.61401 14.9199i −0.273633 0.473946i 0.696156 0.717890i \(-0.254892\pi\)
−0.969789 + 0.243944i \(0.921559\pi\)
\(992\) −0.864176 4.90099i −0.0274376 0.155606i
\(993\) −26.5290 36.0517i −0.841873 1.14407i
\(994\) −11.4572 + 4.17010i −0.363402 + 0.132267i
\(995\) 0 0
\(996\) 2.63378 + 1.75334i 0.0834546 + 0.0555567i
\(997\) 10.3528 8.68705i 0.327877 0.275122i −0.463957 0.885858i \(-0.653571\pi\)
0.791834 + 0.610736i \(0.209126\pi\)
\(998\) 22.9749 0.727256
\(999\) −16.7702 14.5557i −0.530586 0.460524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.h.76.12 96
5.2 odd 4 135.2.p.a.49.12 yes 96
5.3 odd 4 135.2.p.a.49.5 96
5.4 even 2 inner 675.2.l.h.76.5 96
15.2 even 4 405.2.p.a.199.5 96
15.8 even 4 405.2.p.a.199.12 96
27.16 even 9 inner 675.2.l.h.151.12 96
135.38 even 36 405.2.p.a.289.5 96
135.43 odd 36 135.2.p.a.124.12 yes 96
135.92 even 36 405.2.p.a.289.12 96
135.97 odd 36 135.2.p.a.124.5 yes 96
135.124 even 18 inner 675.2.l.h.151.5 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.5 96 5.3 odd 4
135.2.p.a.49.12 yes 96 5.2 odd 4
135.2.p.a.124.5 yes 96 135.97 odd 36
135.2.p.a.124.12 yes 96 135.43 odd 36
405.2.p.a.199.5 96 15.2 even 4
405.2.p.a.199.12 96 15.8 even 4
405.2.p.a.289.5 96 135.38 even 36
405.2.p.a.289.12 96 135.92 even 36
675.2.l.h.76.5 96 5.4 even 2 inner
675.2.l.h.76.12 96 1.1 even 1 trivial
675.2.l.h.151.5 96 135.124 even 18 inner
675.2.l.h.151.12 96 27.16 even 9 inner